Ding Peng | Engineering | Best Researcher Award

Assist. Prof. Dr. Ding Peng | Engineering | Best Researcher Award

Wuxi Institute of Technology, China

Assist. Prof. Dr. Ding Peng is a distinguished academic and researcher currently serving at Wuxi University of Technology (formerly Wuxi Institute of Technology), China, and plays a pivotal role at the Jiangsu Province Engineering Research Center for Energy Saving and Safety of New Energy Vehicles. He earned his Bachelor’s degree in Vehicle Engineering from Chongqing University in 2009, laying a strong foundation in mechanical and automotive systems that has guided his dynamic career in academia and industry. Following his graduation, Dr. Peng joined King Long United Automotive Industry (Suzhou) Co., Ltd. as a Design Engineer from 2009 to 2013, where he gained valuable industrial experience in the design and development of commercial buses. In 2013, he transitioned into academia as an Associate Professor at Wuxi University of Technology, where he has taught key courses such as Automobile Structure, Automobile Theory, Automatic Control Principle, and Intelligent Connected Vehicle Technologies. His primary research interests include thermal management technology for new energy vehicles, autonomous vehicle control systems, and intelligent and connected vehicle technologies (V2X), focusing on optimizing energy efficiency, safety, and intelligent communication between vehicles and infrastructure. Dr. Peng possesses advanced research skills in modeling, simulation, system optimization, and control algorithm development, coupled with extensive hands-on experience in applied engineering and industrial collaboration. He has authored Scopus-indexed papers, accumulated citations, achieved an h-index of 1, and obtained several national patents in vehicle thermal management and intelligent systems. Recognized for his dedication to innovation, he has successfully led numerous enterprise-driven and government-funded projects and guided students in academic competitions and innovation initiatives. Dr. Ding Peng’s work exemplifies the integration of research excellence and real-world engineering application, positioning him as a rising leader in the field of smart mobility and sustainable automotive engineering, committed to advancing global progress in intelligent transportation and new energy vehicle technologies.

Profile: Scopus

Featured Publications

  1. (2025). Research on interactive coupled preheating method utilizing engine-motor cooling waste heat in hybrid powertrains. Applied Thermal Engineering.

Jeng-Shin Sheu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Jeng-Shin Sheu | Engineering | Best Researcher Award

National Yunlin University of Science & Technology, Taiwan

Assoc. Prof. Dr. Jeng-Shin Sheu is an accomplished academic and researcher serving as an Associate Professor in the Department of Computer Science and Information Engineering at National Yunlin University of Science and Technology, Taiwan. He earned his B.E. (1995) and M.E. (1997) in Electrical Engineering from National Yunlin University of Science and Technology and completed his Ph.D. in Electrical Engineering at National Chung Cheng University in 2002. Following his doctorate, he advanced his expertise as a Postdoctoral Researcher at National Chiao Tung University (2002–2006), before joining Yunlin University in 2006, where he has continued to contribute significantly to teaching, research, and industry-academia collaboration. His research interests span cellular mobile systems, audio and speech processing, and natural language processing (NLP), with strong applications in artificial intelligence and healthcare technologies. Notable projects include the AI Health Education Teaching and Assessment Robot and the Interactive AI-Powered Voice Personal Health Assistant, reflecting his commitment to leveraging AI for societal benefits. Dr. Sheu is also skilled in advanced computer engineering, signal processing, and AI-driven optimization frameworks, particularly in adaptive energy harvesting for UAV-assisted IRS systems. His contributions are substantiated by 31 research documents, 145 citations, and an h-index of 6, with publications in IEEE and other Scopus-indexed journals and conferences. His excellence has been recognized through several honors, including the prestigious Shīduó Award for Excellence in Teaching (2019) and Outstanding Teacher Awards in 2021 and 2025, showcasing his dual commitment to academic innovation and mentorship. With his strong academic foundation, leadership in research, and impactful projects, Dr. Sheu stands out as a dedicated scholar who has significantly advanced computer science and engineering. His blend of scholarly achievements, industry collaborations, and contributions to student development highlight his potential for further international research leadership and enduring impact on science, technology, and society.

Profile: Scopus

Featured Publications

  1. Developing NLP models for Taiwanese Hokkien with challenges, script unification, and language modeling. Journal of the Chinese Institute of Engineers: Transactions of the Chinese Institute of Engineers, Series A.

  2. Optimising energy harvesting and throughput for UAV-assisted IRS systems with adaptive energy harvesting. IET Communications.

  3. Taiwanese Hokkien in AI: Challenges, approaches, and language modeling. Conference paper.

Sihui Jia | Engineering | Best Researcher Award

Mr. Sihui Jia | Engineering | Best Researcher Award

Shanghai University | China

Sihui Jia is an emerging scholar in the field of Electronic Science and Technology, with a specialized focus on microwave sensing technology. He is currently pursuing a doctoral degree at Shanghai University, where his research is centered on developing innovative sensing systems with wide-ranging applications in communication networks, healthcare, and environmental monitoring. With a strong academic foundation, he has established himself as a promising researcher dedicated to exploring advanced solutions for real-world technological challenges. His journey reflects consistent progress, beginning with an engineering background and moving toward advanced studies in electronics and communication engineering. He has demonstrated a commitment to both theoretical knowledge and practical implementation, which has allowed him to contribute meaningfully to academic research and interdisciplinary projects. His scholarly work has been published in reputed international platforms, highlighting his capability to translate research into impactful results. Alongside his academic pursuits, Jia actively engages in collaborative research, professional communities, and student mentorship, ensuring his contributions extend beyond individual achievements to collective progress. His dedication to research excellence, combined with his vision to advance sensing technologies, positions him as a strong candidate for recognition under the Best Researcher Award category.

Professional Profile

Education

Sihui Jia has pursued a progressive academic path in the field of electronics and communication, building a strong multidisciplinary background that underpins his research excellence. He began with a Bachelor’s degree in Engineering, where he acquired foundational skills in engineering principles, problem-solving, and technical applications. His undergraduate studies provided a platform for developing a keen interest in electronic devices and communication systems. To deepen his expertise, he completed a Master’s degree in Electronics and Communication Engineering, where he specialized in advanced communication techniques, signal processing, and sensor technology. This academic training provided him with the theoretical and practical skills required for tackling complex engineering challenges and laid the groundwork for his research journey. Currently, he is pursuing a Doctoral degree in Electronic Science and Technology at Shanghai University, where his research is centered on microwave sensing technology. His doctoral studies emphasize not only deep technical knowledge but also the integration of innovation, research methodology, and interdisciplinary collaboration. This academic progression demonstrates his commitment to advancing knowledge and contributing significantly to his field. His education highlights his ability to adapt, grow, and innovate, making him well-prepared for impactful contributions in academic research and practical applications.

Professional Experience

In addition to his academic accomplishments, Sihui Jia has accumulated meaningful professional experience that complements his research journey. During his studies, he actively participated in research-driven projects and laboratory work, where he honed his skills in experimental design, data analysis, and practical applications of sensing technologies. His work has been particularly impactful in the area of microwave sensing, a technology that requires both theoretical expertise and experimental validation. Through these experiences, he has demonstrated strong analytical skills, adaptability, and problem-solving capabilities that are essential for addressing complex engineering challenges. He has also taken part in collaborative research initiatives within Shanghai University and beyond, engaging with peers, faculty members, and international partners to advance shared objectives in electronics and communication. His involvement extends to mentoring junior students and assisting in project development, showcasing his leadership and teaching potential. These professional experiences have shaped him into a well-rounded researcher who is not only capable of producing high-quality academic work but also of contributing to teamwork and interdisciplinary efforts. His career path reflects a balance between research excellence, applied practice, and academic collaboration, marking him as a professional dedicated to advancing both knowledge and practice in electronic science.

Research Interests

The primary research interest of Sihui Jia lies in the field of microwave sensing technology, which holds wide-ranging applications in modern society. His work aims to improve the sensitivity, accuracy, and efficiency of sensing systems, with potential applications in healthcare diagnostics, environmental monitoring, security systems, and communication networks. He is particularly motivated by the challenge of bridging theoretical models with practical implementations, ensuring that research outcomes have direct real-world relevance. Beyond microwave sensing, he has a broader interest in signal processing, sensor design, and communication engineering, which provides him with a versatile skill set for addressing diverse scientific problems. His focus on interdisciplinary research allows him to explore how microwave sensing can intersect with other fields, such as biomedical engineering, environmental science, and artificial intelligence. Jia is also interested in developing scalable and cost-effective sensor technologies that can be widely deployed for industrial and societal applications. His curiosity-driven approach and passion for technological innovation ensure that his research contributes to both academic advancement and societal development. His vision is to push the boundaries of sensing technologies to meet the evolving demands of next-generation communication and monitoring systems.

