Reza Amjadifard | Engineering | Best Researcher Award

Assist. Prof. Dr. Reza Amjadifard | Engineering | Best Researcher Award

Faculty member at Iranian Space research Center, Iran 

Reza Amjadifard is a seasoned researcher and educator in geotechnical engineering, with a strong emphasis on soil mechanics, foundation design, and sustainable ground improvement techniques. With over a decade of academic and field experience, he has contributed extensively to both the theoretical and applied dimensions of civil engineering. Reza holds a Ph.D. in Geotechnical Engineering and has served in academic and research positions in Iran, Malaysia, and other parts of Southeast Asia. He is known for his work on soil stabilization using recycled and environmentally friendly materials, a topic that reflects his deep commitment to sustainable development. His scholarly work includes numerous peer-reviewed journal articles, conference presentations, and research collaborations that span continents. Reza’s professional journey is marked by a seamless integration of teaching, research, and real-world applications. He is recognized for his ability to lead multidisciplinary teams, mentor graduate students, and secure competitive research funding. In addition to his technical capabilities, Reza possesses strong communication and leadership skills, which have helped him contribute to academic program development and institutional partnerships. Through his career, Reza has consistently demonstrated a forward-thinking approach to geotechnical challenges, making him a valuable contributor to both academia and industry.

Professional Profile

Education

Reza Amjadifard’s educational journey is rooted in a deep curiosity for solving complex engineering problems and a passion for sustainable infrastructure development. He earned his Bachelor of Science in Civil Engineering from Islamic Azad University in Iran, where he laid the foundation for his technical knowledge in structural analysis, hydraulics, and soil mechanics. Driven by a growing interest in geotechnical engineering, he pursued a Master of Science in Geotechnical Engineering, also at Islamic Azad University, where he conducted research on slope stability and earth reinforcement techniques. His master’s thesis explored innovative methods for improving soil strength, igniting his long-term research interests in ground improvement and soil behavior. Reza further advanced his academic career by earning a Ph.D. in Geotechnical Engineering from Universiti Sains Malaysia (USM), one of Southeast Asia’s top research institutions. His doctoral research focused on the use of recycled materials in soil stabilization, combining environmental sustainability with engineering efficiency. Throughout his academic career, Reza consistently achieved high academic distinctions and published numerous papers based on his thesis work. His formal education has been complemented by international workshops, seminars, and certifications that have kept him abreast of emerging technologies and methodologies in civil and geotechnical engineering.

Professional Experience

Reza Amjadifard has cultivated a robust and multidisciplinary professional background in civil engineering, spanning over a decade of academic and practical contributions. He began his academic career as a Lecturer at Islamic Azad University in Iran, where he taught courses in geotechnical engineering, soil mechanics, and foundation design. During this time, he also supervised numerous undergraduate and graduate student projects, fostering a passion for mentorship and academic leadership. His work in the field progressed with collaborative projects involving slope stability, soil improvement, and foundation engineering, allowing him to apply theoretical knowledge to real-world geotechnical challenges. Following his relocation to Malaysia, Reza joined Universiti Sains Malaysia (USM) as a Research Fellow, where he contributed to funded research projects focusing on sustainable ground improvement techniques and innovative uses of recycled materials in geotechnical applications. His international experience expanded further with research engagements in Australia and other parts of Southeast Asia, where he worked alongside diverse teams to address region-specific geotechnical issues such as soft soil stabilization and coastal erosion. Reza’s experience seamlessly integrates teaching, research, and field applications, showcasing his capacity to contribute across academic and industry sectors. His professional journey highlights not only technical expertise but also a strong commitment to advancing sustainable and innovative solutions in geotechnical engineering.

Research Interest

Reza Amjadifard’s research interests lie at the intersection of geotechnical engineering, environmental sustainability, and materials science. A significant portion of his work focuses on ground improvement techniques using environmentally friendly and recycled materials, such as waste tire chips, industrial by-products, and natural fibers. These innovations aim to reduce the environmental footprint of civil engineering practices while improving soil stability and bearing capacity. Reza is particularly interested in the behavior of soft soils under various loading and environmental conditions, including the effects of moisture content, chemical treatment, and dynamic forces. His research also delves into slope stability analysis, foundation performance, and soil-structure interaction, providing practical solutions for infrastructure in challenging geological settings. Reza is keen on integrating experimental and numerical methods in his studies, often employing advanced geotechnical software to simulate soil behavior and validate laboratory findings. Furthermore, he is exploring smart and adaptive geotechnical systems, including sensor-based monitoring techniques for early warning in landslide-prone regions. His interdisciplinary approach connects geotechnical engineering with sustainability, resilience, and emerging technologies, making his research highly relevant in the context of climate change and urban expansion. Reza’s work contributes meaningfully to safer, more durable, and eco-friendly infrastructure development.

