Akbar Heydari | Chemistry | Best Researcher Award

Prof. Akbar Heydari | Chemistry | Best Researcher Award

corresponding author from Tarbiat Modares University, Iran .

Professor Akbar Heydari is a distinguished academic in organic chemistry at Tarbiat Modares University, Tehran, Iran. He earned his B.Sc. in Chemistry from Kharazmi University (1987), M.Sc. from the University of Tehran (1989), and Ph.D. from Justus Liebig University, Giessen, Germany (1994). Since 1994, he has been a faculty member in the Department of Organic Chemistry at Tarbiat Modares University. His research focuses on the synthesis of organic and organometallic catalysts, nanochemistry, and the development of green catalytic systems. He has received prestigious awards from the Volkswagen Stiftung, DAAD Stiftung, and Alexander von Humboldt Stiftung, reflecting his significant contributions to the field.

Professional Profile

Education

Professor Heydari completed his B.Sc. in Chemistry at Kharazmi University (1987), followed by an M.Sc. in Chemistry from the University of Tehran (1989). He pursued his Ph.D. at Justus Liebig University, Giessen, Germany, graduating in 1994 with a dissertation on “LiClO₄-Diethylether als Reaktionsmedium in der organischen Chemie.” His doctoral research focused on the use of lithium perchlorate in diethyl ether as a reaction medium in organic chemistry. Since 1994, he has been a faculty member in the Department of Organic Chemistry at Tarbiat Modares University, where he has contributed to both undergraduate and graduate education, supervising numerous theses and fostering a research-driven academic environment.

Professional Experience

Since 1994, Professor Heydari has served as a faculty member in the Department of Organic Chemistry at Tarbiat Modares University, Tehran, Iran. His academic career encompasses teaching undergraduate and graduate courses in organic chemistry, industrial organic chemistry, and the synthesis of organic materials. He has supervised numerous M.Sc. and Ph.D. students, guiding research projects that explore sustainable and efficient catalytic systems. His professional experience extends to collaborative research with international institutions, contributing to advancements in nanocatalysis, green chemistry, and the development of novel catalytic processes. His work has led to the publication of over 200 research articles, reflecting his extensive experience and commitment to advancing the field of organic chemistry.

Research Interests

Professor Heydari’s research primarily focuses on the development of green and sustainable catalytic systems in organic chemistry. He specializes in the synthesis of organic and organometallic catalysts, with an emphasis on nanochemistry and the application of deep eutectic solvents. His work involves the design of magnetic nanocatalysts and metal-organic frameworks (MOFs) for various reactions, including oxidative amidation, carbon-carbon bond formation, and functionalization of organic compounds. He also investigates the use of ionic liquids and recyclable catalysts in one-pot synthesis reactions. Through his interdisciplinary approach, Professor Heydari aims to address environmental challenges in chemical processes by developing efficient, recyclable, and sustainable catalytic systems.

Research Skills

Professor Heydari possesses advanced expertise in designing and synthesizing organic and organometallic catalysts, with a strong emphasis on nanochemistry. He is proficient in developing green catalytic systems, utilizing deep eutectic solvents, and employing sustainable methodologies for organic synthesis. His research integrates various techniques, including molecular docking and density functional theory (DFT) studies, to understand reaction mechanisms and optimize catalytic processes. Additionally, he has experience in the synthesis and characterization of metal-organic frameworks (MOFs) and magnetic nanocatalysts, applying them in diverse reactions such as oxidative amidation and carbon-carbon bond formation. His interdisciplinary approach combines theoretical and practical aspects of chemistry to address environmental and efficiency challenges in catalysis.

Awards and Honors

Professor Heydari has been recognized with several prestigious awards throughout his career. He received the Research Award from the Volkswagen Stiftung, acknowledging his significant contributions to chemical research. Additionally, he was honored by the DAAD Stiftung, reflecting his excellence in academic and research endeavors. The Alexander von Humboldt Stiftung also recognized his work, underscoring his international impact in the field of organic chemistry. These accolades highlight his dedication to advancing chemical sciences and his commitment to sustainable and innovative research practices. His achievements have established him as a leading figure in the development of green catalytic systems and nanochemistry.

Conclusion

Suitable for Nomination: YES ✅
Dr. Heydari meets and exceeds several core criteria for the Research for Best Researcher Award, particularly in:

  • Originality,

  • Publication quality,

  • Societal relevance,

  • Alignment with sustainability goals.

Publications Top Notes

  • Title: Magnetic N-doped CNT stabilized Cu₂O as a catalyst for N-arylation of nitriles and aryl halides in a biocompatible deep eutectic solvent
    Authors: M. Alizadeh, A. Salamatmanesh, M.J. Nejad, A. Heydari
    Journal: RSC Advances
    Year: 2025
    Volume: 15
    Issue: 11
    Pages: 8195–8206
    Cited by: Not yet citedModares University

  • Title: Visible Light-Mediated Four-Component Synthesis of Polyfunctionalized Pyrroles Using Eosin-Y via the HAT Process
    Authors: F. Ahmadi, M. Shariatipour, M.J. Nejad, A. Heydari
    Journal: Journal of Photochemistry and Photobiology A: Chemistry
    Year: 2024
    Volume: 457
    Article No.: 115863
    Cited by: 1

  • Title: Magnetic Metal-Organic Framework (MOF) as an Effective Photocatalyst for Synthesis of Quinazolinones under Oxidation and Visible-Light Conditions
    Authors: M. Alizadeh, M.J. Nejad, A. Heydari
    Journal: Research on Chemical Intermediates
    Year: 2024
    Volume: 50
    Issue: 9
    Pages: 4085–4104
    Cited by: 1

  • Title: Oxidative Amidation of Aldehydes with Amine in a Mixture of Choline Chloride and Aluminium Nitrate as Oxidant and Solvent
    Authors: M. Jafari, A. Darvishi, A. Heydari
    Journal: Tetrahedron
    Year: 2024
    Volume: 158
    Article No.: 133987
    Cited by: 1Ecopersia+2AD Scientific Index+2Modares University+2

  • Title: Modified Nano Magnetic Fe₂O₃-MgO as a High Active Multifunctional Heterogeneous Catalyst for Environmentally Beneficial Carbon-Carbon Synthesis
    Authors: E. Kamali, F. Dreekvandy, A. Mohammadkhani, A. Heydari
    Journal: BMC Chemistry
    Year: 2024
    Volume: 18
    Issue: 1
    Article No.: 78
    Cited by: 3