Research Skills

Sihui Jia possesses a diverse set of research skills that support his academic and professional growth. He is proficient in microwave sensing system design, including the theoretical modeling and practical testing of sensors. His expertise extends to signal processing techniques, enabling him to analyze and interpret complex datasets for accurate sensing and communication. He is skilled in electronics and circuit design, which allows him to implement and test prototypes that bridge theory and practice. Additionally, Jia has strong capabilities in simulation tools, data analysis, and experimental validation, which are critical for ensuring the reliability and accuracy of his findings. His training has also provided him with competencies in interdisciplinary research collaboration, enabling him to work effectively with teams from different domains to achieve common goals. Jia demonstrates strong scientific writing and communication skills, as reflected in his publications in international journals and conferences. Furthermore, his ability to adapt to new technologies and methodologies positions him as a forward-thinking researcher ready to engage with emerging innovations. These skills, combined with his problem-solving mindset and technical knowledge, make him a versatile researcher prepared to contribute to cutting-edge advancements in electronic science and technology.

Awards and Honors

Throughout his academic journey, Sihui Jia has been recognized for his dedication, innovation, and research contributions. His participation in academic programs has been marked by consistent performance, which has earned him opportunities to engage in advanced research at Shanghai University. He has presented his work in internationally recognized platforms, contributing to the scientific community by disseminating knowledge in conferences and peer-reviewed journals indexed in IEEE and Scopus. His efforts in developing novel approaches to microwave sensing have been acknowledged through scholarly recognition and growing citations of his published work. While still in the early stages of his research career, his academic trajectory demonstrates potential for greater recognition in the near future, including awards for best papers, research excellence, and contributions to scientific collaborations. His involvement in professional organizations such as IEEE provides further acknowledgment of his active participation in global academic communities. These affiliations reflect his commitment to continuous learning, networking, and professional growth. The honors he has received so far illustrate his promise as a researcher, while his ongoing work positions him for further accolades as his career progresses and his contributions expand in both depth and scope.

Publication Top Notes

  • Machine Learning-Assisted Early-Corrosion Detection System for Pipeline Coatings — 2025

Conclusion

In conclusion, Sihui Jia embodies the qualities of a dedicated and forward-looking researcher in Electronic Science and Technology. His academic achievements, professional experiences, and research pursuits demonstrate a clear trajectory toward impactful contributions in the field of microwave sensing technology. With strong educational training, versatile research skills, and active engagement in academic communities, he has positioned himself as a promising young scholar with the potential to lead innovative projects and inspire future collaborations. His publications, professional involvement, and interdisciplinary approach reflect both technical expertise and a vision for real-world applications. As he continues to expand his research profile, Jia is expected to strengthen his presence in top-tier journals, broaden his global collaborations, and take on leadership roles within professional organizations. These steps will not only enhance his career but also contribute significantly to advancing technology and improving society. His combination of academic excellence, professional dedication, and innovative research direction makes him highly deserving of recognition through the Best Researcher Award, honoring his potential to shape the future of electronic science and its applications.

Xiaoqing Tian | Engineering | Best Researcher Award

Assoc. Prof. Dr. Xiaoqing Tian | Engineering | Best Researcher Award

Hangzhou Dianzi University | China

Dr. Xiaoqing Tian is an accomplished academic and researcher currently serving as an Associate Professor at the School of Mechanical Engineering, Hangzhou Dianzi University, China. With a strong foundation in hydrodynamics and its applications, she has made significant contributions to the development of underwater vehicles, propeller systems, and marine engineering innovations. Her educational background combines rigorous training in fluid machinery, mechanical engineering, and international research exposure, enabling her to integrate theoretical knowledge with practical technological advancements. Dr. Tian’s research excellence is evidenced by her extensive portfolio of patents, including more than ten granted patents such as a U.S. and Luxembourg patent, along with over twenty high-quality publications in peer-reviewed journals. Her work emphasizes hydrodynamic optimization, underwater robotics, and environmental applications, fostering solutions that bridge engineering challenges with sustainable maritime practices. Beyond her academic achievements, she has been recognized as a Zhejiang Province Overseas High-level Talent, a D-type Talent of Zhejiang Province, and a Qiantang Scholar of Hangzhou, reflecting her influence and leadership in her field. With a career that blends innovation, teaching, and applied research, Dr. Tian stands as a leading figure in advancing the boundaries of marine and mechanical engineering technologies.D

Professional Profile

Scopus Profile | ORCID Profile

Education

Dr. Xiaoqing Tian’s academic journey reflects a progressive and multidisciplinary approach to engineering, combining mechanical, electrical, and hydrodynamic expertise. She began her studies with a Bachelor’s degree in Mechanical & Electrical Engineering from the Henan Institute of Science and Technology, China. where she developed a foundational understanding of integrated engineering systems. Building on this, she earned a Master’s degree in Fluid Machinery and Engineering from the College of Mechanical Engineering at Hangzhou Dianzi University, China. focusing on fluid dynamics and mechanical system design. Her doctoral studies at the College of Water Conservancy and Hydropower Engineering, Hohai University, China. centered on advanced topics in fluid machinery and engineering, deepening her expertise in hydrodynamic modeling and marine applications. Notably, between, she conducted international research at the University of Helsinki, Finland, specializing in hydrodynamics and its environmental applications. This overseas experience broadened her perspective, allowing her to collaborate with global experts and explore the cross-disciplinary impacts of fluid mechanics on environmental science. Collectively, her academic background equips her with the technical knowledge, analytical skills, and global outlook necessary to address complex engineering challenges in both theoretical and applied contexts.

Professional Experience

Dr. Xiaoqing Tian has built an impressive professional career that blends teaching, research, and innovation in marine and mechanical engineering. Since December, she has served as a Lecturer and later an Associate Professor at the School of Mechanical Engineering, Hangzhou Dianzi University, China, where she teaches core engineering subjects, supervises graduate students, and leads research projects in hydrodynamics and underwater vehicle design. Her role involves both academic instruction and the development of innovative technologies aimed at solving practical engineering problems. she expanded her research portfolio through a postdoctoral position at the Ocean College, Zhejiang University, China, where she worked on advanced projects involving underwater robotics, propulsion systems, and hydrodynamic performance optimization. she undertook international research at the Department of Environmental Sciences, University of Helsinki, Finland, focusing on hydrodynamics applications in environmental and water systems. This combination of domestic and international experience has enabled her to cultivate a global research network, collaborate on interdisciplinary projects, and translate academic research into real-world engineering solutions. Her professional trajectory reflects a dedication to advancing knowledge while fostering innovation in marine engineering technology.

Research Interests

Dr. Xiaoqing Tian’s research interests span a wide range of topics in hydrodynamics, marine engineering, and mechanical design, with a strong emphasis on practical applications in underwater technologies. Her primary focus lies in the optimization of hydrodynamic performance for underwater vehicles and propulsion systems, including autonomous underwater vehicles (AUVs) and towed bodies. She is particularly interested in the integration of computational fluid dynamics (CFD) simulations with experimental testing to enhance propulsion efficiency, stability, and maneuverability. Her work also explores the development of novel propeller designs and hydrophobic coatings to improve performance in marine environments. Beyond vehicle propulsion, Dr. Tian investigates underwater sensing systems, such as magnetometer-equipped towed bodies, to support oceanographic surveys and environmental monitoring. She is also engaged in research on water quality improvement technologies, including artificially induced downwelling aeration systems. Her interdisciplinary approach allows her to bridge mechanical engineering principles with environmental science applications, ensuring that her innovations contribute to both technological advancement and sustainable marine resource management. By combining numerical modeling, prototype development, and field testing, Dr. Tian addresses real-world maritime challenges while advancing the scientific understanding of hydrodynamic systems.