Research Skills

Reza Amjadifard possesses a comprehensive set of research skills that span both experimental and analytical domains within geotechnical engineering. His expertise includes advanced laboratory testing of soils, such as direct shear tests, triaxial compression tests, consolidation tests, and permeability analysis. He is skilled in developing and modifying testing procedures to assess the effectiveness of novel soil stabilization materials, especially those derived from waste and recycled sources. In addition to hands-on laboratory capabilities, Reza is proficient in the use of numerical modeling tools such as PLAXIS, GeoStudio, and FLAC, which he applies to simulate soil behavior, foundation systems, and slope stability under varying conditions. He also brings strong statistical analysis skills using software like SPSS and MATLAB, which support data interpretation and model calibration. Reza’s research skill set extends to project planning, grant writing, and research paper publication. He has led and participated in interdisciplinary projects funded by both academic institutions and industry, demonstrating his ability to collaborate effectively. His skills in technical writing and presentation have helped him communicate complex findings to both technical and non-technical audiences. Overall, his diverse research competencies make him an asset to teams focused on sustainable geotechnical innovation and infrastructure resilience.

Awards and Honors

Reza Amjadifard’s dedication to research excellence and academic service has earned him numerous awards and honors throughout his career. During his doctoral studies at Universiti Sains Malaysia, he received the prestigious Graduate Research Assistantship for his groundbreaking work in sustainable soil stabilization, a recognition awarded to top-tier doctoral candidates. His research contributions have been acknowledged through Best Paper Awards at several international geotechnical and civil engineering conferences, highlighting the impact and quality of his scholarly output. Reza has also been honored with research grants from governmental and academic bodies, including funding for interdisciplinary projects that address environmental and infrastructural challenges in developing regions. In addition, he has been invited to serve as a peer reviewer for several high-impact journals in the fields of geotechnical engineering, environmental geotechnology, and construction materials, recognizing his expertise and thought leadership. His excellence in teaching was acknowledged by Islamic Azad University, where he received the “Outstanding Lecturer” award for his engaging and innovative teaching methods. These accolades reflect Reza’s continuous pursuit of academic and research excellence, his commitment to mentorship, and his contributions to the advancement of geotechnical engineering both locally and internationally.

Conclusion

Reza Amjadifard exemplifies the qualities of a dedicated scholar, innovative researcher, and impactful educator in the field of geotechnical engineering. His academic journey and professional experiences across multiple countries reflect a global perspective and a deep commitment to advancing sustainable and practical solutions in civil infrastructure. By integrating cutting-edge research with real-world applications, Reza has addressed critical challenges in soil stabilization, foundation engineering, and environmental geotechnology. His research not only contributes to academic knowledge but also supports industries and communities in developing resilient and sustainable infrastructure. Beyond his technical expertise, Reza is a skilled communicator and collaborator, capable of leading interdisciplinary teams and mentoring emerging scholars. His numerous awards and recognitions are a testament to his influence in both academia and practice. Looking ahead, Reza aims to expand his research collaborations internationally, explore emerging technologies such as smart geotechnical systems, and contribute to educational programs that inspire the next generation of engineers. With his rich background, future-focused vision, and unwavering dedication to excellence, Reza is well-positioned to continue making meaningful contributions to the field of geotechnical engineering and to broader efforts in sustainable development.

Publications Top Notes

1.Proposing an Improved DC LISN for Measuring Conducted EMI Noise

Authors: R. Amjadifard, M.T. Bina, H. Khaloozadeh, F. Bagheroskouei
Year: 2021
Citations: 19

2. Suggesting a Non-Unity Turn Ratio Two-Winding Coupled Inductor for Filtering CM EMI Noise in an SRC

Authors: R. Amjadifard, M.T. Bina, H. Khaloozadeh, F. Bagheroskouei, A. Shahirinia
Year: 2023
Citations: 6

3. Design and implementation of the electrical power subsystem for a small satellite

Authors: F. Bagheroskouei, S. Karbasian, M. Baghban, R. Amjadifard
Year: 2017
Citations: 6