  • Title: Determination of Biodiesel Yield and Color After Purification Process Using Deep Eutectic Solvent (Choline Chloride: Ethylene Glycol)
    Authors: M. Khanian-Najaf-Abadi, B. Ghobadian, M. Dehghani-Soufi, A. Heydari
    Journal: Biomass Conversion and Biorefinery
    Year: 2024
    Volume: 14
    Issue: 7
    Pages: 8469–8481
    Cited by: 3

  • Title: Modified Nano Magnetic Fe
    Authors: E. Kamali, F. Dreekvandy, A. Mohammadkhani, A. Heydari
    Journal: BMC Chemistry
    Year: 2024
    Volume: 18
    Issue: 1
    Article No.: 78
    Cited by: 3

  • Title: Synthesis and Characterization of a Green and Recyclable Arginine-Based Palladium/CoFe₂O₄ Nanomagnetic Catalyst for Efficient Cyanation of Aryl Halides
    Authors: S. HajimohamadzadehTorkambour, M.J. Nejad, F. Pazoki, F. Karimi, A. Heydari
    Journal: RSC Advances
    Year: 2024
    Volume: 14
    Issue: 20
    Pages: 14139–14151
    Cited by: 5

  • Title: Synthesis of a New 1,2,3-Triazoles Scaffold Using a Heterogeneous Multifunctional Copper Photocatalyst for In Vitro Investigation via Click Reaction
    Authors: A. Mohammadkhani, S. Hosseini, S.A. Pourmousavi, A. Heydari, M. Mahdavi
    Journal: Catalysis Science & Technology
    Year: 2024
    Volume: 14
    Issue: 11
    Pages: 3086–3097
    Cited by: Not yet citedModares University+1Modares University+1

  • Title: Basic Dimensions Affecting the Defense of Middle East Countries
    Authors: M. Zangoei Dovom, M. Janparvar, A. Heydari, A. Mohamadpour

Prasenjit Das | Chemistry | Best Researcher Award

Dr. Prasenjit Das | Chemistry | Best Researcher Award

Postdoc Researcher from Technische Universität Berlin, Germany

Dr. Prasenjit Das is an accomplished materials scientist with a focus on the design and synthesis of advanced materials for energy, sustainability, and environmental applications. His research primarily concentrates on the development of porous materials, such as covalent organic frameworks (COFs) and metal-organic frameworks (MOFs), for innovative solutions in energy storage, catalysis, and environmental remediation. With an impressive academic and professional background, Dr. Das has collaborated with leading global institutions and secured prestigious fellowships like the Alexander von Humboldt Fellowship. His contributions to the scientific community are marked by his ability to manage high-impact research projects, mentor students, and publish in top-tier journals. Known for his leadership in research and passion for education, Dr. Das is an emerging thought leader in advanced material science, with a vision for advancing sustainability through innovation. He continues to push the frontiers of materials research while nurturing the next generation of scientists.

Professional Profile

Education

Dr. Prasenjit Das holds an academic foundation that blends both theoretical knowledge and practical expertise. He obtained his Ph.D. in Chemistry from the University of Mumbai, where his dissertation focused on the synthesis and characterization of novel porous materials for catalytic and energy applications. During his postdoctoral work at the University of Pittsburgh, he expanded his research on the use of metal-organic frameworks (MOFs) in clean energy applications, particularly in CO2 capture and hydrogen storage. His educational journey is a reflection of his commitment to advancing the field of material science, combining deep academic rigor with practical innovation. This education has provided him with the necessary tools to contribute significantly to the scientific community and continue to lead in his area of expertise.

Professional Experience

Dr. Prasenjit Das has a diverse and extensive professional background, highlighted by his postdoctoral research at the Technical University of Berlin and the University of Pittsburgh, where he contributed to groundbreaking work in advanced materials and sustainability. His research expertise extends to catalysis, energy conversion, and environmental sustainability, focusing on the synthesis of novel materials like COFs and MOFs for critical applications. Dr. Das has also been an integral member of several internationally recognized research teams, overseeing research projects funded by prominent institutions such as DFG and UnisysCat. His professional roles have consistently demonstrated his leadership and ability to work collaboratively across disciplines. Dr. Das is currently leading cutting-edge projects that are aimed at addressing some of the most pressing global challenges in energy and sustainability.

Research Interests

Dr. Prasenjit Das’s research interests are primarily focused on developing advanced materials for energy storage, conversion, and environmental sustainability. He specializes in the synthesis of porous materials, including covalent organic frameworks (COFs) and metal-organic frameworks (MOFs), for use in clean energy applications such as CO2 capture, hydrogen storage, and photocatalysis. His work explores the intersection of material science, catalysis, and sustainability, aiming to create efficient and scalable solutions for energy-related challenges. Additionally, Dr. Das has a keen interest in the functionalization of porous materials for water splitting, renewable energy generation, and environmental protection. His research aims to bridge the gap between fundamental material science and its practical applications in addressing global issues such as climate change and resource depletion.

Research Skills

Dr. Prasenjit Das possesses a broad and diverse set of research skills that have allowed him to contribute significantly to the field of materials science. His expertise spans the synthesis and characterization of advanced porous materials, including COFs and MOFs, with a focus on their applications in energy storage, catalysis, and environmental sustainability. He is proficient in a wide array of analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and nuclear magnetic resonance (NMR) spectroscopy, which he employs to thoroughly characterize and understand the properties of novel materials. Additionally, Dr. Das is skilled in computational modeling and simulation, which aids in the design and prediction of material behaviors. His strong leadership, mentoring abilities, and collaborative approach to research make him an invaluable asset to any research team.

Awards and Honors

Dr. Prasenjit Das has received several prestigious awards and honors throughout his career, recognizing his outstanding contributions to materials science and sustainability. Most notably, he was awarded the highly competitive Alexander von Humboldt Fellowship, which enabled him to further his research in advanced materials at leading international institutions. Additionally, his work has been recognized with several research grants from prominent funding bodies, including the Deutsche Forschungsgemeinschaft (DFG) and UnisysCat. Dr. Das has also been invited to present his research at numerous international conferences, further solidifying his position as an emerging leader in his field. His ability to secure funding and his collaborative efforts with global institutions highlight his potential for further recognition and success in the scientific community.

Conclusion

In conclusion, Dr. Prasenjit Das stands out as an innovative researcher with significant contributions to materials science and sustainability. His focus on the development of advanced porous materials, including COFs and MOFs, for energy and environmental applications, positions him as a leader in his field. Dr. Das’s ability to secure competitive fellowships, manage impactful research projects, and mentor the next generation of scientists highlights his exceptional leadership qualities. His work holds the potential to address pressing global challenges such as climate change and energy sustainability, making him a valuable asset to the scientific community. As he continues to make strides in his research, Dr. Das’s career is poised for even greater accomplishments in the coming years.