Research Skills

Dr. Xiaoqing Tian possesses a robust set of research skills that enable her to conduct high-quality and impactful studies in marine and mechanical engineering. Her expertise includes hydrodynamic modeling, propeller performance analysis, and underwater vehicle design, supported by advanced use of computational fluid dynamics (CFD) tools. She has strong capabilities in designing and optimizing propulsion systems, integrating novel features such as hydrophobic coatings and guide flow devices to enhance efficiency. Dr. Tian is experienced in the development and testing of underwater towed bodies, including those equipped with environmental sensing devices like magnetometers. Her skills extend to mechanical system prototyping, laboratory experimentation, and large-scale field trials, ensuring that her work bridges theoretical models with real-world performance. In addition to technical competencies, she is proficient in patent development, having secured more than ten patents, including international ones, as the first inventor. Her research methodology combines creativity, precision, and multidisciplinary collaboration, enabling her to work across engineering, oceanography, and environmental science domains. Furthermore, her ability to manage complex projects, lead research teams, and publish extensively in high-impact journals underscores her effectiveness as both a scientist and innovator in her field.

Awards and Honors

Dr. Xiaoqing Tian’s contributions to marine and mechanical engineering have been recognized through several prestigious awards and honors, reflecting her status as a leading expert in her field. She has been named a Zhejiang Province Overseas High-level Talent, a designation awarded to individuals who have made significant contributions to scientific and technological innovation while fostering international collaboration. Additionally, she has been recognized as a D-type Talent of Zhejiang Province, highlighting her role in advancing regional research and innovation capacity. Her designation as a Qiantang Scholar of Hangzhou further underscores her academic excellence, leadership, and contributions to the local and national engineering community. These honors not only acknowledge her individual achievements but also her commitment to mentoring young researchers, driving technological progress, and addressing real-world engineering challenges. They also serve as a testament to her ability to integrate high-level research with societal impact, aligning her professional work with broader goals in innovation, sustainability, and economic development. Collectively, these awards solidify Dr. Tian’s reputation as a respected scholar, inventor, and leader within the global marine engineering research community.

Publication Top Notes

1. Calibration-free optical wave guide bending sensor for soft robots, 2025
2. Study on the hydrodynamic characteristics of an outboard engine propeller with hydrophobic coating, 2025
3. Laboratory Investigations on Parametric Configurations of Artificially Down welling Aerations in Stratified Water, 2023
4. Study on the Resistance of a Large Pure Car Truck Carrier with Bulbous Bow and Transom Stern, 2023
5. Numerical verification for a new type of UV disinfection reactor, 2020

Conclusion

In conclusion, Dr. Xiaoqing Tian embodies the qualities of an accomplished researcher, innovative engineer, and dedicated academic. Her career reflects a deliberate and consistent pursuit of excellence across multiple dimensions — from education and professional development to research innovation and community engagement. With an extensive academic background in fluid machinery, mechanical engineering, and hydrodynamics, complemented by valuable international research experience, she has developed a skill set that is both technically advanced and globally informed. Her work on underwater vehicle systems, propeller optimization, and environmental hydrodynamics demonstrates a unique ability to merge scientific insight with practical engineering solutions. The numerous patents and peer-reviewed publications she has produced serve as evidence of her commitment to technological advancement, while her awards and honors confirm her leadership in the field. Beyond her technical achievements, Dr. Tian contributes to the growth of future engineers through teaching, mentorship, and research collaboration. Looking ahead, she remains committed to expanding the frontiers of marine engineering research, promoting sustainable innovation, and making meaningful contributions to both the academic community and society at large. Her professional journey serves as an inspiring model for aspiring scientists and engineers worldwide.

Yu Huang | Engineering | Best Researcher Award

Assoc. Prof. Dr. Yu Huang | Engineering | Best Researcher Award

Associate Professor from Harbin Engineering University | China

Dr. Yu Huang is an accomplished Associate Professor at Harbin Engineering University, China, with extensive expertise in magnetic detection, micro-vibration isolation, and geomagnetic applications. With a robust academic and professional background rooted in physics and engineering, he has contributed significantly to the development of innovative algorithms and applied sensor technologies. His work bridges the theoretical and practical aspects of navigation, guidance, and control systems, providing valuable solutions to real-world challenges in geophysical signal processing and underwater navigation. Dr. Huang’s career is distinguished by a blend of teaching excellence and high-impact research. His scholarly output includes numerous peer-reviewed journal articles published in top-tier platforms such as IEEE Transactions on Magnetics and Journal of Magnetism and Magnetic Materials. He is also actively involved in interdisciplinary research and collaborative projects that span both national and international domains. Beyond research, Dr. Huang is a dedicated educator who teaches graduate and undergraduate courses, shaping the next generation of physicists and engineers. His academic journey, professional service, and leadership in both research and education highlight his suitability for prestigious international research recognitions and awards.

Professional Profile

Education

Dr. Yu Huang’s educational journey spans diverse yet interconnected fields of physics and engineering, providing him with a strong multidisciplinary foundation. He earned his Ph.D. in Navigation, Guidance, and Control from Harbin Engineering University in 2011, focusing on advanced sensor systems and control mechanisms. This doctoral training played a vital role in sharpening his ability to develop and analyze high-precision technologies used in geomagnetic and vibration isolation systems. Before this, he obtained a Master of Engineering degree in Theoretical Physics from Huazhong University of Science and Technology in 2005, a program that deepened his theoretical understanding of physical principles, mathematical modeling, and experimental design. His academic roots trace back to his undergraduate degree, a Bachelor of Science in Physics Education from Anqing Normal University in 1997, where he gained strong pedagogical and foundational scientific knowledge. Each stage of his education has contributed to his ability to translate complex theories into practical applications. The combination of physics, theoretical modeling, and applied engineering has shaped his career trajectory and enabled him to conduct groundbreaking research in the field of magnetic sensing and control technologies.

Professional Experience

Dr. Yu Huang has accumulated over two decades of academic and industrial experience across multiple positions that have shaped his technical expertise and teaching abilities. Since January 2019, he has served as Associate Professor in the College of Physics and Optoelectronic Engineering at Harbin Engineering University. Prior to that, he held a similar role in the College of Science at the same university from 2017 to 2018. Between 2004 and 2017, he contributed as a Lecturer in physics-related disciplines, building his foundation in pedagogy and mentoring. His international exposure includes a notable visiting scholar position in 2016–2017 at the Department of Electronic Engineering, École de Technologie Supérieure in Canada, where he engaged in collaborative research and academic exchange. Earlier in his career, he also worked in the private sector as an engineer at Shunda Computer Factory Co., Ltd, which equipped him with practical insights into technological manufacturing and computing systems. His career began with a teaching assistantship at Chaohu University, where he taught undergraduate-level physics. This well-rounded professional path showcases Dr. Huang’s capabilities in research, instruction, and technological application, qualifying him as an expert in his field.

Research Interests

Dr. Yu Huang’s research interests lie at the intersection of magnetic detection, geomagnetic field applications, and micro-vibration isolation systems. His primary focus involves the use of magnetic gradient tensor technology for accurate localization and orientation, particularly in complex environments such as underwater or geophysical terrains. He is especially interested in developing algorithms that utilize sensor arrays and tensor-based models for real-time magnetic field analysis. Another area of focus includes geomagnetic signal processing and localization methods that improve navigation accuracy without reliance on satellite signals. In recent years, he has advanced one-step downward continuation techniques in the wave number domain, eliminating the need for iterative corrections in magnetic data modeling. His experimental and theoretical investigations further encompass vibration isolation technologies using compound pendulum responses, which are critical for stabilizing sensitive equipment in varying ground conditions. Dr. Huang’s research contributes significantly to aerospace, defense, underwater navigation, and earth sciences, and he continuously collaborates across disciplines to refine these systems. His work stands out for its emphasis on practical applications rooted in rigorous physical theory and advanced mathematical modeling, offering innovative solutions to longstanding technical challenges in his domain.

Research Skills

Dr. Huang is equipped with a broad and deep set of research skills that span theoretical modeling, experimental design, algorithm development, and data interpretation. His proficiency in magnetic gradient tensor analysis allows him to design and implement algorithms for object localization and orientation with high precision. He is skilled in using triaxial magnetometer arrays for real-time signal acquisition and analysis, contributing to improved location detection technologies. His work often incorporates quaternion-vector switching techniques, vital for attitude estimation in underwater applications. In terms of experimental expertise, Dr. Huang has led investigations involving compound pendulum responses to ground vibration, showcasing his ability to bridge laboratory models with real-world mechanical systems. He is adept at working with software tools for electromagnetic simulation, signal processing, and tensor-based modeling. Additionally, his experience in teaching advanced courses like stochastic processes and electrodynamics complements his research by reinforcing analytical thinking and clarity in scientific communication. His collaborative work with international institutions also indicates strong project management, cross-cultural coordination, and publication abilities, making him a valuable contributor to multi-institutional and multidisciplinary projects.