4. Improved source-end current Power Quality performance of a BLDC motor drive using a novel DC-DC converter

Authors: A.N. Babadi, A.H. Pour, R. Amjadifard
Year: 2017
Citations: 6

5. A New Index for Reliability Assessment of power semiconductor devices: IGBTs

Authors: A.N. Babadi, M.T. Bina, R. Amjadifard
Year: 2022
Citations: 3

6. System-level Evaluation of the Operation of Different Solar Array Structures for Various CubeSat Configurations

Authors: O. Shekoofa, F. Bagheroskouei, R. Amjadifard
Year: 2022
Citations: 2

7. Simulation of total ionizing dose radiation effect on telecommunication satellite by GEANT4

Authors: S. Zamani Moghaddam, R. Amjadifard, M. Khoshsima
Year: 2016
Citations: 2

8. Topology and configuration selection for DC/DC converters in space electrical power systems based on comparative reliability evaluation

Authors: R. Amjadifard, A. Fasooniehchi, E. Kosari
Year: 2015
Citations: 2

9. Studying the Effects of Multi-Layer Shielding in Reducing Space Radiations Exposure of Human and Electrical Components in Space Missions

Authors: S. Shoorian, S. Feghhi, H. Jafari, R. Amjadifard
Year: 2023
Citations: 1

10. Effect of Total Ionizing Dose Damage on Laser Subsystem of Space LIDAR Payload: System Level Design of Remote Sensing Satellite

Authors: M. Khoshsima, R. Amjadifard, M.S. Zamani, S. Ghazanfarinia
Year: 2018
Citations: 1

11. Model Predictive Control for Reduced Structure Multilevel Converters in Compact Power Conversion Units

Authors: A.H. Pour, A.N. Babadi, R. Amjadifard
Year: 2017
Citations: 1

12. Conducted EMI Noise Modelling for DC–DC Converters Based on the Time‐Domain Measurements

Authors: R. Amjadifard, F. Bagheroskouei, V. Talebzadeh
Year: 2025

13. Analysis of Radiation Damage of a Satellite in GTO Orbit: System Level Design

Authors: R. Amjadifard, M. Khoshsima
Year: 2024

14. Identification and Prioritization of Satellite Electrical Power Subsystem Technologies for National Development Based on Multiple Criteria Decision Making

Authors: R. Amjadifard, E. Mousivand, F. Bagheroskuee, S. Karbasian, E. Kosari
Year: 2024

15. Design, Implementation and Test of a Space Qualified Dosimeter for Total Ionizing Dose Measurement

Authors: R. Amjadifard, F. Bagheroskouei, O. Shekoofa
Year: 2022

16. Discrete-Time Modeling of Dual Active Bridge Converter Benefiting Extended Phase Shift Modulation Based on Generalized Averaged Model

Authors: A.A. Khorhe, M.T. Bina, R. Amjadifard
Year: 2022

17. Modeling and Verification of the State Space Equation for an Isolated Series Resonant Converter

Authors: R. Amjadifard, M. Tavakoli Bina, H. Khaloozadeh, F. Bagheroskouei, …
Year: 2021

18. Estimation of Solar Panels Available Power for a LEO Satellite in Detumbling Mode Based on Monte Carlo Analysis

Authors: R. Amjadifard, F. Bagheroskouei, E. Maani, A. Fasooniehchi
Year: 2019

19. Evaluation of the Effects of Radiation, Irradiance, and Temperature on Solar Cell Electrical Characteristics and Extraction of Maximum Solar Panel Power by MPPT

Authors: M. Taherbaneh, A. Fasooniehchi, Sh. Karbasian, R. Amjadifard
Year: 2008

Dorin Maier | Civil Engineering | Best Researcher Award

Dr. Dorin Maier | Civil Engineering | Best Researcher Award

Senior Lecturer at Technical University of Cluj – Napoca, Romania

Dorin Maier is a Senior Lecturer at the Technical University of Cluj-Napoca, Romania, with a dual expertise in civil engineering and economics. His work spans across construction engineering, sustainable building materials, and quality management systems, with a notable focus on innovation in the construction industry. Maier’s career is marked by a strong academic foundation and a dedication to research and education, with significant contributions to sustainable building practices. His interdisciplinary approach combines technical expertise with managerial insights, making him a versatile researcher and educator.

Professional Profile

Education:

Dorin Maier holds a diverse and distinguished academic background. He earned two PhDs—one in Civil Engineering from the Technical University of Cluj-Napoca and the other in Economy from the Bucharest Academy of Economic Studies, both with high honors. His education further includes a Master’s degree in Management of Trade, Tourism, and Services Enterprises from “Stefan cel Mare” University, Suceava, Romania, and a Bachelor’s degree in Forestry Engineering from the same institution. Additionally, he has completed various professional development programs, including certifications in quality auditing and management systems. Maier’s academic achievements demonstrate a strong commitment to both theoretical and applied knowledge.