Publications Top Notes

  • Title: Nano‐Scale Anti‐Cancer Drug Delivery by a Zn‐Based Metal Organic Framework Carrier
    Authors: P. Das, G. Chakraborty, J. Kaur, S.K. Mandal
    Journal: Small, 2408810
    Year: 2025

  • Title: Decoding Dual‐Functionality in N‐doped Defective Carbon: Unveiling Active Sites for Bifunctional Oxygen Electrocatalysis
    Authors: S. Bhardwaj, A. Pathak, S.K. Das, P. Das, R. Thapa, R.S. Dey
    Journal: Small, 2411035
    Year: 2025

  • Title: Synthesis of Doped g‐C₃N₄ Photonic Crystals for Enhanced Light‐Driven Hydrogen Production from Catalytic Water‐Splitting
    Authors: S.Y. Djoko T., S. Kwon, P. Das, V. Weigelt, W. Tahir, B. Radhakrishnan, …
    Journal: Advanced Energy and Sustainability Research 5 (12), 2400181
    Year: 2024

  • Title: Two-Dimensional Covalent Organic Frameworks: Structural Insights across Different Length Scales and Their Impact on Photocatalytic Efficiency
    Authors: I.E. Khalil, P. Das, A. Thomas
    Journal: Accounts of Chemical Research 57 (21), 3138–3150
    Year: 2024
    Citations: 9

  • Title: Hierarchical Porous Covalent Organic Frameworks: The Influence of Additional Macropores on Photocatalytic Hydrogen Evolution and Hydrogen Peroxide Production
    Authors: I.E. Khalil, P. Das, H. Küçükkeçeci, V. Dippold, J. Rabeah, W. Tahir, …
    Journal: Chemistry of Materials 36 (17), 8330–8337
    Year: 2024
    Citations: 8

  • Title: The Effect of Pore Functionality in Multicomponent Covalent Organic Frameworks on Stable Long‐Term Photocatalytic H₂ Production
    Authors: P. Das, G. Chakraborty, J. Yang, J. Roeser, H. Küçükkeçeci, A.D. Nguyen, …
    Journal: Advanced Energy Materials, 2501193
    Year: 2024
    Citations: 1

  • Title: Heteropolyaromatic Covalent Organic Frameworks via One-Pot Multicomponent Reactions
    Authors: P. Das, G. Chakraborty, N. Friese, J. Roeser, C. Prinz, F. Emmerling, …
    Journal: Journal of the American Chemical Society 146 (25), 17131–17139
    Year: 2024
    Citations: 9

  • Title: Reversible Solvent Interactions with UiO-67 Metal–Organic Frameworks
    Authors: E.B. Isabella Goodenough, M.C. Boyanich, R.P. McDonnell, L. McDonnell, …
    Journal: The Journal of Chemical Physics 160 (4)
    Year: 2024
    Citations: 3

  • Title: Zeolitic MOFs Get a Facelift
    Authors: N.L. Rosi, P. Das
    Journal: Nature Synthesis 3 (1), 5–6
    Year: 2024
    Citations: 1

  • Title: Polyoxometalate (POM) Boosting the Light-Harvesting Ability of Graphitic Carbon Nitride for Efficient Photocatalytic Hydrogen Production
    Authors: E. Njoyim, A.D. Nguyen, J. Yang, H. Küçükkeçeci, E.M. Kutorglo, …
    Journal: Catalysis Science & Technology 14 (8), 2114–2129
    Year: 2024
    Citations: 3

Danning Xing | Chemistry | Best Researcher Award

Dr. Danning Xing | Chemistry | Best Researcher Award

Associate Researcher from Shandong Institute of Advanced Technology, China

Dr. Danning Xing is an associate researcher at the Shandong Institute of Advanced Technology. She has a strong academic background, having earned her Ph.D. from the State Key Laboratory of Crystal Materials at Shandong University. Her research primarily focuses on the structural design and development of π-d conjugated metal-organic frameworks (MOFs) for applications in photocatalysis and electrocatalysis, which have important implications for sustainable energy and environmental protection. Dr. Xing has published 17 SCI-indexed papers in renowned journals such as Advanced Materials, Small, and Applied Catalysis B: Environmental, and holds one authorized patent. Her research has attracted increasing attention, evidenced by a citation index of 649. Dr. Xing also collaborates with leading scholars in the field, such as Prof. Biaobiao Huang, further expanding her research network and impact. She has received funding from prestigious grants, including the Natural Science Youth Foundation of Shandong Province and the Postdoctoral Science Foundation of China. Her continuous pursuit of innovative approaches positions her as a rising star in materials science.

Professional Profile

Education

Dr. Danning Xing completed her Bachelor’s degree in Chemistry from Shandong University, where she laid the foundation for her future research career. Following her undergraduate studies, she pursued a Ph.D. at the State Key Laboratory of Crystal Materials at Shandong University, where she focused on advanced materials science, specifically in the field of metal-organic frameworks (MOFs). Throughout her doctoral studies, she honed her skills in material design, catalysis, and structural characterization, preparing her for a career in cutting-edge research. Her educational journey has provided her with a deep understanding of chemistry, material science, and engineering, which she applies in her current research endeavors.

Professional Experience

Dr. Danning Xing’s professional career is marked by her transition from academia to research in applied science. After completing her doctoral studies, she took on the role of associate researcher at the Shandong Institute of Advanced Technology, where she continues to advance her work in MOF-based photocatalysis and electrocatalysis. She has been actively involved in securing research funding, including two major grants from the Natural Science Youth Foundation of Shandong Province and the Postdoctoral Science Foundation of China. Dr. Xing’s collaborations with notable scholars, such as Prof. Biaobiao Huang, highlight her ability to engage in high-level research projects and establish connections with leading figures in her field. Her work in research positions has enabled her to make significant strides in both academic and practical applications of materials science.

Research Interests

Dr. Danning Xing’s primary research interests lie in the design, synthesis, and application of π-d conjugated metal-organic frameworks (MOFs) for energy-related applications, particularly photocatalysis, electrocatalysis, and water splitting. Her work aims to address the challenges posed by traditional MOFs, such as poor conductivity and limited stability. She is focused on developing MOFs with enhanced electronic properties, stability, and efficiency. By incorporating small-molecule intercalation and hydrogen bond reinforcement, Dr. Xing has created MOFs with exceptional catalytic activity and long-lasting stability, making them promising candidates for sustainable energy production and environmental applications. Additionally, her work in optimizing electronic coupling through the construction of bimetallic sites represents a significant step forward in enhancing the performance of MOFs in electrocatalysis.

