Manvendra Singh Chauhan | Civil Engineering | Best Researcher Award

Assoc. Prof. Dr. Manvendra Singh Chauhan | Civil Engineering | Best Researcher Award

Babasaheb Bhimrao Ambedkar University, India

Assoc. Prof. Dr. Manvendra Singh Chauhan, an accomplished academician and researcher in Civil Engineering, currently serves as Head of the Department of Civil Engineering at Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India. He earned his Ph.D. in Civil Engineering from the Indian Institute of Technology (Banaras Hindu University), Varanasi in 2015, with research on modeling the River Ganga at the Varanasi bend, following his M.Tech. in Hydraulics and Water Resources Engineering and B.Tech. in Civil Engineering. With more than a decade of academic and professional experience, Dr. Chauhan has held faculty and leadership positions at reputed institutions including RV Institute of Technology, Holy Mary Institute of Technology & Science (where he also served as Vice-Principal), and Chitkara University, alongside prior industry experience with Simplex Infrastructures and SDCE Projects. His research interests span hydraulics and water resources, river modeling, sedimentation and erosion, environmental remediation, sustainable construction materials, and applications of geoinformatics in watershed management. He possesses strong research skills in hydrological modeling, GIS applications, data analysis, statistical modeling, AutoCAD, SPSS, and advanced tools for river flow and sediment studies. Dr. Chauhan has published widely in reputed Scopus and SCI-indexed journals such as Journal of Hydroinformatics, Asian Journal of Civil Engineering, Technologies, and Materials Today Proceedings, with a record of 9 indexed documents, 122 citations, and an h-index of 3, in addition to authoring books and Springer book chapters. His innovative outlook is reflected in patents including the granted “Motorized Water Sampler for Water Bodies” (2023) and an IoT-based intelligent irrigation system. Recognized for his contributions, he has been actively involved in organizing international conferences, workshops, and faculty development programs, and is a member of professional bodies such as the Institution of Engineers (India), Indian Association of Hydrologists, and Indian Water Resources Society. In conclusion, Dr. Chauhan stands out as a dedicated researcher, innovator, and academic leader whose impactful contributions to civil engineering and water resources continue to advance sustainable solutions for society and inspire future generations of engineers.

Profile: Scopus | ORCID

Featured Publications

Kesarwani, S., Shukla, G., & Chauhan, M. S. (2025). Utilisation of waste corn cob ash in cement concrete: A statistical approach toward environmental sustainability. Asian Journal of Civil Engineering. Advance online publication.

Chauhan, M. S., Omar, P. J., Dikshit, P. K. S., & Dwivedi, S. B. (2025). Development and validation of a rating curve for the Ganga River at the Varanasi bend. Journal of Hydroinformatics, 27(4), 657–669.

Sen, P., Bhattacharya, P., Mukherjee, G., Ganguly, J., Marik, B., Thapliyal, D., Verma, S., Verros, G. D., Chauhan, M. S., & Arya, R. K. (2023). Advancements in doping strategies for enhanced photocatalysts and adsorbents in environmental remediation. Technologies, 11(5), 144.

Fayaz, M., Krishnaiah, R. V., Raju, K. V. B., & Chauhan, M. S. (2023). Study and analysis of strength parameters of concrete with addition of stone dust, PVC, and fibers. Materials Today: Proceedings. Advance online publication.

Fayaz, M., Krishnaiah, R. V., Raju, K. V. B., & Chauhan, M. S. (2023). Experimental study on mechanical properties of concrete using mineral admixtures. Materials Today: Proceedings. Advance online publication.

Omid Bamshad | Civil Engineering | Best Researcher Award

Dr. Omid Bamshad | Civil Engineering | Best Researcher Award

Researcher from Imam Khomeini International University, Iran

Dr. Omid Bamshad is a distinguished researcher in construction engineering, specializing in sustainable materials, structural optimization, and lifecycle assessment. With a Ph.D. in Construction Engineering and Management from the University of Tehran, he has contributed significantly to the field through extensive research, publications, and academic involvement. His work encompasses innovative approaches to concrete technology, emphasizing durability and environmental impact. Dr. Bamshad’s commitment to advancing construction methodologies is evident in his numerous peer-reviewed articles, patents, and participation in international conferences. His expertise not only enhances academic discourse but also offers practical solutions to contemporary engineering challenges.