Professional Experience:

Maier has a rich professional trajectory, currently serving as a Senior Lecturer at the Technical University of Cluj-Napoca since 2014. Before this, he worked as an Associate Teacher and PhD student at the same institution. Maier’s teaching experience is complemented by his leadership in several research projects, focusing on sustainable building materials and quality management systems. Additionally, he has managed various projects related to pandemic response and entrepreneurship development. His roles have also included contributing to national standards and policy development in the construction sector, showcasing his leadership and management skills.

Research Interests:

Maier’s primary research interests lie in civil engineering, with a focus on sustainable building practices, innovative construction materials, and the integration of environmental and safety standards in construction management. His work investigates lightweight roofs, wood-based building materials, and the role of innovation in enhancing construction quality. His interdisciplinary approach also integrates aspects of economics and management systems, particularly in relation to business globalization and innovation management. Maier is passionate about developing solutions to address climate change within the construction industry and advancing sustainable construction practices through innovative technologies.

Research Skills:

Dorin Maier is proficient in a range of research methodologies and tools. He has expertise in AutoCAD design, SketchUp, MathCAD, and VOSviewer, which supports his ability to conduct in-depth analysis and create innovative solutions in construction engineering. His research skills are further strengthened by his experience in managing and coordinating complex research projects, both domestically and internationally. Maier’s ability to collaborate with researchers from diverse fields enables him to integrate interdisciplinary approaches into his work, while his extensive publication record demonstrates his capacity for producing high-quality, impactful research.

Awards and Honors:

Dorin Maier has received several accolades for his research and contributions to the field of civil engineering. Notably, he earned his PhD degrees magna cum laude, underscoring his academic excellence. His work has been widely recognized in the academic community, with over 85 scientific papers published, including articles in high-ranking journals indexed by Web of Science. Maier’s research contributions have also led to patent applications for innovative construction designs, demonstrating his role as a leading innovator in the field. His citation index and participation in prestigious competitions, like the Holcim Awards, further validate his significant impact on the construction and engineering sectors.

Conclusion

Dorin Maier is highly deserving of consideration for the Best Researcher Award due to his substantial contributions to civil engineering research, his leadership in managing and coordinating interdisciplinary projects, and his strong academic credentials. His publications and patents further support his candidacy. However, opportunities exist to increase his international research collaborations and enhance the practical applications of his innovations. These areas of improvement, once addressed, could elevate his profile even further on the global research stage.

Publication Top Notes

  • “The relationship between innovation and sustainability: A bibliometric review of the literature”
    • Authors: D Maier, A Maier, I Așchilean, L Anastasiu, O Gavriș
    • Year: 2020
    • Citations: 171
  • “Establishing the basis for development of an organization by adopting the integrated management systems: comparative study of various models and concepts of integration”
    • Authors: M Olaru, D Maier, D Nicoară, A Maier
    • Year: 2014
    • Citations: 116
  • “Innovation by developing human resources, ensuring the competitiveness and success of the organization”
    • Authors: A Maier, S Brad, D Nicoară, D Maier
    • Year: 2014
    • Citations: 91
  • “Innovation as a part of an existing integrated management system”
    • Authors: D Maier, AM Vadastreanu, T Keppler, T Eidenmuller, A Maier
    • Year: 2015
    • Citations: 86
  • “Is human capital ready for change? A strategic approach adapting Porter’s five forces to human resources”
    • Authors: L Anastasiu, O Gavriș, D Maier
    • Year: 2020
    • Citations: 54
  • “Product and process innovation: a new perspective on the organizational development”
    • Authors: D Maier
    • Year: 2018
    • Citations: 53
  • “Development and operationalization of a model of innovation management system as part of an integrated quality-environment-safety system”
    • Authors: D Maier, I Sven-Joachim, A Fortmuller, A Maier
    • Year: 2017
    • Citations: 40
  • “Perspective of using green walls to achieve better energy efficiency levels. A bibliometric review of the literature”
    • Authors: D Maier
    • Year: 2022
    • Citations: 32
  • “Business Success by Understanding the Process of Innovation”
    • Authors: D Maier, M Olaru, G Weber, A Maier
    • Year: 2014
    • Citations: 31
  • “Is the success possible in compliance with ethics and deontology in business?”
    • Authors: AM Vadastreanu, D Maier, A Maier
    • Year: 2015
    • Citations: 29

 

Gültekin AKTAŞ | Civil Engineering | Best Researcher Award

Mr. Gültekin AKTAŞ | Civil Engineering | Best Researcher Award

Assoc. Prof. Dr at Dicle University Department of Civil Engineering, Turkey.