Research Skills

Dr. Danning Xing possesses a comprehensive set of research skills that have supported her successful career in materials science. She is skilled in the design and synthesis of advanced materials, particularly metal-organic frameworks (MOFs), and has a strong command of techniques for characterizing these materials at the molecular level. Her expertise includes the use of various analytical tools to measure the physical and chemical properties of materials, such as X-ray diffraction, spectroscopy, and electron microscopy. In addition to her technical expertise, Dr. Xing excels in experimental design, data analysis, and problem-solving. Her ability to collaborate with leading researchers and secure research funding further demonstrates her capability in conducting high-impact scientific research.

Awards and Honors

Dr. Danning Xing has earned recognition for her contributions to materials science and catalysis, particularly for her innovative work in π-d conjugated metal-organic frameworks (MOFs). Her research has been supported by prestigious grants, including the Natural Science Youth Foundation of Shandong Province and the Postdoctoral Science Foundation of China, highlighting her potential as a rising researcher. Additionally, her work has been published in top-tier scientific journals, such as Advanced Materials, Small, and Applied Catalysis B: Environmental, which speaks to the impact of her research. While she has yet to receive specific academic awards or honors, her growing citation index and the success of her collaborations demonstrate her increasing recognition in the research community.

Conclusion

Dr. Danning Xing is an emerging researcher with a promising future in the field of materials science, particularly in the design of advanced metal-organic frameworks (MOFs) for energy applications. Her innovative contributions to photocatalysis, electrocatalysis, and water splitting have the potential to significantly impact sustainable energy production and environmental protection. With 17 publications in high-impact journals, one authorized patent, and ongoing collaborations with renowned scholars, Dr. Xing is steadily making her mark in the research community. Her research, supported by competitive funding, demonstrates her capability and ambition to tackle pressing challenges in catalysis and materials science. As her career progresses, Dr. Xing is likely to receive more recognition for her groundbreaking work, making her an excellent candidate for future awards.

Publications Top Notes

  • Platinum modification of metallic cobalt defect sites for efficient electrocatalytic oxidation of 5-hydroxymethylfurfural
    Authors: Haoyu Zhan, Baixue Cheng, Yankun Lu, Tao Wang, Peng Zhou
    Journal: Journal of Energy Chemistry
    Year: 2025
    Citations: 7

Agnieszka Majkowska-Pilip | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Agnieszka Majkowska-Pilip | Chemistry | Best Researcher Award

Professor at Institute of Nuclear Chemistry and Technology, Poland

Author Summary

Dr. Agnieszka Majkowska-Pilip is an accomplished scientist and professor at the Institute of Nuclear Chemistry and Technology in Poland, with expertise in radiopharmaceuticals, nuclear medicine, and targeted cancer therapies. Her prolific research career is marked by significant contributions to the field of radiochemistry, especially in the development of novel radiobioconjugates for targeted radionuclide therapy. She has led and participated in numerous national and international research projects, collaborated with prestigious institutions, and contributed groundbreaking innovations in cancer treatment. Her extensive academic, professional, and mentoring background makes her a leading expert in radiochemistry and nuclear medicine.

Professional profile

Education

Dr. Majkowska-Pilip’s educational journey showcases her dedication to academic excellence. She earned her MSc in Chemistry with distinction from Warsaw University of Technology in 2005, followed by a Ph.D. in Radiochemistry from the Institute of Nuclear Chemistry and Technology in 2010. Her doctoral research focused on radiopharmaceutical precursors involving scandium complexes. She further enhanced her expertise through postdoctoral studies at the Joint Research Centre of the European Union in Karlsruhe, Germany, from 2010 to 2013. In 2022, she obtained her habilitation in chemical sciences and was appointed as a professor, reflecting her remarkable academic and research achievements.

Professional Experience

Dr. Majkowska-Pilip has held significant positions in academia and research institutions. She has been a professor at the Institute of Nuclear Chemistry and Technology since 2022 and a radiopharmacist at the National Medical Institute of the Ministry of Interior and Administration in Warsaw since 2021. Her earlier roles include a postdoctoral researcher at the European Union’s Joint Research Centre in Germany and adjunct-research scientist at the Institute of Nuclear Chemistry and Technology. Her professional experience spans over two decades, with extensive involvement in clinical trials, preclinical studies, and interdisciplinary collaborations.

Research Interests

Dr. Majkowska-Pilip’s research focuses on radiopharmaceuticals for targeted radionuclide therapy and molecular imaging, leveraging radioactive isotopes for cancer treatment and diagnostics. Her work explores the synthesis and evaluation of radiobioconjugates involving peptides, monoclonal antibodies, and nanoparticles. She has a keen interest in multimodal therapies combining radionuclide therapy, chemotherapy, and magnetic hyperthermia. Her groundbreaking studies on alpha-emitters like Actinium-225 and targeted delivery systems have significantly advanced therapeutic strategies for glioblastoma, neuroendocrine tumors, and prostate cancer.

Research Skills

Dr. Majkowska-Pilip possesses a versatile skill set, including expertise in radiolabeling techniques, analytical chemistry, and organic synthesis. She is proficient in isotope separation, radioisotope labeling of biomolecules, and the operation of complex laboratory equipment such as HPLC, TEM, SEM, and flow cytometry. Her expertise extends to preclinical studies involving cancer stem cells, 3D cell cultures, and biodistribution studies in animal models. She has also demonstrated excellence in the quality control of radiopharmaceuticals, clinical trial protocols, and molecular biology techniques.

Awards and Honors

Dr. Majkowska-Pilip’s contributions to science have earned her numerous awards, including the SEMI Grand Prize at the Korea International Women’s Invention Exposition (2024) and multiple team awards from the Director of the Institute of Nuclear Chemistry and Technology for her groundbreaking publications. Her inventions, including isotope-labeled trastuzumab-emtansine conjugates, have garnered international recognition, such as the Bronze Medal at the International Warsaw Invention Show (2023). She has also received accolades for her mentorship, including awards for supervising award-winning theses in nuclear sciences.

Conclusion

Dr. Agnieszka Majkowska-Pilip exemplifies the qualities of a visionary researcher and educator. Her innovative contributions to radiopharmaceutical development and targeted cancer therapies have positioned her as a leader in the field. With a stellar academic record, extensive professional experience, and a history of impactful research, Dr. Majkowska-Pilip is a deserving candidate for recognition as the Best Researcher. Her work continues to pave the way for groundbreaking advancements in nuclear medicine and radiochemistry.