Professional Profile

Education

Dr. Bamshad’s academic journey reflects a strong foundation in civil engineering. He earned his Ph.D. in Construction Engineering and Management from the University of Tehran (2021–2024), achieving a GPA of 19.17. Prior to this, he completed his M.Sc. in Structural Engineering at the same institution (2015–2018) with a GPA of 16.30. His undergraduate studies culminated in a B.Sc. in Civil Engineering from Imam Khomeini International University (2011–2015), where he graduated with a GPA of 18.08. This progression showcases his dedication to academic excellence and a deepening specialization in construction and structural engineering disciplines.

Professional Experience

Dr. Bamshad’s professional experience spans academia, research, and industry. Since 2022, he has served as a Concrete and Building Materials Laboratory Expert at Imam Khomeini International University. His editorial roles include Specialized Secretary for the Biannual Journal of Construction Engineering and Management (2023–Present) and Editorial Board Member for the International Conference on “Construction Engineering” in Syria (2024). He has also contributed as a Technical Committee Member for the International Conference “Empowering Tomorrow: Clean Energy, Climate Action, and Responsible Production” in Russia (2024). His industry experience includes a tenure as Site Supervisor at Pezhvak Moj Qazvin Company (2016–2021), complemented by Grade 3 Supervision and Execution Qualifications from the Qazvin Province Engineering Organization.

Research Interests

Dr. Bamshad’s research interests are centered on sustainable construction materials, structural optimization, and lifecycle assessment. He focuses on the development and evaluation of recycled aggregate concrete, exploring its long-term performance under various environmental conditions. His work also delves into the application of machine learning techniques for predicting material behavior and optimizing construction processes. Additionally, he investigates the integration of circular economy principles in construction practices, aiming to enhance resource efficiency and environmental sustainability within the industry.

Research Skills

Dr. Bamshad possesses a comprehensive skill set that supports his research endeavors. He is proficient in structural analysis and design software such as ETABS, SAP2000, SAFE, and AutoCAD, facilitating complex modeling and simulation tasks. His expertise extends to finite element analysis using ABAQUS and performance-based design with Perform 3D. He is adept at statistical analysis and optimization techniques, utilizing tools like Minitab and Crystal Ball. His familiarity with OpenSees enables advanced structural simulations, while his knowledge of MS Project aids in effective project planning and control.

Awards and Honors

Dr. Bamshad’s contributions have been recognized through various awards and honors. He was named the Top Graduate in both his B.Sc. program at Imam Khomeini International University and his Ph.D. program at the University of Tehran. In 2015, he secured the 8th place in the National Civil Engineering Olympiad and achieved 1st place in the “Toughest Bridge” category of the National Steel Bridge Competition. His exceptional performance has also earned him recognition as an Elite Soldier by the National Elites Foundation, underscoring his commitment to excellence in the field of civil engineering.

Conclusion

Dr. Omid Bamshad exemplifies the qualities of an outstanding researcher in construction engineering. His academic achievements, coupled with a robust portfolio of research and professional experience, position him as a leader in sustainable construction practices. His interdisciplinary approach, integrating advanced technologies and environmental considerations, addresses critical challenges in the industry. Dr. Bamshad’s dedication to innovation and knowledge dissemination makes him a valuable asset to both academia and the broader engineering community. His profile aligns seamlessly with the criteria for the Best Researcher Award, reflecting his significant impact on the field.

Publications Top Notes

  1. Long-term corrosion behavior of reinforced recycled aggregate concrete under acid rain condition
    Bamshad, O., Hakamian, I., Shirvani, M.F., Habibi, A., and Mahdikhani, M. (2025)

  2. Freeze-thaw resistance and chloride permeability of circular CKD-based alkali-activated concrete
    Bamshad, O., Ramezanianpour, A. M., and Habibi, A. (2025, August)

  3. Long‐term performance of recycled aggregate concrete incorporating natural zeolite
    Aghililotf, M., Ramezanianpour, A. M., Bamshad, O., and Hajimohammadi, A. (2025)

  4. Mapping and analyzing the cause-and-effect network between the risks of residential building projects in Iran: An approach based on social network analysis (SNA)
    Aghililotf, M., Heydari, M. M., Soltani Halvaei, N., Ramezanianpour, A. M., and Bamshad, O. (2025)

  5. Review of different approaches in determining the criteria for measuring the success in construction projects
    Aghili Lotf, M., Arbabi, H., Ramezanianpour, A. M., Bamshad, O., and Heydari, M. M. (2024)

  6. An Introduction to Leadership Studies in Construction Project Management
    Aghili Lotfi, M., Jafari, T., Ramezanianpour, A. M., Bamshad, O., and Heidari, M. M. H. (2024)