Awards and Honors

While specific award titles are not listed, Dr. Yu Huang’s academic and professional trajectory demonstrates recognition through high-impact publications and invited research roles. His visiting scholar appointment at École de Technologie Supérieure, Canada, is a notable academic honor reflecting his global standing in the field. Moreover, he consistently publishes in peer-reviewed, high-indexed journals such as IEEE Transactions on Magnetics, Journal of Magnetism and Magnetic Materials, and Measurement, which are internationally acknowledged platforms for scientific excellence. His ability to produce original, high-value research accepted by such reputable outlets speaks to his credibility and scholarly influence. Within his institution, he holds a senior academic position, indicating peer recognition and trust in his leadership. His ongoing contributions to the university’s curriculum and research landscape may also involve nominations or internal awards, although not explicitly listed. Given his achievements, he is a strong candidate for national and international awards in physics, engineering, and applied science, and this nomination will serve to further highlight and formalize his already distinguished career.

Publications Top Notes

  • A Lossless Scalar Calibration Algorithm Used for Tri-Axial Magnetometer Cross Array and Its Effectiveness Validation, Sensors (Basel, Switzerland), 2025

  • A Compact, Highly Sensitive Optical Fiber Temperature Sensor Based on a Cholesteric Liquid Crystal Polymer Film, Optics Communications, 2025 — 1 citation

  • Scalar Calibration of Total Instrument Errors of Tri-Axial Magnetometer Using Constrained Optimization Independent of Magnetic Field Intensity, IEEE Sensors Journal, 2024 — 1 citation

  • Biomimetic Actuator Based on the Evasion Behavior of Pillbugs in Liquid Crystal Elastomers, ACS Applied Polymer Materials, 2024 — 7 citations

  • Ultra-low Temperature-Responsive Liquid Crystal Elastomers with Tunable Drive Temperature Range, Polymer, 2024 — 4 citations

Conclusion

Dr. Yu Huang exemplifies a well-rounded academic and researcher whose contributions to magnetic detection technologies, geomagnetic localization, and sensor-based navigation systems are noteworthy and impactful. His commitment to research excellence, supported by a strong educational foundation and diverse professional experience, makes him a valuable asset to both the academic and scientific communities. Through innovative thinking, Dr. Huang continues to push the boundaries of applied physics and engineering, while his role as an educator helps nurture the next generation of researchers. His work, grounded in both theoretical rigor and experimental validation, addresses real-world problems in navigation, detection, and vibration control. Recognized through international publications and collaborative engagements, he stands out as a leading researcher in his domain. With continued support, he is poised to expand his research horizons, engage in global collaborations, and contribute to groundbreaking advancements in science and technology. He is undoubtedly deserving of recognition through prestigious international awards.

Shaofeng Zheng | Engineering | Best Researcher Award

Mr. Shaofeng Zheng | Engineering | Best Researcher Award

Zheng Shaofeng is a seasoned Senior Engineer and currently serves as the Technical Head of the Laboratory at the Huangpu Customs Technology Center. With a longstanding dedication to the inspection and testing of import and export commodities, he has earned recognition for his technical expertise and leadership in national and international standardization. He is a registered expert and committee member in various prominent technical groups, including the Standardization Technical Committee for Fire Tests of Electrical and Electronic Products (SAC/TC 300), IEC/TC 89, and ISO TR 8124-9:2018. Zheng has actively contributed to the development and revision of 14 national standards, reflecting his deep influence on regulatory practices in China. His research efforts are highly interdisciplinary, spanning battery lifecycle traceability, environmental safety, and commodity quality evaluation. Over the years, he has published more than 20 academic papers in SCI, EI-indexed journals, and core Chinese journals, further establishing his academic presence. Zheng also holds over 10 patents and has received several prestigious awards recognizing his contributions to scientific advancement and technological innovation. He is a vital figure in connecting scientific inquiry with real-world application, particularly in energy storage systems, trade regulations, and product safety.

Professional Profile

Education

While specific institutional affiliations are not detailed, Zheng Shaofeng’s educational background is evidently rooted in a strong foundation in engineering and applied sciences. His advanced knowledge and professional roles suggest that he has undergone formal academic training in materials science, chemical engineering, environmental technology, or a closely related field. The technical nature of his research and his ability to lead high-level scientific projects imply both undergraduate and postgraduate education, likely supplemented with ongoing professional development. His qualifications are further validated by his active participation in national standardization committees and involvement in high-level research and policy formulation projects. Moreover, his standing as a senior engineer and technical expert in various regulatory and technological domains shows a continued commitment to learning and applying new knowledge in dynamic and complex environments. Though the exact degrees and institutions remain unspecified, Zheng’s career achievements and affiliations with multiple scientific and governmental bodies reflect his strong academic grounding and ability to translate education into impactful practice.

Professional Experience

Zheng Shaofeng currently serves as the Technical Head of the Laboratory at the Huangpu Customs Technology Center, where he has played a central role in the development and implementation of inspection protocols for import and export commodities. With extensive experience in applied laboratory science, regulatory compliance, and technical assessment, he is responsible for managing large-scale testing procedures that align with national and international standards. His professional experience also includes significant participation in governmental science and technology evaluations as an expert for the Guangdong Province Department of Science and Technology and as a technical trade expert for the WTO/TBT Notification and Research Center. Zheng’s leadership spans collaborative, interdisciplinary projects on battery lifecycle traceability, carbon footprint analysis, and product safety evaluation. His input in these areas helps shape national policy and contributes to global standards. His role involves hands-on testing, risk assessment, standardization, and training of personnel, making him both a technical and administrative leader in his organization. By bridging the gap between research and regulation, he ensures that emerging technologies and products entering Chinese markets comply with the highest safety and environmental standards.

Research Interests

Zheng Shaofeng’s research interests lie at the intersection of environmental technology, energy systems, regulatory science, and materials testing. He focuses particularly on risk monitoring, traceability, and lifecycle assessment of energy storage systems, especially imported and exported new energy vehicle power batteries. His work aligns with global sustainability goals, as it emphasizes full lifecycle carbon footprint analysis and the residual value assessment of second-life batteries. He is also deeply involved in safety testing protocols and fire hazard assessments for electronic and electrical commodities. Zheng’s involvement in international technical committees such as IEC/TC 89 and ISO TR 8124-9:2018 reflects a strong interest in standardization and global regulatory harmonization. His interdisciplinary research contributes not only to scientific innovation but also to public safety, international trade policies, and environmental protection. Through his work, Zheng is addressing some of the most pressing challenges in product safety and green technology—ensuring safe, traceable, and sustainable product development and deployment. His focus on real-world applicability gives his research a strategic relevance that extends beyond academia into the realms of industry and policy.

Research Skills

Zheng Shaofeng brings a rich array of technical and analytical skills to his research endeavors. He is proficient in advanced laboratory testing methods for electronic and electrical products, with a particular emphasis on fire hazard assessments and quality inspection protocols. His research methodology incorporates lifecycle analysis, carbon footprint modeling, and residual value assessment—tools that are critical for evaluating the sustainability and safety of new energy vehicle batteries. He has extensive experience in managing complex research projects at provincial and ministerial levels, demonstrating his capabilities in project design, data interpretation, and results dissemination. Zheng’s skills also extend to technical writing, as evidenced by his publication record in high-impact journals and his role in developing national standards. Furthermore, his patent portfolio highlights his ability to innovate and solve real-world technical problems. In regulatory science, he has a deep understanding of WTO/TBT compliance, international standardization frameworks, and risk-based monitoring approaches. His combined laboratory expertise, policy knowledge, and interdisciplinary communication skills position him as a multifaceted researcher who seamlessly integrates technical proficiency with practical application.

Awards and Honors

Zheng Shaofeng has received multiple awards and honors recognizing his significant contributions to scientific research and technological development. His projects have been honored with the Third Prize of the Science and Technology Award by the China General Chamber of Commerce, the Third Prize of the Science and Technology Progress Award by the China Federation of Logistics & Purchasing, and commendations from the Guangdong Quality Development Promotion Association and the Guangdong Measurement, Control & Instrumentation Society. These accolades reflect the impactful nature of his work in commodity inspection, safety evaluation, and battery lifecycle analysis. Additionally, his contributions to the development and revision of 14 national standards have earned him respect and authority in China’s regulatory ecosystem. His membership in prestigious technical committees and expert groups—including IEC/TC 89 and SAC/TC 300—further illustrates the national and international recognition of his expertise. The combination of awards and leadership roles underlines his reputation as a leading expert in environmental testing and regulatory compliance, emphasizing both his technical contributions and his strategic influence in shaping policy and standards.