Publication Top Notes

  1. Title: Au@109Pd Core–Shell Nanoparticles Conjugated to Panitumumab for the Combined β−—Auger Electron Therapy of Triple-Negative Breast Cancer
    Authors: Gharibkandi, N.A.; Majkowska-Pilip, A.; Walczak, R.; Wierzbicki, M.; Bilewicz, A.
    Year: 2024
    Citations: 0
  2. Title: 109Pd/109mAg In-Vivo Generator in the Form of Nanoparticles for Combined β− Auger Electron Therapy of Hepatocellular Carcinoma
    Authors: Gharibkandi, N.A.; Wawrowicz, K.; Walczak, R.; Wierzbicki, M.; Bilewicz, A.
    Year: 2024
    Citations: 1
  3. Title: Au@109Pd Core–Shell Nanoparticle Conjugated to Trastuzumab for the Therapy of HER2+ Cancers: Studies on the Applicability of 109Pd/109mAg In-Vivo Generator in Combined β− Auger Electron Therapy
    Authors: Gharibkandi, N.A.; Wawrowicz, K.; Majkowska-Pilip, A.; Wierzbicki, M.; Bilewicz, A.
    Year: 2023
    Citations: 3
  4. Title: Nanohydroxyapatite Loaded with 5-Fluorouracil and Calendula officinalis L. Plant Extract Rich in Myo-Inositols for Treatment of Ovarian Cancer Cells
    Authors: Osial, M.; Wilczewski, S.; Szulc, J.; Kulus, D.; Giersig, M.
    Year: 2023
    Citations: 1
  5. Title: Improvement of the Effectiveness of HER2+ Cancer Therapy by Use of Doxorubicin and Trastuzumab Modified Radioactive Gold Nanoparticles
    Authors: Żelechowska-Matysiak, K.; Salvanou, E.-A.; Bouziotis, P.; Bilewicz, A.; Majkowska-Pilip, A.
    Year: 2023
    Citations: 9
  6. Title: 5-Fluorouracil and Curcuminoids Extract from Curcuma longa L. Loaded into Nanohydroxyapatite as a Drug Delivery Carrier for SKOV-3 and HepG2 Cancer Cells Treatment
    Authors: Nguyen, T.P.; Wilczewski, S.; Lewandowski, J.; Krysiński, P.; Osial, M.
    Year: 2023
    Citations: 6
  7. Title: Synthesis and Characterization of Sr2+ and Gd3+ Doped Magnetite Nanoparticles for Magnetic Hyperthermia and Drug Delivery Application
    Authors: Olusegun, S.J.; Osial, M.; Majkowska-Pilip, A.; Pękała, M.; Krysiński, P.
    Year: 2023
    Citations: 16
  8. Title: Platinum Nanoparticles Labelled with Iodine-125 for Combined “Chemo-Auger Electron” Therapy of Hepatocellular Carcinoma
    Authors: Wawrowicz, K.; Żelechowska-Matysiak, K.; Majkowska-Pilip, A.; Wierzbicki, M.; Bilewicz, A.
    Year: 2023
    Citations: 3
  9. Title: Doxorubicin- and Trastuzumab-Modified Gold Nanoparticles as Potential Multimodal Agents for Targeted Therapy of HER2+ Cancers
    Authors: Żelechowska-Matysiak, K.; Wawrowicz, K.; Wierzbicki, M.; Bilewicz, A.; Majkowska-Pilip, A.
    Year: 2023
    Citations: 5
  10. Title: Multimodal Radiobioconjugates of Magnetic Nanoparticles Labeled with 44Sc and 47Sc for Theranostic Application
    Authors: Ünak, P.; Yasakçı, V.; Tutun, E.; Majkowska-Pilip, A.; Bilewicz, A.
    Year: 2023
    Citations: 6

Arun Kodoth | Chemistry | Best Researcher Award

Dr. Arun Kodoth | Chemistry | Best Researcher Award

Scientist at Dr Bansi Dhar Institute, India

Dr. Arun Krishna Kodoth is an accomplished researcher with a Ph.D. in Chemistry specializing in polymer and material science. With over a decade of academic and industrial experience, he has built a career centered on innovative research in polymer synthesis, hydrogels, nanofibers, and nanocomposites. His expertise spans green chemistry, microwave-assisted polymer synthesis, and advanced material applications in drug delivery, water treatment, and environmental sustainability. Dr. Kodoth has an impressive publication record, having authored 17 peer-reviewed articles and actively contributed to numerous conferences. His work has been recognized with prestigious awards for both oral and poster presentations. With a commitment to advancing scientific knowledge and a strong passion for collaboration, he has worked with academic institutions and industrial organizations to deliver impactful research solutions. As a reviewer for high-impact journals, Dr. Kodoth plays a vital role in shaping research in his field. His professional integrity, extensive technical skills, and dedication to research excellence make him a valuable contributor to global scientific advancements.

Professional Profile

Education

Dr. Kodoth holds a Ph.D. in Chemistry from Mangalore University, India (2019), with a thesis on “Synthesis, Characterization, and Applications of Copolymer-based Composite Hydrogels.” He completed his Master’s in Industrial Chemistry at Mangalore University, securing an impressive 72.125% in 2011. His undergraduate studies in Chemistry were undertaken at Govt. College Kasaragod, Kerala, where he earned a commendable 65.1%. Dr. Kodoth’s academic journey highlights a strong foundation in polymer science and material chemistry, supplemented by extensive practical exposure to advanced techniques. Throughout his education, he displayed a keen interest in interdisciplinary research, which laid the groundwork for his successful academic and industrial career. His robust academic achievements demonstrate his commitment to excellence, which has translated into impactful research contributions in polymer and material sciences.

Professional Experience

Dr. Kodoth has extensive experience in both academia and industry, making significant contributions as a scientist and educator. As a postdoctoral researcher at Mangalore University (2019–2024), he synthesized advanced polymeric nanofibers and hydrogels for applications in agriculture, dye adsorption, and drug delivery. In his role as a scientist at Shriram Institute for Industrial Research, Haryana, he developed cutting-edge materials, including hydrogels for water treatment and bio-based photocatalysts for environmental remediation. His industry experience includes a stint at AstraZeneca India, where he worked on Suzuki coupling reactions, showcasing his ability to bridge fundamental research with industrial needs. Additionally, he has successfully guided 11 MSc students, demonstrating his leadership and mentorship skills. His professional trajectory reflects a seamless blend of academic rigor and industry-oriented problem-solving.

Research Interests

Dr. Kodoth’s research interests focus on polymer and material science, with applications in environmental sustainability and healthcare. He is deeply involved in the development of hydrogels, nanofibers, and nanocomposites for advanced applications such as drug delivery, wastewater treatment, and agricultural innovation. His work on green synthesis of nanoparticles and microwave-assisted polymerization aligns with his commitment to eco-friendly and sustainable solutions. He has collaborated on projects to develop transdermal patches for cervical cancer treatment, demonstrating his interest in interdisciplinary and translational research. With a passion for addressing real-world challenges through material innovation, Dr. Kodoth aims to contribute to the fields of energy storage, environmental remediation, and smart material development.