  7. A Critique of the Importance and Status of the Construction Industry in Iran (Features and Challenges)
    Aghili Lotf, M., Heydari, M. M., Ramezanianpour, A. M., and Bamshad, O. (2024)

  8. Optimizing concrete for circularity: a comparative life cycle assessment of geopolymer and ordinary concrete
    Bamshad, O., and Ramezanianpour, A. M. (2024)

  9. Predicting corrosion of recycled aggregate concrete under sulfuric acid rain using machine learning and uncertainty analysis
    Bamshad, O., Jamhiri, B., Habibi, A., Salehi, S., Aziminezhad, M., and Mahdikhani, M. (2024)

  10. Biases in Life Cycle Assessment of Circular Concrete from Ignoring End-of-Life Scenarios and Service Life Time
    Habibi, A., Javadpour, M., Bamshad, O., and Golzary, A. (2024)

 

Gültekin AKTAŞ | Civil Engineering | Best Researcher Award

Mr. Gültekin AKTAŞ | Civil Engineering | Best Researcher Award

Assoc. Prof. Dr at Dicle University Department of Civil Engineering, Turkey.

Gultekin Aktas is a distinguished researcher in civil engineering, specializing in structural dynamics and concrete behavior. He holds a PhD in Civil Engineering from Dicle University and has made significant contributions through innovative research on topics such as fresh concrete behavior under vibration, prediction models using artificial neural networks, and mold design for precast concrete elements. Aktas’s work is published in reputable journals like Structural Engineering and Mechanics and KSCE Journal of Civil Engineering, showcasing his technical expertise and diverse methodologies. His research employs advanced computational techniques and experimental validations, reflecting a high level of proficiency. Despite his robust contributions, expanding his focus to include interdisciplinary approaches and increasing collaborative efforts could further enhance his impact. Overall, Aktas’s innovative research and technical skills make him a notable candidate for the Research for Best Researcher Award.

Profile

Education

Gultekin Aktas is a distinguished academic with extensive expertise in civil engineering. He completed his PhD at Dicle University, Diyarbakir, Turkey, where he has been associated with the Engineering Faculty since 1995. His educational background in civil engineering has provided him with a solid foundation in structural analysis, computational methods, and practical applications. During his doctoral studies, Aktas focused on advanced topics in structural dynamics and computational modeling, which have significantly influenced his subsequent research. His work integrates theoretical insights with practical challenges, reflecting his deep understanding of both fundamental concepts and real-world engineering issues. Aktas’s ongoing affiliation with Dicle University highlights his commitment to academic excellence and his role in advancing civil engineering knowledge through both teaching and research.

Professional Experience

Dr. Gultekin Aktas is a distinguished academic in civil engineering, holding a position at the Engineering Faculty of Dicle University in Diyarbakir, Turkey, since 1995. His extensive professional experience encompasses a broad range of research and teaching roles. Aktas has focused on innovative areas such as the behavior of fresh concrete under vibration, finite grid solutions for circular plates, and computer-aided design algorithms for precast concrete elements. His research has been published in leading journals, including Structural Engineering and Mechanics and KSCE Journal of Civil Engineering. Aktas’s expertise lies in employing advanced computational methods and theoretical models to address complex engineering problems, reflecting his commitment to both practical and theoretical advancements in structural engineering. His contributions to the field are marked by a strong emphasis on experimental validation and computational analysis, highlighting his significant role in advancing civil engineering research and education.

Research Skills

Gultekin Aktas possesses a diverse set of research skills that underline his expertise in civil engineering. His proficiency in utilizing advanced computational techniques is evident from his work with mass-spring models, artificial neural networks, and finite grid solutions, which he employs to analyze and predict the behavior of structural elements under various conditions. Aktas demonstrates strong technical abilities in developing and validating algorithms for concrete element design and structural dynamic analysis. His research often involves a blend of theoretical modeling and experimental validation, showcasing his capacity to integrate different methodologies to address complex engineering problems. Additionally, his capability to produce high-quality, peer-reviewed publications reflects his thorough understanding of structural engineering principles and computational methods. Aktas’s adeptness at applying both theoretical and practical approaches underscores his comprehensive skill set and contributes significantly to advancements in civil engineering research.