Conclusion

In conclusion, Zheng Shaofeng exemplifies the qualities of a leading researcher whose work bridges scientific innovation, regulatory compliance, and public safety. Through his leadership in laboratory testing, participation in national and international standardization efforts, and direction of cutting-edge projects on battery traceability and carbon monitoring, he has significantly contributed to the field of environmental technology and product safety. His technical acumen is matched by his strategic foresight, making his research not only relevant but also transformative in its application. With more than 20 research publications, 10+ patents, and multiple national awards, Zheng’s achievements reflect a sustained commitment to excellence, innovation, and service. He stands out as a role model for integrating scientific rigor with real-world impact. While there is room for deeper international collaboration and broader global publication presence, Zheng’s current trajectory positions him strongly within both national and international research communities. His multifaceted expertise and proven results make him a highly deserving candidate for the Best Researcher Award, and his continued work will undoubtedly yield further advancements in science, technology, and policy.

Publications Top Notes

  1. Plastic Reference Material (PRM) Combined With Partial Least Square (PLS) in Laser-Induced Breakdown Spectroscopy (LIBS) in the Field of Quantitative Elemental Analysis
  2. Authors: Wang, Bin Zheng, Shaofeng Gan, Jiulin Yang, Zhongmin Song, Wuyuan
  3. Journal: Guang Pu Xue Yu Guang Pu Fen Xi (Spectroscopy and Spectral Analysis)
  4. Publication Year: 2023

Omid Bamshad | Civil Engineering | Best Researcher Award

Dr. Omid Bamshad | Civil Engineering | Best Researcher Award

Researcher from Imam Khomeini International University, Iran

Dr. Omid Bamshad is a distinguished researcher in construction engineering, specializing in sustainable materials, structural optimization, and lifecycle assessment. With a Ph.D. in Construction Engineering and Management from the University of Tehran, he has contributed significantly to the field through extensive research, publications, and academic involvement. His work encompasses innovative approaches to concrete technology, emphasizing durability and environmental impact. Dr. Bamshad’s commitment to advancing construction methodologies is evident in his numerous peer-reviewed articles, patents, and participation in international conferences. His expertise not only enhances academic discourse but also offers practical solutions to contemporary engineering challenges.

Professional Profile

Education

Dr. Bamshad’s academic journey reflects a strong foundation in civil engineering. He earned his Ph.D. in Construction Engineering and Management from the University of Tehran (2021–2024), achieving a GPA of 19.17. Prior to this, he completed his M.Sc. in Structural Engineering at the same institution (2015–2018) with a GPA of 16.30. His undergraduate studies culminated in a B.Sc. in Civil Engineering from Imam Khomeini International University (2011–2015), where he graduated with a GPA of 18.08. This progression showcases his dedication to academic excellence and a deepening specialization in construction and structural engineering disciplines.

Professional Experience

Dr. Bamshad’s professional experience spans academia, research, and industry. Since 2022, he has served as a Concrete and Building Materials Laboratory Expert at Imam Khomeini International University. His editorial roles include Specialized Secretary for the Biannual Journal of Construction Engineering and Management (2023–Present) and Editorial Board Member for the International Conference on “Construction Engineering” in Syria (2024). He has also contributed as a Technical Committee Member for the International Conference “Empowering Tomorrow: Clean Energy, Climate Action, and Responsible Production” in Russia (2024). His industry experience includes a tenure as Site Supervisor at Pezhvak Moj Qazvin Company (2016–2021), complemented by Grade 3 Supervision and Execution Qualifications from the Qazvin Province Engineering Organization.

Research Interests

Dr. Bamshad’s research interests are centered on sustainable construction materials, structural optimization, and lifecycle assessment. He focuses on the development and evaluation of recycled aggregate concrete, exploring its long-term performance under various environmental conditions. His work also delves into the application of machine learning techniques for predicting material behavior and optimizing construction processes. Additionally, he investigates the integration of circular economy principles in construction practices, aiming to enhance resource efficiency and environmental sustainability within the industry.

Research Skills

Dr. Bamshad possesses a comprehensive skill set that supports his research endeavors. He is proficient in structural analysis and design software such as ETABS, SAP2000, SAFE, and AutoCAD, facilitating complex modeling and simulation tasks. His expertise extends to finite element analysis using ABAQUS and performance-based design with Perform 3D. He is adept at statistical analysis and optimization techniques, utilizing tools like Minitab and Crystal Ball. His familiarity with OpenSees enables advanced structural simulations, while his knowledge of MS Project aids in effective project planning and control.

Awards and Honors

Dr. Bamshad’s contributions have been recognized through various awards and honors. He was named the Top Graduate in both his B.Sc. program at Imam Khomeini International University and his Ph.D. program at the University of Tehran. In 2015, he secured the 8th place in the National Civil Engineering Olympiad and achieved 1st place in the “Toughest Bridge” category of the National Steel Bridge Competition. His exceptional performance has also earned him recognition as an Elite Soldier by the National Elites Foundation, underscoring his commitment to excellence in the field of civil engineering.

Conclusion

Dr. Omid Bamshad exemplifies the qualities of an outstanding researcher in construction engineering. His academic achievements, coupled with a robust portfolio of research and professional experience, position him as a leader in sustainable construction practices. His interdisciplinary approach, integrating advanced technologies and environmental considerations, addresses critical challenges in the industry. Dr. Bamshad’s dedication to innovation and knowledge dissemination makes him a valuable asset to both academia and the broader engineering community. His profile aligns seamlessly with the criteria for the Best Researcher Award, reflecting his significant impact on the field.

Publications Top Notes

  1. Long-term corrosion behavior of reinforced recycled aggregate concrete under acid rain condition
    Bamshad, O., Hakamian, I., Shirvani, M.F., Habibi, A., and Mahdikhani, M. (2025)

  2. Freeze-thaw resistance and chloride permeability of circular CKD-based alkali-activated concrete
    Bamshad, O., Ramezanianpour, A. M., and Habibi, A. (2025, August)

  3. Long‐term performance of recycled aggregate concrete incorporating natural zeolite
    Aghililotf, M., Ramezanianpour, A. M., Bamshad, O., and Hajimohammadi, A. (2025)

  4. Mapping and analyzing the cause-and-effect network between the risks of residential building projects in Iran: An approach based on social network analysis (SNA)
    Aghililotf, M., Heydari, M. M., Soltani Halvaei, N., Ramezanianpour, A. M., and Bamshad, O. (2025)

  5. Review of different approaches in determining the criteria for measuring the success in construction projects
    Aghili Lotf, M., Arbabi, H., Ramezanianpour, A. M., Bamshad, O., and Heydari, M. M. (2024)

  6. An Introduction to Leadership Studies in Construction Project Management
    Aghili Lotfi, M., Jafari, T., Ramezanianpour, A. M., Bamshad, O., and Heidari, M. M. H. (2024)

  7. A Critique of the Importance and Status of the Construction Industry in Iran (Features and Challenges)
    Aghili Lotf, M., Heydari, M. M., Ramezanianpour, A. M., and Bamshad, O. (2024)

  8. Optimizing concrete for circularity: a comparative life cycle assessment of geopolymer and ordinary concrete
    Bamshad, O., and Ramezanianpour, A. M. (2024)

  9. Predicting corrosion of recycled aggregate concrete under sulfuric acid rain using machine learning and uncertainty analysis
    Bamshad, O., Jamhiri, B., Habibi, A., Salehi, S., Aziminezhad, M., and Mahdikhani, M. (2024)

  10. Biases in Life Cycle Assessment of Circular Concrete from Ignoring End-of-Life Scenarios and Service Life Time
    Habibi, A., Javadpour, M., Bamshad, O., and Golzary, A. (2024)

 

Mehdi Chemseddine FARAH | Engineering | Best Researcher Award

Assist. Prof. Dr. Mehdi Chemseddine FARAH | Engineering | Best Researcher Award

Telecommunications and Digital Signal Processing Laboratory, Djillali Liabes University, Sidi Bel Abbes, Algeria

Dr. FARAH Mehdi Chemseddine is a Lecturer Class B at the Telecommunications and Digital Signal Processing Laboratory, Djillali Liabes University, Sidi Bel Abbès, Algeria. He specializes in the design and optimization of microwave circuits, with a focus on microstrip technology. His research encompasses the development of compact and efficient microwave components such as hybrid couplers, power dividers, low-pass filters, and diplexers. Dr. Chemseddine has authored several publications in reputable journals, including the Journal of Circuits, Systems and Computers and Telecommunications and Radio Engineering. His work is characterized by innovative approaches to improving electrical performance, selectivity, and reducing the footprint of microwave devices. He has also participated in international conferences, presenting his research findings to the global scientific community. Dr. Chemseddine’s contributions to the field of telecommunications engineering demonstrate his commitment to advancing microwave circuit design and his potential as a leading researcher in this domain.