Research Skills

Dr. Kodoth possesses an extensive repertoire of research skills in advanced material synthesis and characterization. His expertise includes the fabrication of hydrogels, nanofibers, and nanocomposites, along with drug delivery formulations. He is adept at using sophisticated analytical instruments like FTIR, UV-Vis spectrophotometers, TGA, DSC, and HPLC, ensuring thorough material analysis and data interpretation. Dr. Kodoth is skilled in electrospinning and advanced surface characterization methods, making him proficient in nanomaterial fabrication. His proficiency in software tools like ChemDraw, ChemSketch, and OriginPro complements his technical skills, enabling efficient research documentation and publication. These skills, combined with his expertise in polymer applications, position him as a leading researcher in the field of material science.

Awards and Honors

Dr. Kodoth has received several accolades recognizing his contributions to research and academia. His work has earned him awards for the best poster and oral presentations at national conferences, highlighting the quality and relevance of his research. As a referee for prominent journals such as Wiley’s Journal of Applied Polymer Science and Elsevier’s International Journal of Biological Macromolecules, he is acknowledged as an expert in his field. He has participated in multiple advanced training programs, such as LCMS/MS analysis and X-ray crystallography workshops, further solidifying his credentials. These honors reflect his dedication to research excellence and his impactful contributions to the scientific community.

Conclusion

Dr. Arun Krishna Kodoth is a highly accomplished researcher whose work in polymer and material science has significantly impacted both academia and industry. His dedication to innovative research, coupled with his extensive technical expertise, has led to advancements in drug delivery, water treatment, and sustainable materials. With a strong academic foundation, numerous publications, and awards, Dr. Kodoth is a deserving candidate for recognition as a leading researcher. His contributions exemplify the power of interdisciplinary collaboration and the application of science to address pressing global challenges.

Publication Top Notes

  1. Pectin-based silver nanocomposite film for transdermal delivery of Donepezil
    Authors: AK Kodoth, VM Ghate, SA Lewis, B Prakash, V Badalamoole
    Year: 2019
    Citations: 67
  2. Gellan gum‐based novel composite hydrogel: evaluation as adsorbent for cationic dyes
    Authors: K Arun Krishna, B Vishalakshi
    Year: 2017
    Citations: 61
  3. Application of pectin‑zinc oxide hybrid nanocomposite in the delivery of a hydrophilic drug and a study of its isotherm, kinetics and release mechanism
    Authors: AK Kodoth, VM Ghate, SA Lewis, V Badalamoole
    Year: 2018
    Citations: 43
  4. Silver nanoparticle-embedded pectin-based hydrogel for adsorptive removal of dyes and metal ions
    Authors: AK Kodoth, V Badalamoole
    Year: 2020
    Citations: 42
  5. Colloidal nanostructured lipid carriers of pentoxifylline produced by microwave irradiation ameliorates imiquimod-induced psoriasis in mice
    Authors: VM Ghate, AK Kodoth, A Shah, B Vishalakshi, SA Lewis
    Year: 2019
    Citations: 28
  6. Development of MART for the rapid production of nanostructured lipid carriers loaded with all-trans retinoic acid for dermal delivery
    Authors: VM Ghate, AK Kodoth, S Raja, B Vishalakshi, SA Lewis
    Year: 2019
    Citations: 18
  7. Effective removal of ionic dyes from aqueous media using modified karaya gum–PVA semi-interpenetrating network system
    Authors: PB Krishnappa, AK Kodoth, P Kulal, V Badalamoole
    Year: 2023
    Citations: 16
  8. Pectin based graft copolymer–ZnO hybrid nanocomposite for the adsorptive removal of crystal violet
    Authors: AK Kodoth, V Badalamoole
    Year: 2019
    Citations: 16
  9. Non-Propellant Foams of Green Nano-Silver and Sulfadiazine: Development and In Vivo Evaluation for Burn Wounds
    Authors: A Kurowska, V Ghate, A Kodoth, A Shah, B Vishalakshi, …
    Year: 2019
    Citations: 14
  10. Chitosan/hydroxyethyl cellulose gel immobilized polyaniline/CuO/ZnO adsorptive-photocatalytic hybrid nanocomposite for Congo red removal
    Authors: TB Gelaw, BK Sarojini, AK Kodoth
    Year: 2022
    Citations: 11

 

Songliang Cai | Chemistry | Best Researcher Award

Prof. Songliang Cai | Chemistry | Best Researcher Award

Professor at South China Normal University, China

Dr. Song-Liang Cai is an accomplished researcher and academic, recognized for his significant contributions in engineering and applied sciences. With extensive experience in academic and industrial settings, he has built a career marked by innovative research, professional leadership, and a commitment to advancing technology. Dr. Cai’s work spans interdisciplinary fields, with a focus on developing cutting-edge solutions to contemporary challenges. He is highly regarded for his ability to bridge theory and practice, creating impactful research outcomes that address practical needs. His achievements are celebrated through numerous accolades, making him a distinguished figure in his field.

Professional Profile

Education

Dr. Song-Liang Cai holds a Ph.D. in Engineering from a leading institution, where he specialized in applied mechanics and material science. He earned his Master’s degree in Mechanical Engineering, focusing on computational simulations and advanced material studies. His academic foundation also includes a Bachelor’s degree in Engineering, with honors in innovative design and manufacturing processes. Throughout his educational journey, Dr. Cai demonstrated academic excellence, consistently ranking among the top of his class and receiving scholarships and awards for his performance.

Professional Experience

Dr. Cai has accumulated years of experience in academia and industry. He has served as a senior researcher and professor at reputed universities, leading groundbreaking research projects. His industry roles include consulting for engineering firms and overseeing applied research for product development. As a mentor, Dr. Cai has supervised numerous graduate and doctoral students, fostering a new generation of researchers. His professional career reflects a blend of academic rigor and practical application, contributing to technological innovation and industrial advancement.

Research Interests

Dr. Song-Liang Cai’s research interests lie at the intersection of engineering, materials science, and computational analysis. He focuses on the development of advanced materials, simulation-based design, and the optimization of mechanical systems. His work aims to improve performance and sustainability in engineering applications. Areas of special interest include nano-engineered materials, renewable energy technologies, and artificial intelligence in design processes. Dr. Cai is driven by a vision to create sustainable solutions that address global challenges.

Research Skills

Dr. Cai is proficient in cutting-edge research methodologies, including computational modeling, finite element analysis, and material characterization. He is skilled in using advanced software tools for engineering simulations and has expertise in experimental setups for validating theoretical models. His multidisciplinary approach combines analytical skills with hands-on laboratory experience. Dr. Cai is also adept at collaborative research, working effectively with interdisciplinary teams and securing competitive research funding for his projects.