Gultekin Aktas is a distinguished researcher in civil engineering, specializing in structural dynamics and concrete behavior. He holds a PhD in Civil Engineering from Dicle University and has made significant contributions through innovative research on topics such as fresh concrete behavior under vibration, prediction models using artificial neural networks, and mold design for precast concrete elements. Aktas’s work is published in reputable journals like Structural Engineering and Mechanics and KSCE Journal of Civil Engineering, showcasing his technical expertise and diverse methodologies. His research employs advanced computational techniques and experimental validations, reflecting a high level of proficiency. Despite his robust contributions, expanding his focus to include interdisciplinary approaches and increasing collaborative efforts could further enhance his impact. Overall, Aktas’s innovative research and technical skills make him a notable candidate for the Research for Best Researcher Award.

Profile

Education

Gultekin Aktas is a distinguished academic with extensive expertise in civil engineering. He completed his PhD at Dicle University, Diyarbakir, Turkey, where he has been associated with the Engineering Faculty since 1995. His educational background in civil engineering has provided him with a solid foundation in structural analysis, computational methods, and practical applications. During his doctoral studies, Aktas focused on advanced topics in structural dynamics and computational modeling, which have significantly influenced his subsequent research. His work integrates theoretical insights with practical challenges, reflecting his deep understanding of both fundamental concepts and real-world engineering issues. Aktas’s ongoing affiliation with Dicle University highlights his commitment to academic excellence and his role in advancing civil engineering knowledge through both teaching and research.

Professional Experience

Dr. Gultekin Aktas is a distinguished academic in civil engineering, holding a position at the Engineering Faculty of Dicle University in Diyarbakir, Turkey, since 1995. His extensive professional experience encompasses a broad range of research and teaching roles. Aktas has focused on innovative areas such as the behavior of fresh concrete under vibration, finite grid solutions for circular plates, and computer-aided design algorithms for precast concrete elements. His research has been published in leading journals, including Structural Engineering and Mechanics and KSCE Journal of Civil Engineering. Aktas’s expertise lies in employing advanced computational methods and theoretical models to address complex engineering problems, reflecting his commitment to both practical and theoretical advancements in structural engineering. His contributions to the field are marked by a strong emphasis on experimental validation and computational analysis, highlighting his significant role in advancing civil engineering research and education.

Research Skills

Gultekin Aktas possesses a diverse set of research skills that underline his expertise in civil engineering. His proficiency in utilizing advanced computational techniques is evident from his work with mass-spring models, artificial neural networks, and finite grid solutions, which he employs to analyze and predict the behavior of structural elements under various conditions. Aktas demonstrates strong technical abilities in developing and validating algorithms for concrete element design and structural dynamic analysis. His research often involves a blend of theoretical modeling and experimental validation, showcasing his capacity to integrate different methodologies to address complex engineering problems. Additionally, his capability to produce high-quality, peer-reviewed publications reflects his thorough understanding of structural engineering principles and computational methods. Aktas’s adeptness at applying both theoretical and practical approaches underscores his comprehensive skill set and contributes significantly to advancements in civil engineering research.

Award and Recognition

Gultekin Aktas has earned notable recognition for his contributions to civil engineering, particularly in the fields of structural dynamics and concrete behavior. His innovative research has been published in leading journals such as Structural Engineering and Mechanics and KSCE Journal of Civil Engineering, underscoring his impact on the field. Aktas’s work, including his studies on the behavior of fresh concrete under vibration and finite grid solutions for circular plates, has significantly advanced understanding and practical applications in structural engineering. Although specific awards or formal recognitions are not listed, his high-quality publications and influential research demonstrate a strong reputation among peers. Aktas’s contributions reflect his dedication to advancing engineering knowledge and solving complex problems, solidifying his standing as a respected researcher in his domain.

Conclusion

Gultekin Aktas is a strong candidate for the Research for Best Researcher Award. His diverse and innovative research contributions to civil engineering, coupled with his technical proficiency and publication record, demonstrate his significant impact in his field. While there are opportunities to broaden his research focus and enhance his collaborative efforts, Aktas’s accomplishments highlight his potential as a leading researcher. His continuous engagement in cutting-edge research and publication makes him a deserving candidate for this prestigious award.