Professional Profile

Education

Dr. Chemseddine’s academic journey began with a Bachelor’s degree in Exact Sciences in 2008. He then pursued a License in Electrical Engineering, specializing in Communication Networks, which he completed in 2014. In 2016, he obtained a Master’s degree in High-Frequency Communication Systems from Djillali Liabes University. His academic pursuits culminated in earning a Ph.D. in Telecommunication Systems from the same university in 2022. Throughout his educational career, Dr. Chemseddine has demonstrated a strong foundation in electrical and communication engineering principles, which has been instrumental in his research endeavors. His academic background has equipped him with the necessary skills and knowledge to contribute significantly to the field of microwave circuit design.

Professional Experience

Dr. Chemseddine began his professional career as a Maître-Assistant Class B at the Faculty of Electrical Engineering, Department of Telecommunications, Djillali Liabes University, in 2023. In 2024, he was promoted to Maître-Conférence Class B at the same institution. His responsibilities include teaching undergraduate and graduate courses, supervising student research projects, and conducting his own research in microwave circuit design. Dr. Chemseddine has also completed internships, including one at the Hubert Curien Laboratory in Saint-Étienne, France, where he designed and implemented a microwave low-pass filter using planar technology. His professional experience reflects a commitment to both education and research in telecommunications engineering.

Research Interests

Dr. Chemseddine’s research interests are centered on the design and optimization of microwave circuits, particularly using microstrip technology. He focuses on developing compact, efficient, and cost-effective components such as hybrid couplers, power dividers, low-pass filters, and diplexers. His work aims to address challenges in electrical performance, selectivity, and device miniaturization. Dr. Chemseddine employs advanced simulation tools like HFSS and ADS to model and analyze microwave components, ensuring their practical applicability in telecommunications systems. His research contributes to the advancement of microwave engineering by providing innovative solutions for modern communication systems.

Research Skills

Dr. Chemseddine possesses a robust set of research skills in microwave circuit design and telecommunications engineering. He is proficient in using simulation and design tools such as HFSS (High-Frequency Structure Simulator), ADS (Advanced Design System), and MATLAB for modeling and analyzing microwave components. His expertise includes designing microstrip-based devices, optimizing their performance parameters, and validating their functionality through simulations and experimental measurements. Dr. Chemseddine’s skills enable him to develop innovative solutions that meet the demands of modern communication systems, emphasizing efficiency, compactness, and cost-effectiveness. His technical competencies are integral to his contributions to the field of microwave engineering.

Awards and Honors

While specific awards and honors are not detailed in the provided information, Dr. Chemseddine’s selection as a nominee for the Best Researcher Award at the International Research Awards on Science, Health, and Engineering underscores his recognition in the scientific community. His publications in reputable journals and presentations at international conferences further attest to his contributions and standing in the field of telecommunications engineering. These accomplishments reflect his dedication to research excellence and his potential for future accolades in his area of expertise.

Conclusion

Dr. FARAH Mehdi Chemseddine is an emerging researcher in the field of microwave circuit design and telecommunications engineering. His academic background, professional experience, and focused research interests have led to significant contributions in developing compact and efficient microwave components. Through his publications and conference presentations, he has demonstrated a commitment to advancing the field and addressing practical challenges in communication systems. Dr. Chemseddine’s proficiency in simulation tools and design methodologies positions him as a valuable contributor to both academic and industry-related projects. His nomination for the Best Researcher Award highlights his potential and the impact of his work in the scientific community.

Publications Top Notes

  1. Title: A Design of a Compact Microwave Diplexer in Microstrip Technology Based on Bandpass Filters Using Stepped Impedance Resonator
    Authors: M.C. Farah, F. Salah-Belkhodja, K. Khelil
    Journal: Journal of Microwaves, Optoelectronics and Electromagnetic Applications
    Year: 2022
    Citations: 6

  2. Title: A Novel Design of a Wilkinson Power Divider Based on the Circular-Shape Resonator
    Authors: R. El Bouslemti, C.M. Farah
    Journal: Frequenz, Vol. 78 (11-12), pp. 621–631
    Year: 2024
    Citations: 3

  3. Title: A Design of Microstrip Low-pass Filter Using Ground-Plane Coplanar Waveguide (GCPW)
    Authors: F.M. Chemseddine, E. Rahmouna, V. Didier
    Journal: Telecommunications and Radio Engineering
    Year: 2024
    Citations: 1

  4. Title: Design of Wilkinson Power Divider for Mobile and WLAN Applications
    Authors: M.C. Farah, F. Salah-Belkhodja
    Source: Proceedings of the International Conference for Pioneering and Innovative Technologies
    Year: 2023
    Citations: 1

  5. Title: A Design of Microstrip 180 Degree Hybrid Coupler Using T-Shape Structure for Monopulse Radar
    Authors: F.M. Chemseddine, S.B. Faouzi, F.Y. Hadj Aissa
    Journal: Journal of Circuits, Systems and Computers
    Year: 2025

  6. Title: Exploring Corrosion Behavior in Different Environments Using a Passive Microstrip Sensor
    Authors: R. El Bouslemti, M.C. Farah
    Journal: Communication Science et Technologie, Vol. 22 (1), pp. 7–17
    Year: 2024

  7. Title: Conception d’un Coupleur Microondes à Branches en Technologie Microstrip
    Authors: M.C. Farah, F. Salah-Belkhodja, Z. Kaldoune, A. Cheikh
    Journal: Communication Science et Technologie, Vol. 21 (1), pp. 13–33
    Year: 2023

  8. Title: Conception en Technologie Microstrip d’un Diplexeur Microondes Basé sur des Filtres à Saut d’Impédance
    Authors: F.M. Chemseddine
    Year: 2022

  9. Title: Conception en Technologie Microstrip d’un Diplexeur Microondes Basé sur des Filtres à Saut d’Impédance
    Authors: M.C. Farah, F. Salah-Belkhodja
    Year: 2022

Bashar Ibrahim | Engineering | Innovative Research Award

Mr. Bashar Ibrahim | Engineering | Innovative Research Award

Project Engineer from Fraunhofer Institute for Non-Destructive Testing, Germany

Bashar Ibrahim is a skilled engineering professional specializing in materials science, non-destructive testing (NDT), and sensor systems development. Currently employed as a Project Engineer at Fraunhofer IZFP in Saarbrücken, he plays a central role in coordinating and executing applied research projects. His expertise lies in designing and implementing advanced sensor modules, analyzing material structures, and utilizing simulation tools such as FEM to evaluate electromagnetic measurement techniques. With a strong interdisciplinary background, Mr. Ibrahim is capable of integrating mechanical design with data processing to optimize research outcomes. His contributions include the construction of test components using additive manufacturing and the supervision of student assistants in laboratory settings. Fluent in Arabic, German, and English, he brings strong multicultural communication skills to collaborative environments. His academic training, combined with practical industry experience, demonstrates his ability to bridge theoretical knowledge with hands-on technical application. While his profile is currently oriented towards application-focused research, he has potential for further academic impact through publications and knowledge dissemination. Mr. Ibrahim’s work reflects strong potential for innovation, and with greater emphasis on scholarly outputs, he could emerge as a leading contributor in his field. He is a capable, dedicated, and technically sound professional with emerging research strengths.

Professional Profile

Education

Bashar Ibrahim holds a Master of Science degree in Materials Science and Engineering with a specialization in materials technology from the University of Saarland, Germany, completed between 2019 and 2022. His academic focus during the master’s program equipped him with knowledge in advanced materials characterization, mechanical behavior of materials, and data evaluation techniques. Prior to this, he earned a Bachelor of Engineering degree in Mechanical Engineering with a concentration in design and production from Al-Baath University in Homs, Syria (2005–2010). This foundational education emphasized core mechanical engineering principles, including machine design, thermodynamics, and fluid mechanics. Mr. Ibrahim has also pursued professional development through specialized training, such as a fundamentals course in non-destructive testing (BC 3 Q M1) at DGZFP Berlin in 2022. Additionally, he gained hands-on industrial training during his time at Wipotec GmbH in Kaiserslautern, where he worked on 2D and 3D modeling and technical drawing creation. His education is complemented by his earlier self-employed work as a CAD instructor, where he taught software such as Mechanical Desktop, AutoCAD, and SolidWorks. This comprehensive educational background has laid a strong technical and analytical foundation, allowing him to contribute meaningfully to complex, interdisciplinary research projects.