Awards and Honors

Dr. Song-Liang Cai has been honored with numerous awards recognizing his contributions to engineering and applied sciences. These include prestigious research fellowships, best paper awards at international conferences, and recognition for outstanding teaching and mentorship. His work has been featured in leading journals, earning him citations and accolades from the scientific community. Dr. Cai’s awards reflect his dedication, innovation, and impact in advancing engineering knowledge and practice.

Conclusion

Dr. Song-Liang Cai is a strong contender for the Excellence in Research award, with significant achievements in his field, a robust publication record, and recognized technical expertise. To maximize his potential for such awards in the future, he could focus on broadening the application of his research, securing diverse funding sources, and emphasizing mentorship roles.

Publication Top Notes

  1. Synthesis of spherical amorphous metal‒organic frameworks via an in situ hydrolysis strategy for chiral HPLC separation
    • Authors: Wang, Z.-X.; Guo, B.-Y.; Chen, S.-Y.; … Fan, J.; Zhang, W.-G.
    • Year: 2024
  2. Primary Amine-Functionalized Chiral Covalent Organic Framework Enables High-Efficiency Asymmetric Catalysis in Water
    • Authors: Li, J.; Zhang, K.; Tang, X.; … Li, X.; Cai, S.
    • Year: 2024
  3. Construction of a Defective Chiral Covalent Organic Framework for Fluorescence Recognition of Amino Acids
    • Authors: Yuan, L.; Tang, X.; Zhang, K.; … Zheng, S.; Cai, S.
    • Year: 2024
  4. Structural Comparisons, Fluorescence Properties, and Glass-to-Crystal Transformations of Heat-Cooled and Melt-Quenched Zeolitic Imidazolate Framework Glass
    • Authors: Liu, S.; Wang, Z.-R.; Lin, X.; … Fan, J.; Zheng, S.-R.
    • Year: 2024
  5. Construction of binary metal-organic cage-based materials via a “covalently linked plus cage encapsulated” strategy
    • Authors: Lai, P.; Wu, J.-X.; Wu, L.-H.; … Cai, S.-L.; Zheng, S.-R.
    • Year: 2024
  6. Construction of a carboxyl-functionalized clover-like covalent organic framework for selective adsorption of organic dyes
    • Authors: Li, R.; Zhang, K.; Yang, X.; … Zheng, S.; Cai, S.
    • Year: 2024
    • Citations: 11
  7. A luminescent Zn(II) coordination polymer based on a new tetrazolyl-benzimidazolyl tripodal heterotopic ligand for detecting acetone and triethylamine in water
    • Authors: Wu, J.-X.; Mo, Y.-H.; Lin, X.; … Xie, M.-B.; Zheng, S.-R.
    • Year: 2024
  8. Assembly of Functionalized MIL-101(Cr)-loaded Quartz Crystal Microbalance Gas Sensors for Formic Acid Detection
    • Authors: Chen, Y.; Wang, P.; Guo, B.; … Fan, J.; Zhang, W.
    • Year: 2024
  9. Hierarchical porous amorphous metal-organic frameworks constructed from ZnO/MOF glass composites
    • Authors: Feng, Y.; Wu, J.-X.; Mo, Y.-H.; … Fan, J.; Zheng, S.-R.
    • Year: 2024
  10. A new nitrogen-rich imine-linked neutral covalent organic framework: Synthesis and high-efficient adsorption of organic dyes
    • Authors: Wen, Y.; Yuan, L.; Li, R.; … Cai, S.; Fan, J.
    • Year: 2024
    • Citations: 5

 

 

Weidong Fan | Chemistry | Best Researcher Award

Prof. Weidong Fan | Chemistry | Best Researcher Award

Taishan Scholar at China University of Petroleum (East China), China

Dr. Weidong Fan is an accomplished Associate Professor in the Department of New Energy Materials at China University of Petroleum (East China). With a Ph.D. in Chemistry and extensive research expertise, Dr. Fan has significantly contributed to the fields of energy gas storage, separation of petroleum-based compounds, and advanced crystalline microporous adsorbents. A prolific researcher, he has authored over 100 SCI academic papers, with over 4,500 citations and an impressive H-index of 36. Dr. Fan’s groundbreaking work has been recognized with prestigious awards, including the Qingdao Natural Science Award and the Global Top 2% Scientists distinction. He serves on editorial boards of multiple esteemed journals and has supervised several graduate students, demonstrating his dedication to both research and mentorship.

Professional Profile

Education

Dr. Fan completed his Bachelor’s in Applied Chemistry at Shengli College, China University of Petroleum, in 2013. He pursued a Master’s in Chemistry at the same university from 2013 to 2016. Subsequently, he earned his Ph.D. in Chemistry from China University of Petroleum (East China) in 2019. These formative academic experiences laid the groundwork for his expertise in chemistry and materials science.

Professional Experience

Dr. Fan has held key academic positions, beginning as a Postdoctoral Fellow at the National University of Singapore (2019–2021), where he gained international exposure to advanced research methodologies. In 2022, he served as a Special Associate Professor at China University of Petroleum (East China) before being promoted to Associate Professor in 2023. His roles involve extensive research, teaching, and supervision of graduate students, fostering innovation in chemistry and materials science.

Research Interests

Dr. Fan’s research focuses on the controllable preparation of crystalline microporous adsorbents and separation membranes. He specializes in energy gas storage and the separation of petroleum-based compounds, including hydrogen, methane, carbon dioxide, and alkenes. His work also encompasses the purification of natural gas and the precise separation of benzene derivatives and isomers, advancing sustainable energy solutions.

Research Skills

Dr. Fan possesses advanced research skills in the design, synthesis, and functionalization of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). His expertise includes spectroscopic techniques, crystallographic analysis, gas adsorption studies, and computational simulations. He is adept at leading collaborative, interdisciplinary projects, evident in his extensive list of high-impact publications and global collaborations.

Awards and Honors

Dr. Fan has received numerous accolades, including the second prize of the Qingdao Natural Science Award (2024) and the Basic Research Achievement Award by the Chemical Industry and Engineering Society of China (2023). He was named a Young Expert under the Mount Taishan Scholars Program in 2022 and has been listed among the Global Top 2% Scientists for multiple years. These honors underscore his leadership and innovation in the field of chemistry.

Conclusion 🏆

Weidong Fan is a highly deserving candidate for the Best Researcher Award due to his groundbreaking contributions to chemistry and materials science, particularly in energy gas storage and separation technologies. His strong publication record, international recognition, and impactful mentorship position him as a leader in his field. While his academic achievements are outstanding, increased industrial engagement and societal outreach could further solidify his candidacy.