Award and Recognition

Gultekin Aktas has earned notable recognition for his contributions to civil engineering, particularly in the fields of structural dynamics and concrete behavior. His innovative research has been published in leading journals such as Structural Engineering and Mechanics and KSCE Journal of Civil Engineering, underscoring his impact on the field. Aktas’s work, including his studies on the behavior of fresh concrete under vibration and finite grid solutions for circular plates, has significantly advanced understanding and practical applications in structural engineering. Although specific awards or formal recognitions are not listed, his high-quality publications and influential research demonstrate a strong reputation among peers. Aktas’s contributions reflect his dedication to advancing engineering knowledge and solving complex problems, solidifying his standing as a respected researcher in his domain.

Conclusion

Gultekin Aktas is a strong candidate for the Research for Best Researcher Award. His diverse and innovative research contributions to civil engineering, coupled with his technical proficiency and publication record, demonstrate his significant impact in his field. While there are opportunities to broaden his research focus and enhance his collaborative efforts, Aktas’s accomplishments highlight his potential as a leading researcher. His continuous engagement in cutting-edge research and publication makes him a deserving candidate for this prestigious award.

Publications Top Notes

  1. Examination of Precast Concrete Movement Subjected to Vibration Employing Mass-Spring Model with Two Convective Masses
    • Authors: Aktas, G.
    • Journal: Shock and Vibration
    • Year: 2024
    • Citations: 0
  2. Displacement prediction of precast concrete under vibration using artificial neural networks
    • Authors: Aktas, G., Ozerdem, M.S.
    • Journal: Structural Engineering and Mechanics
    • Year: 2020
    • Volume: 74(4), pp. 559–565
    • Citations: 3
  3. Prediction of behavior of fresh concrete exposed to vibration using artificial neural networks and regression model
    • Authors: Aktas, G., Ozerdem, M.S.
    • Journal: Structural Engineering and Mechanics
    • Year: 2016
    • Volume: 60(4), pp. 655–665
    • Citations: 11
  4. Investigation of fresh concrete behavior under vibration using mass-spring model
    • Authors: Aktas, G.
    • Journal: Structural Engineering and Mechanics
    • Year: 2016
    • Volume: 57(3), pp. 425–439
    • Citations: 4
  5. A finite grid solution for circular plates on elastic foundations
    • Authors: Karaşin, H., Gülkan, P., Aktas, G.
    • Journal: KSCE Journal of Civil Engineering
    • Year: 2015
    • Volume: 19(4), pp. 1157–1163
    • Citations: 9
  6. Experimental confirmation for the validity of Ritz method in structural dynamic analysis
    • Authors: Aktas, G., Karasin, A.
    • Journal: Journal of Theoretical and Applied Mechanics (Poland)
    • Year: 2014
    • Volume: 52(4), pp. 981–993
    • Citations: 4
  7. Computer-aided mold design algorithm for precast concrete elements
    • Authors: Aktas, G., Tanrikulu, A.K., Baran, T.
    • Journal: ACI Materials Journal
    • Year: 2014
    • Volume: 111(1), pp. 77–87
    • Citations: 7

 

Mohammad Ali Heravi | Civil Engineering | Best Researcher Award

Mr. Mohammad Ali Heravi | Civil Engineering | Best Researcher Award

PhD. Student at Semnan University, Iran

Mr. Mohammadali Heravi is a dedicated and ambitious Ph.D. candidate ing Civil Engineerin at Semnan University, Iran. With a strong academic foundation, he has developed expertise in structural health monitoring, particularly through the application of deep learning and artificial intelligence. His doctoral research is focused on developing innovative unsupervised deep learning methods to advance structural health monitoring systems. Mr. Heravi also holds an M.Sc. in Civil Engineering from Shahrood University of Technology, where he explored structural damage detection using empirical mode decomposition and statistical pattern recognition. His academic journey began with a B.Sc. in Civil Engineering from Azad University of Mashhad. Currently, he is furthering his research as a Ph.D. researcher at Western University of Ontario, Canada, where he is working on zero-shot transfer learning approaches for structural health monitoring. Mr. Heravi is passionate about contributing to the field of civil engineering through innovative research and collaboration with leading experts.

Profile

Education

Mr. Mohammadali Heravi is currently pursuing a Ph.D. in Civil Engineering at Semnan University, Iran, where he has maintained an impressive GPA of 18.49/20. His doctoral research focuses on developing novel unsupervised deep learning approaches for structural health monitoring. Prior to this, he earned his M.Sc. in Civil Engineering from Shahrood University of Technology, Iran, between 2017 and 2020, with a GPA of 18.03/20. His master’s thesis centered on structural damage detection using improved empirical mode decomposition and statistical pattern recognition. He began his academic journey with a B.Sc. in Civil Engineering from Azad University of Mashhad, Iran, where he graduated in 2016 with a GPA of 15.50/20. Throughout his academic career, Mr. Heravi has demonstrated a strong commitment to advancing his knowledge and expertise in civil engineering, particularly in the areas of structural health monitoring and artificial intelligence.