Professional Experience

Bashar Ibrahim’s professional career is anchored in his current role as a Project Engineer at Fraunhofer IZFP in Saarbrücken, Germany, a position he has held since 2022. Here, he leads and coordinates multiple research initiatives, particularly in the areas of sensor technology, data visualization, and non-destructive material testing. His responsibilities include designing test structures via additive manufacturing, developing sensor systems, and performing FEM simulations to optimize electromagnetic testing methods. From 2020 to 2022, he served as a Research Assistant at the same institution, where he contributed to the development of a deflection measurement system for urban cable monitoring and participated in various simulation-based research tasks. His earlier experience includes technical support roles such as at Kern GmbH, where he handled large-format digital printing and material processing, and at Wipotec GmbH, where he worked in the design department focusing on 3D modeling and technical drawing. In addition, from 2010 to 2016, he worked independently as a private CAD instructor in Salamieh, Syria, where he trained professionals and students in mechanical design and simulation software. Mr. Ibrahim’s career trajectory demonstrates consistent growth in technical and research competencies, with increasing responsibility and a clear transition into applied research within a leading European research institution.

Research Interests

Bashar Ibrahim’s research interests are centered on advanced non-destructive testing (NDT) methods, sensor integration, additive manufacturing, and material characterization. His focus lies in the development and application of electromagnetic and vibrational testing systems to evaluate material structures and properties without causing damage. Ibrahim is particularly interested in the design and optimization of multi-module sensor systems for data acquisition and analysis in industrial and research environments. Additionally, he engages in the use of simulation software to model physical phenomena, with an emphasis on the finite element method (FEM) to study electromagnetic responses in materials. He also explores the application of additive manufacturing techniques to produce customized test samples and components for laboratory testing. His interdisciplinary interests span mechanical design, materials engineering, data processing, and digital fabrication, placing him at the convergence of hardware development and computational analysis. He is also drawn to the automation of testing systems and real-time data interpretation, reflecting a strong inclination toward smart manufacturing and Industry 4.0 concepts. Through these interests, Mr. Ibrahim aims to contribute to innovations that improve testing efficiency, accuracy, and integration into broader industrial applications. His research is inherently practical, with a clear orientation toward solving real-world engineering problems.

Research Skills

Bashar Ibrahim brings a diverse and robust set of research skills, making him well-equipped for multidisciplinary engineering projects. His core competencies include non-destructive testing techniques, particularly in the application of electromagnetic methods for assessing material properties. He is adept at conducting FEM simulations using tools such as Comsol and Ansys to model and analyze physical interactions within materials. His programming and data analysis skills in Python, Matlab, and Octave allow him to process complex datasets and visualize results effectively. Mr. Ibrahim has practical experience with sensor system design, including the integration and calibration of multiple measurement modules for real-time data collection. He is also proficient in mechanical design and modeling, using CAD platforms like SolidWorks, AutoCAD, and Mechanical Desktop. His background in additive manufacturing supports the fabrication of experimental setups and prototype components for research testing. Furthermore, he has experience in mentoring and guiding student assistants, indicating his capability in team collaboration and technical training. His ability to bridge computational analysis with physical experimentation is a significant strength, allowing him to contribute both theoretically and practically. These skills collectively empower him to work effectively in experimental research, data-driven engineering, and innovation-driven projects.

Awards and Honors

While there is currently no formal documentation of major awards or honors in Bashar Ibrahim’s profile, his ongoing work at Fraunhofer IZFP—a renowned research institution—demonstrates a level of trust and recognition in his professional capabilities. Being employed in a project engineering capacity at such a prestigious institute suggests that he has consistently met high standards of technical and research performance. His selection for participation in specialized training programs, such as the DGZFP course on non-destructive testing, further reflects his commitment to professional development and his potential for recognition in the future. Additionally, his earlier role as an independent CAD instructor and his involvement in supervising student assistants imply acknowledgment of his subject matter expertise and leadership potential. Although formal awards are not currently listed, Mr. Ibrahim’s work ethic, multidisciplinary skills, and contributions to applied research projects position him well for future accolades, especially if he continues to increase his scholarly output through publications, conference participation, or patents. With continued growth in academic visibility and project leadership, he is likely to gain formal honors that reflect his ongoing innovation in materials science and sensor-based technologies.

Conclusion

Bashar Ibrahim is a technically competent and professionally driven researcher with a strong foundation in mechanical engineering, materials science, and non-destructive testing. His current role at Fraunhofer IZFP places him at the forefront of applied research in sensor systems, FEM-based simulations, and data-driven material analysis. His practical experience is complemented by a strong academic background and continuous professional development, including specialized training and mentorship roles. While his contributions are primarily focused on application-oriented research, his skills, initiative, and interdisciplinary approach make him a promising candidate for innovation-driven recognition. To fully meet the criteria of an Innovative Research Award, further emphasis on academic dissemination—through publications, patents, or technical conferences—would strengthen his profile. Nonetheless, Mr. Ibrahim has already demonstrated the capacity to contribute meaningfully to the field and to solve complex engineering challenges. With a growing track record and potential for increased scholarly output, he stands out as a candidate with emerging research excellence and innovation potential. His career path reflects both competence and ambition, making him a strong contender for future research-based honors and awards.

Publication Top Notes

  1. Title: Complete CASSE acceleration data measured upon landing of Philae on comet 67P at Agilkia
    Authors: Arnold, Walter K.; Becker, Michael M.; Fischer, Hans Herbert; Knapmeyer, Martin; Krüger, Harald
    Journal: Acta Astronautica
    Year: 2025

Seyed Sepehr Mohseni | Engineering | Best Researcher Award

Mr. Seyed Sepehr Mohseni | Engineering | Best Researcher Award

University of Tehran from Switzerland. 

Seyed Sepehr Mohseni is a biomedical engineer specializing in microfluidics, microfabrication, and biomechanics. With a keen interest in developing innovative microfluidic platforms for biological and clinical applications, his research addresses vital issues in cell sorting, cancer diagnostics, and organ-on-a-chip technologies. Having completed both his Bachelor’s and Master’s degrees with distinction in biomedical engineering, he has already contributed to several high-impact journal articles and conference presentations. His master’s thesis focused on the separation of circulating tumor cells (CTCs) using a novel arc-shaped microfluidic channel, which showcases his strength in problem-solving and innovation. Beyond academia, he has volunteered as a technical expert in the medical device field and worked on collaborative research projects involving cell culture and biosensor development. Seyed Sepehr’s combined academic excellence, laboratory expertise, and interdisciplinary research experience reflect his deep commitment to advancing biomedical technologies. His work not only aligns with current trends in healthcare engineering but also holds significant potential for clinical impact. As a young researcher with a growing international presence, he demonstrates strong potential for leadership in biomedical research. He is well-positioned for prestigious recognitions such as the Best Researcher Award, owing to his innovative contributions and academic accomplishments in a relatively short span.

Professional Profile

Education

Seyed Sepehr Mohseni holds a Master of Science in Biomedical Engineering with a specialization in Biomechanics from the University of Tehran, Iran. He pursued his postgraduate studies at the Faculty of New Sciences and Technologies, completing his degree in July 2021. His master’s thesis, titled “CTCs separation by an obstacles-embedded arc-shaped microfluidic channel”, was awarded an excellent grade of 20/20, under the supervision of Dr. Ali Abouei Mehrizi. He graduated with a total GPA of 18.03/20, reflecting consistent academic performance across advanced engineering courses, including finite element methods, continuum mechanics, and biological modeling. Prior to that, he earned his Bachelor of Science in Biomedical Engineering, also in Biomechanics, from the Science and Research Branch of Islamic Azad University in Tehran, graduating in 2017. He maintained a strong GPA of 18.51/20 and ranked second among his cohort. Throughout both degrees, Seyed Sepehr showed an aptitude for interdisciplinary learning, bridging biology with engineering fundamentals. His academic record is supported by top national rankings in university entrance examinations, highlighting his early dedication to academic excellence and biomedical innovation. These achievements laid the foundation for his advanced research in microfluidics and device development for healthcare applications.