Publications Top Notes

  1. Examination of Precast Concrete Movement Subjected to Vibration Employing Mass-Spring Model with Two Convective Masses
    • Authors: Aktas, G.
    • Journal: Shock and Vibration
    • Year: 2024
    • Citations: 0
  2. Displacement prediction of precast concrete under vibration using artificial neural networks
    • Authors: Aktas, G., Ozerdem, M.S.
    • Journal: Structural Engineering and Mechanics
    • Year: 2020
    • Volume: 74(4), pp. 559–565
    • Citations: 3
  3. Prediction of behavior of fresh concrete exposed to vibration using artificial neural networks and regression model
    • Authors: Aktas, G., Ozerdem, M.S.
    • Journal: Structural Engineering and Mechanics
    • Year: 2016
    • Volume: 60(4), pp. 655–665
    • Citations: 11
  4. Investigation of fresh concrete behavior under vibration using mass-spring model
    • Authors: Aktas, G.
    • Journal: Structural Engineering and Mechanics
    • Year: 2016
    • Volume: 57(3), pp. 425–439
    • Citations: 4
  5. A finite grid solution for circular plates on elastic foundations
    • Authors: Karaşin, H., Gülkan, P., Aktas, G.
    • Journal: KSCE Journal of Civil Engineering
    • Year: 2015
    • Volume: 19(4), pp. 1157–1163
    • Citations: 9
  6. Experimental confirmation for the validity of Ritz method in structural dynamic analysis
    • Authors: Aktas, G., Karasin, A.
    • Journal: Journal of Theoretical and Applied Mechanics (Poland)
    • Year: 2014
    • Volume: 52(4), pp. 981–993
    • Citations: 4
  7. Computer-aided mold design algorithm for precast concrete elements
    • Authors: Aktas, G., Tanrikulu, A.K., Baran, T.
    • Journal: ACI Materials Journal
    • Year: 2014
    • Volume: 111(1), pp. 77–87
    • Citations: 7

 

Tran Thi Bich Chau Vo | Engineering | Innovation Excellence Award

Ms. Tran Thi Bich Chau Vo | Engineering | Innovation Excellence Award

Ph.D Candidate of National Kaohsiung University of Science and Technology, Taiwan.

Tran Thi Bich Chau Vo is a lecturer at Can Tho University, Vietnam, specializing in Industrial Engineering and Management. She has a diverse professional background, including her role as Head of Research and Development at Thanhcong Textile Garment Investment Trading JSC and as a staff member at Garment Fashion Limited. Currently pursuing a Ph.D. at the National Kaohsiung University of Science and Technology in Taiwan, her research focuses on improving process efficiency through workflow reengineering and value stream mapping. She holds a Master’s degree in Industrial and Systems Engineering and a Bachelor’s in Garment Technology and Fashion. Tran has expertise in lean manufacturing, production planning, and optimization, contributing to various research projects and publications. Her work has been recognized in fields such as waste management, aquaculture, and smart manufacturing. Additionally, she has served as a reviewer for international journals and participated in multiple research grants.

Profile

Education

Tran Thi Bich Chau VO is currently pursuing her Ph.D. in Industrial Engineering and Management at the National Kaohsiung University of Science and Technology, Taiwan, with an expected completion date in December 2024. Her Ph.D. research focuses on enhancing processing efficiency through workflow process reengineering, simulation, and value stream mapping. Prior to this, she earned a Master of Engineering in Industrial and Systems Engineering from the Ho Chi Minh City University of Technology, Vietnam National University, in 2014. Her master’s thesis investigated the effects of lean manufacturing on a garment production line. She also holds a Bachelor of Engineering in Garment Technology and Fashion from Ho Chi Minh City University of Technology and Education, which she completed in 2011. Her undergraduate thesis explored improved patterns for production processes. Tran Thi Bich Chau VO’s educational background demonstrates her expertise in industrial management and lean manufacturing practices, positioning her well for academic and industrial leadership.

Professional Experience

Tran Thi Bich Chau VO is a dedicated academic and industry professional with extensive experience in both academia and industrial management. Since August 2014, she has been a Lecturer at the Faculty of Industrial Management at Can Tho University in Vietnam, where she has focused on educating students in production planning, lean manufacturing, and facility layout. Prior to her academic role, she held significant industry positions, including Head of the Research & Development Department at Thanhcong Textile Garment Investment Trading Joint Stock Company from 2012 to 2014. She also worked as a staff member in the Work Study Department at Garment Fashion Limited, honing her skills in industrial systems and operations management. Her professional journey reflects a strong background in industrial engineering and management, with practical experience in improving production efficiency and applying lean methodologies in various sectors.