Professional Experience

Mr. Mohammadali Heravi has amassed significant professional experience in the field of civil engineering, with a focus on structural health monitoring and the application of artificial intelligence. He is currently a Ph.D. researcher in Civil and Environmental Engineering at Western University of Ontario, Canada, where he is developing novel zero-shot transfer learning approaches for structural health monitoring. His research builds on his earlier work as a Ph.D. candidate at Semnan University, Iran, where he began his exploration of unsupervised deep learning techniques in structural health monitoring. Additionally, Mr. Heravi’s experience includes his role as a researcher during his M.Sc. at Shahrood University of Technology, where he specialized in structural damage detection using advanced statistical methods. His professional journey is characterized by a deep commitment to advancing the field of civil engineering through innovative research and practical applications.

Research Interests

Mr. Mohammadali Heravi’s research interests are deeply rooted in the field of civil engineering, with a particular focus on Structural Health Monitoring (SHM) through vibration and vision-based methods. He is keenly interested in Structural Vibration Control and the innovative application of Artificial Intelligence (AI) in engineering structures, especially through Machine Learning, Deep Learning, and Data Mining techniques. His work also extends to Reliability and Numerical Analysis, where he explores the robustness and safety of engineering designs. Additionally, Mr. Heravi is engaged in Image and Signal Processing, utilizing these technologies to enhance the accuracy and efficiency of structural assessments. His research aims to integrate cutting-edge AI methodologies with traditional engineering practices to address complex challenges in the field.

Research Skills

Mr. Mohammadali Heravi possesses a diverse set of technical and professional skills that support his research in civil engineering. He is proficient in programming languages such as Python, with four years of experience, and MATLAB, with six years of expertise. His skills extend to Machine Learning and Deep Learning frameworks, including PyTorch, TensorFlow, and Scikit-Learn, which he applies in his research on structural health monitoring and artificial intelligence. Additionally, Mr. Heravi is well-versed in engineering software like ETABS and SAP2000, crucial for structural analysis and design. He also has experience with various Python libraries, including Numpy, OpenCV, and Pandas, which aid in data manipulation and image processing. Beyond his technical capabilities, Mr. Heravi excels in non-programming software such as Microsoft Office, Photoshop, and Adobe Premiere, which enhance his ability to present research findings and manage projects effectively. His skill set reflects a well-rounded expertise in both the theoretical and practical aspects of civil engineering and artificial intelligence.

Conclusion

Mr. Mohammadali Heravi’s strong academic background, extensive research experience, technical skills, and dedication to advancing civil engineering make him an exemplary candidate for the Best Researcher Award. His contributions to structural health monitoring, particularly through innovative AI applications, highlight his potential to significantly impact the field.

Publications Top Notes

Shear Strength Prediction of Reinforced Concrete Shear Wall Using ANN, GMDH-NN and GEP

  • Authors: H. Naderpour, M. Sharei, P. Fakharian, M.A. Heravi
  • Journal: Journal of Soft Computing in Civil Engineering
  • Volume: 6 (1), 66-87
  • Cited By: 30
  • Year: 2022

Structural Health Monitoring by Probability Density Function of Autoregressive-Based Damage Features and Fast Distance Correlation Method

  • Authors: M.A. Heravi, S.M. Tavakkoli, A. Entezami
  • Journal: Journal of Vibration and Control
  • Volume: 28 (19-20), 2786-2802
  • Cited By: 10
  • Year: 2022

Transferring Damage Detection Knowledge Across Rotating Machines and Framed Structures: Harnessing Domain Adaptation and Contrastive Learning

  • Authors: R. Soleimani-Babakamali, M.H. Soleimani-Babakamali, M.A. Heravi, et al.
  • Journal: Mechanical Systems and Signal Processing
  • Volume: 221, 111743
  • Year: 2024

Deep Ensemble Learning for Rapid Large-Scale Post-Earthquake Damage Assessment—Application to 2023 Kahramanmaraş Earthquake Sequence

  • Authors: M.H. Soleimani-Babakamali, M. Askari, M.A. Heravi, R. Sisman, N. Attarchian, et al.
  • Year: 2023