Professional Experience

Seyed Sepehr Mohseni has amassed a diverse portfolio of professional and research-oriented experiences that complement his academic training. During his postgraduate studies, he actively contributed to laboratory-based research at the Bio-Microfluidics Lab at the University of Tehran. His responsibilities included hands-on work with microfluidic device fabrication, droplet generators, cell sorting platforms, and fluorescence microscopy. He also served as a teaching assistant across multiple core engineering courses, including finite element methods, biomechanics, and biological system simulations, under the mentorship of Dr. Ali Abouei Mehrizi. In addition to his academic roles, Seyed Sepehr has gained industry-relevant experience. From 2019 to 2023, he worked as a technical expert at Setareh Kimia Persian Engineering Company, where he specialized in calibrating medical and laboratory devices. He also served as a technical supervisor for medical equipment importers and manufacturers with the General Directorate of Medical Equipment in Iran. In 2023, he joined a project at Iran University of Medical Sciences, focusing on the isolation of circulating tumor cells from blood samples, further integrating clinical applications with his engineering expertise. This breadth of experience reflects his ability to bridge research, industry, and healthcare regulation—key elements of a well-rounded biomedical professional.

Research Interest

Seyed Sepehr Mohseni’s research interests are centered around the development and application of microfluidic technologies in biomedical engineering. He is particularly focused on microfabrication, organ-on-a-chip systems, and cell culture platforms, aiming to address challenges in diagnostics, therapeutic monitoring, and disease modeling. His graduate thesis on CTC separation using an arc-shaped deterministic lateral displacement microchannel highlights his interest in cancer research and lab-on-a-chip solutions for non-invasive diagnostics. His scientific curiosity extends to biosensing applications, including the use of porous silicon integrated microchannels and reflectometric interference Fourier transform spectroscopy. He is also interested in biomaterials and hydrogel-based tissue engineering, as demonstrated in collaborative projects involving VEGF delivery systems and bone regeneration scaffolds. Seyed Sepehr’s interdisciplinary perspective allows him to combine mechanical design principles with biological applications, making his research highly relevant to current needs in precision medicine. With a growing interest in organ-on-a-chip and microfluidics-enabled point-of-care testing, his long-term vision involves developing platforms that enhance personalized healthcare. His research is aligned with global trends in translational medicine, aiming to move scientific innovation from the lab bench to clinical practice. This strong alignment of technical knowledge with clinical relevance defines his growing impact in the biomedical field.

Research Skills

Seyed Sepehr Mohseni brings a comprehensive set of research skills that span both computational and experimental domains in biomedical engineering. He is highly proficient in using simulation and modeling software such as COMSOL Multiphysics, MATLAB, ABAQUS, and Ansys Fluent, which he applies in the design and analysis of microfluidic devices and biomechanical systems. His academic background is strengthened by a deep understanding of finite element methods, continuum mechanics, and biological system simulations. In the laboratory, Seyed Sepehr has advanced expertise in microfabrication techniques such as photolithography and soft lithography. He has operated and analyzed microfluidic systems involving droplet generation, micromixing, and cell separation. His work is supported by imaging techniques, including fluorescence and confocal microscopy, as well as experience in 3D bioprinting and mammalian cell culture. These laboratory skills were honed through years of hands-on experience in the Bio-Microfluidics Lab at the University of Tehran. Additionally, he is adept in data visualization and analysis software such as Origin, Tracker, and ImageJ/Fiji, along with graphic design tools like Adobe Photoshop and Illustrator. His interdisciplinary competence allows him to transition smoothly from computational modeling to experimental implementation, which is essential for innovative research in biomedical device development.

Awards and Honors

Seyed Sepehr Mohseni has received multiple academic distinctions that reflect his high level of competence and commitment to biomedical engineering. In 2021, he was ranked first among the 2018 M.Sc. entrants in Biomedical Engineering at the Faculty of New Sciences and Technologies, University of Tehran. This recognition is a testament to his consistent academic excellence and outstanding performance in research-based coursework and laboratory activities. Earlier in his academic journey, he achieved second rank among all undergraduate entrants in Biomedical Engineering at Islamic Azad University in 2014. More notably, in the same year, he was ranked in the top 1% of participants in Iran’s highly competitive national university entrance exam for M.Sc. programs in Mechanical Engineering. These achievements highlight his intellectual rigor and early promise as a future leader in engineering research. His consistent high GPA throughout his academic career and the excellent grade for his master’s thesis further reinforce his qualifications. These honors, combined with his publication record in high-impact journals and active involvement in innovative research, make him a strong candidate for recognition through awards such as the Best Researcher Award. They confirm both his academic credibility and his potential to contribute significantly to the field.

Conclusion

In conclusion, Seyed Sepehr Mohseni stands out as a dedicated and innovative biomedical researcher with a strong foundation in both theory and practical application. His focused research on microfluidic systems, cell sorting technologies, and biosensing reflects a clear vision for solving contemporary challenges in healthcare engineering. He has already made meaningful contributions to the field through his publications, laboratory innovations, and cross-disciplinary collaborations. While his professional experience is still developing, it includes diverse roles in teaching, laboratory research, and clinical collaboration—all of which enrich his research profile. His ability to integrate engineering design with biological functionality demonstrates a maturity of thought uncommon in early-career researchers. Although he is yet to pursue a doctoral degree or lead large-scale independent projects, his current trajectory strongly suggests readiness for further academic advancement and leadership roles in biomedical research. Seyed Sepehr’s academic performance, technical expertise, and innovative outlook make him an ideal candidate for competitive research honors. The Best Researcher Award would not only recognize his current accomplishments but also encourage and support a promising career that is likely to yield significant impact in translational medicine and biomedical device development.

Publications Top Notes

  • Title: Preparation of microfluidic-based pectin microparticles loaded carbon dots conjugated with BMP-2 embedded in gelatin-elastin-hyaluronic acid hydrogel scaffold for bone tissue
    Authors: F. Moztarzadeh, M. Farokhi, A.A. Mehrizi, H. Basiri, S.S. Mohseni
    Journal: International Journal of Biological Macromolecules
    Volume/Page: 184, 29–41
    Year: 2021
    Citations: 60

  • Title: Machine learning-aided microdroplets breakup characteristic prediction in flow-focusing microdevices by incorporating variations of cross-flow tilt angles
    Authors: B. Talebjedi, A. Abouei Mehrizi, B. Talebjedi, S.S. Mohseni, N. Tasnim, …
    Journal: Langmuir
    Volume/Issue/Page: 38 (34), 10465–10477
    Year: 2022
    Citations: 14

  • Title: Microfluidic platforms for cell sorting
    Authors: F. Mirakhorli, S.S. Mohseni, S.R. Bazaz, A.A. Mehrizi, P.J. Ralph, M.E. Warkiani
    Journal: Sustainable Separation Engineering: Materials, Techniques and Process
    Year: 2022
    Citations: 12

  • Title: A Novel Strategy for Square-Wave Micromixers: A Survey of RBC Lysis for Further Biological Analysis
    Authors: A.H. Hazeri, A. Abouei Mehrizi, S.S. Mohseni, M. Ebrahimi Warkiani, …
    Journal: Industrial & Engineering Chemistry Research
    Volume/Issue/Page: 62 (40), 16215–16224
    Year: 2023
    Citations: 6

  • Title: Composite Microgels for Imaging-Monitored Tracking of the Delivery of Vascular Endothelial Growth Factor to Ischemic Muscles
    Authors: H. Basiri, S.S. Mohseni, A. Abouei Mehrizi, A. Rajabnejadkeleshteri, …
    Journal: Biomacromolecules
    Volume/Issue/Page: 22 (12), 5162–5172
    Year: 2021
    Citations: 4

  • Title: Flow rate controlling by capillary micropumps in open biomicrofluidic devices
    Authors: S. Fathi, S.S. Mohseni, A.A. Mehrizi
    Conference: 2020 27th National and 5th International Iranian Conference on Biomedical Engineering
    Year: 2020
    Citations: 4

  • Title: A novel microfluidic platform for MCF-7 separation: Arc-shaped deterministic lateral displacement microchannel
    Authors: S.S. Mohseni, A.A. Mehrizi, S. Fathi
    Journal: Microchemical Journal
    Volume/Page: 211, 113076
    Year: 2025