Research Interest

Tran Thi Bich Chau VO’s research interests focus on industrial engineering, lean manufacturing, and supply chain optimization. She has a keen interest in improving processing efficiency through techniques like workflow process reengineering, value stream mapping, and simulation modeling. Her work primarily explores lean production technologies in various industries, including garment manufacturing, aquaculture processing, and fishery product supply chains. Additionally, she is passionate about environmental sustainability, evidenced by her research on green waste management, smart manufacturing, and material flow cost accounting. Tran has also contributed significantly to digital transformation, particularly in developing digital twin platforms for smart agents in manufacturing. Her research endeavors highlight a strong focus on enhancing operational productivity while reducing waste, aligning with both industrial and environmental goals. Through her academic and practical projects, she aims to bridge the gap between theoretical frameworks and real-world applications, driving innovation in industrial management and sustainable development.

Research Skills

Tran Thi Bich Chau VO demonstrates a wide range of research skills, particularly in industrial engineering, workflow optimization, and lean manufacturing. Her expertise includes the use of advanced simulation tools like Arena, Matlab, Lingo, and Minitab, which she applies to reengineering processes and improving efficiency. Her research projects, such as value stream mapping and genetic algorithm-based optimization, highlight her ability to solve complex problems in supply chain management and production systems. Additionally, her proficiency in interdisciplinary areas like aquaculture and environmental management, evidenced by her work on material flow cost accounting and green waste management, showcases her versatility. She has contributed to numerous publications in top journals, further emphasizing her ability to conduct impactful research. Her skills in reviewing scientific papers and her involvement in international research collaborations reflect her strong analytical capabilities and dedication to advancing both academic and practical applications in industrial engineering.

Award and Recognition

Tran Thi Bich Chau VO has garnered significant recognition for her contributions to industrial engineering, particularly in the fields of workflow process reengineering, simulation, and value stream mapping. She has served as a lead researcher on numerous projects, such as improving the efficiency of Pangasius fillet production and optimizing supply chains in Vietnam’s aquaculture industry. Her expertise has led to her publications being featured in prestigious journals, including Business Process Management Journal, Engineering Management Journal, and Aquaculture. In addition to her academic achievements, Tran Thi Bich Chau has actively contributed to industrial innovations, particularly in the implementation of lean production technologies in various companies. Her role as a reviewer for well-known journals further highlights her standing in the research community. Tran Thi Bich Chau’s leadership in research projects and extensive publication record exemplify her as an innovative and influential figure in industrial engineering and supply chain management.

Conclusion

Tran Thi Bich Chau VO is a strong candidate for the Research for Innovation Excellence Award. Her leadership in innovative projects, extensive research contributions, and interdisciplinary expertise position her well for this honor. Expanding her research into cutting-edge technologies and gaining broader international recognition could further solidify her candidacy.

Publication Top Notes

  1. A comprehensive review of aeration and wastewater treatment
    • Authors: N.T. Nguyen, T.S. Vo, P.L. Tran-Nguyen, K. Kim, T.T.B.C. Vo
    • Year: 2024
    • Citations: 0
  2. A comprehensive review of laser processing-assisted 2D functional materials and their specific applications
    • Authors: T.S. Vo, B. Jeon, V.P.T. Nguyen, T.T.B.C. Vo, K. Kim
    • Year: 2024
    • Citations: 0
  3. Recent Trends of Bioanalytical Sensors with Smart Health Monitoring Systems: From Materials to Applications
    • Authors: T.S. Vo, T. Hoang, T.T.B.C. Vo, V.H. Nguyen, K. Kim
    • Year: 2024
    • Citations: 3
  4. Advances in aeration and wastewater treatment in shrimp farming: emerging trends, current challenges, and future perspectives
    • Authors: N.T. Nguyen, P.L. Tran-Nguyen, T.T.B.C. Vo
    • Year: 2024
    • Citations: 1
  5. Improving processing efficiency through workflow process reengineering, simulation and value stream mapping: a case study of business process reengineering
    • Authors: C.-N. Wang, T.T.B.C. Vo, H.-P. Hsu, N.T. Nguyen, N.-L. Nhieu
    • Year: 2024
    • Citations: 0
  6. Improvement of Manufacturing Process Based on Value Stream Mapping: A Case Study
    • Authors: C.-N. Wang, T.T.B.C. Vo, Y.-C. Chung, Y. Amer, L.T. Truc Doan
    • Year: 2024
    • Citations: 0
  7. Optimal microgrid design and operation for sustainable shrimp farming
    • Authors: N.N. Tien, V.T.T.B. Chau, P.V. Hoan
    • Year: 2023
    • Citations: 0
  8. Risk priority and risk mitigation approach based on house of risk: A case study with aquaculture supply chain in Vietnam
    • Authors: N.T.L. Thuy, V.T.T.B. Chau, H.T. Phong, T.T. Tham
    • Year: 2023
    • Citations: 0
  9. Optimizing New Product Development through a Systematic Integration of Design for Six Sigma (DFSS) and Theory of Inventive Problem Solving (TRIZ)
    • Authors: Y. Amer, L.T.T. Doan, T.T.B.C. Vo
    • Year: 2023
    • Citations: 0
  10. Improving Inventory Time in Production Line through Value Stream Mapping: A Case Study
    • Authors: N.T. Nguyen, T.T.B.C. Vo, P.H. Le, C.-N. Wang
    • Year: 2023
    • Citations: 2