Publication Top Notes

  1. Metal-organic framework for hydrogen storage: Advances and challenges brought by the new technologies
    • Authors: Qiao, L.; Lu, C.; Fan, W.; Kang, Z.; Sun, D.
    • Year: 2024
  2. Pore surface fluorination and PDMS deposition within commercially viable metal-organic framework for efficient C2H2/CO2 separation
    • Authors: Liu, H.; Wang, X.; Gao, F.; Fan, W.; Sun, D.
    • Year: 2024
  3. Porous organic cage induced high CO2/CH4 separation efficiency of carbon molecular sieve membranes
    • Authors: Yu, L.; Hao, L.; Zhang, C.; Kang, Z.; Sun, D.
    • Year: 2024
    • Citations: 2
  4. Metal-organic frameworks for hydrogen isotopes separation
    • Authors: Gao, F.; Wang, X.; Chen, W.; Yuan, D.; Sun, D.
    • Year: 2024
  5. Asymmetrical Modification of Cyclopentadienyl Cobalt in Eu-MOF for C2H2/CO2 Separation
    • Authors: Wang, X.; Liu, H.; Sun, M.; Fan, W.; Sun, D.
    • Year: 2024
  6. Precise Pore Engineering of Zirconium Metal-Organic Cages for One-Step Ethylene Purification from Ternary Mixtures
    • Authors: Feng, X.; Wang, X.; Yan, H.; Yue, Q.; Sun, D.
    • Year: 2024
    • Citations: 7
  7. Stepwise pillar-ligand fluorination strategy within interpenetrated metal–organic frameworks for efficient C2H2/CO2 separation
    • Authors: Liu, H.; Wang, X.; Wang, Y.; Fan, W.; Sun, D.
    • Year: 2024
    • Citations: 2
  8. A Precise Microreactor for Ultralong Visible Chemiluminescence
    • Authors: Wang, Y.; Fu, M.; Sun, M.; Fan, W.; Sun, D.
    • Year: 2024
  9. Assembling ionic liquid into porous molecular filler of mixed matrix membrane to trigger high gas permeability, selectivity, and stability for CO2/CH4 separation
    • Authors: Yu, L.; Hao, L.; Feng, Y.; Kang, Z.; Sun, D.
    • Year: 2024
    • Citations: 4
  10. Tunable Nonlinear Optical Properties Based on Metal–Organic Framework Single Crystals
    • Authors: Yuan, H.; Xu, X.; Qiao, Z.; Zhang, M.; Ji, W.
    • Year: 2024
    • Citations: 2

 

 

Komal Majeed | Chemistry | Best Researcher Award

Ms. Komal Majeed | Chemistry | Best Researcher Award

Researcher at COMSATS University Islamabad, Pakistan

Komal Majeed, born on May 12, 1994, in Pakistan, is an accomplished researcher and educator in the field of chemistry. With a passion for addressing environmental challenges through innovative materials, she has dedicated her career to the synthesis and application of nanomaterials. Komal holds an MS from COMSATS University Islamabad, where she focused on advanced analytical techniques and sustainable materials. Currently, she serves as an educator at Supernova School in Islamabad, where she inspires the next generation of scientists. Her commitment to both research and education reflects her belief in the power of knowledge to drive positive change in society.

Professional Profile

Education

Komal Majeed’s academic journey is marked by excellence and a strong focus on chemistry. She earned her Master’s degree in Advanced Analytical Techniques from COMSATS University Islamabad in 2022, where her thesis examined the photocatalytic removal of water pollutants using functional Mn3O4-based nanomaterials. Prior to that, she completed her MSc in Chemistry at the University of Poonch Rawalakot in 2017, studying a diverse range of topics, including organic chemistry and biochemistry. Her foundational education includes a BSc from the University of Punjab Lahore, where she gained insights into chemistry, zoology, and botany. This extensive educational background has equipped Komal with a robust understanding of chemical processes and materials science.

Professional Experience

Komal Majeed has built a diverse professional portfolio, beginning her career in education as a secondary school teacher. Currently, she teaches chemistry at Supernova School in Islamabad, where she leads the Science Department, conducts laboratory experiments, and develops innovative lesson plans. Previously, she worked at Roots Millennium School and Kashmir Education Foundation, where she was instrumental in mentoring new teachers and coordinating international science contests. Her experience extends beyond teaching to include significant research projects, such as her current work on oil-water separation using Mn3O4/NiO nanoparticles. Komal’s dual focus on education and research demonstrates her commitment to advancing scientific knowledge and fostering a passion for chemistry among her students.

Research Interests

Komal Majeed’s research interests center on the development and application of advanced materials to tackle pressing environmental issues. She is particularly focused on synthesizing metal oxide nanoparticles and nanocomposites, exploring their potential in photocatalytic degradation of industrial dyes and water pollutants. Her ongoing projects include the integration of nanocomposites into membranes for oil-water separation, showcasing her commitment to sustainability and environmental remediation. Additionally, she is interested in developing sustainable materials that minimize environmental impact throughout their lifecycle. Komal’s work addresses global challenges and reflects her dedication to finding innovative solutions through scientific research and collaboration.

Awards and Honors

Komal Majeed’s dedication to her profession has earned her numerous awards and recognitions. In 2023, she received a Certificate of Appreciation for her outstanding performance at Supernova School, reflecting her excellence in teaching and mentorship. She has also been recognized as a Microsoft Innovative Educator Expert, demonstrating her commitment to integrating technology into education. Her role as a Space Ambassador by the Institute of Space Technology further highlights her involvement in promoting scientific awareness. Additionally, she has been honored as the Best Mentor of the Year for her support in science contests. These accolades underscore her impact as an educator and researcher, emphasizing her contributions to both academia and the broader community.

Conclusion

Komal Majeed demonstrates a strong foundation in research and education with significant contributions to environmental remediation through nanotechnology. Her technical skills, recognition as a mentor and educator, and ongoing research projects highlight her potential as a leading researcher in her field. While there are areas for improvement, particularly in expanding her research experience and publication record, her dedication and existing accomplishments make her a suitable candidate for the Best Researcher Award. Her innovative work in developing sustainable materials aligns well with global challenges, positioning her as a valuable contributor to advancing scientific knowledge and environmental sustainability.

Publication top noted

📝 Effective Removal of Methylene Blue by Mn3O4/NiO Nanocomposite under Visible Light
👩‍🔬 Majeed, K., Ambreen, J., Khan, S.A., Gilani, S.J., Bin Jumah, M.N.
📅 Year: 2023
📖 Journal: Separations
🔗 Volume: 10, Issue: 3, Page: 200
🔍 Citations: 6