 

Mohammad Ali Heravi | Civil Engineering | Best Researcher Award

Mr. Mohammad Ali Heravi | Civil Engineering | Best Researcher Award

PhD. Student at Semnan University, Iran

Mr. Mohammadali Heravi is a dedicated and ambitious Ph.D. candidate ing Civil Engineerin at Semnan University, Iran. With a strong academic foundation, he has developed expertise in structural health monitoring, particularly through the application of deep learning and artificial intelligence. His doctoral research is focused on developing innovative unsupervised deep learning methods to advance structural health monitoring systems. Mr. Heravi also holds an M.Sc. in Civil Engineering from Shahrood University of Technology, where he explored structural damage detection using empirical mode decomposition and statistical pattern recognition. His academic journey began with a B.Sc. in Civil Engineering from Azad University of Mashhad. Currently, he is furthering his research as a Ph.D. researcher at Western University of Ontario, Canada, where he is working on zero-shot transfer learning approaches for structural health monitoring. Mr. Heravi is passionate about contributing to the field of civil engineering through innovative research and collaboration with leading experts.

Profile

Education

Mr. Mohammadali Heravi is currently pursuing a Ph.D. in Civil Engineering at Semnan University, Iran, where he has maintained an impressive GPA of 18.49/20. His doctoral research focuses on developing novel unsupervised deep learning approaches for structural health monitoring. Prior to this, he earned his M.Sc. in Civil Engineering from Shahrood University of Technology, Iran, between 2017 and 2020, with a GPA of 18.03/20. His master’s thesis centered on structural damage detection using improved empirical mode decomposition and statistical pattern recognition. He began his academic journey with a B.Sc. in Civil Engineering from Azad University of Mashhad, Iran, where he graduated in 2016 with a GPA of 15.50/20. Throughout his academic career, Mr. Heravi has demonstrated a strong commitment to advancing his knowledge and expertise in civil engineering, particularly in the areas of structural health monitoring and artificial intelligence.

Professional Experience

Mr. Mohammadali Heravi has amassed significant professional experience in the field of civil engineering, with a focus on structural health monitoring and the application of artificial intelligence. He is currently a Ph.D. researcher in Civil and Environmental Engineering at Western University of Ontario, Canada, where he is developing novel zero-shot transfer learning approaches for structural health monitoring. His research builds on his earlier work as a Ph.D. candidate at Semnan University, Iran, where he began his exploration of unsupervised deep learning techniques in structural health monitoring. Additionally, Mr. Heravi’s experience includes his role as a researcher during his M.Sc. at Shahrood University of Technology, where he specialized in structural damage detection using advanced statistical methods. His professional journey is characterized by a deep commitment to advancing the field of civil engineering through innovative research and practical applications.

Research Interests

Mr. Mohammadali Heravi’s research interests are deeply rooted in the field of civil engineering, with a particular focus on Structural Health Monitoring (SHM) through vibration and vision-based methods. He is keenly interested in Structural Vibration Control and the innovative application of Artificial Intelligence (AI) in engineering structures, especially through Machine Learning, Deep Learning, and Data Mining techniques. His work also extends to Reliability and Numerical Analysis, where he explores the robustness and safety of engineering designs. Additionally, Mr. Heravi is engaged in Image and Signal Processing, utilizing these technologies to enhance the accuracy and efficiency of structural assessments. His research aims to integrate cutting-edge AI methodologies with traditional engineering practices to address complex challenges in the field.

Research Skills

Mr. Mohammadali Heravi possesses a diverse set of technical and professional skills that support his research in civil engineering. He is proficient in programming languages such as Python, with four years of experience, and MATLAB, with six years of expertise. His skills extend to Machine Learning and Deep Learning frameworks, including PyTorch, TensorFlow, and Scikit-Learn, which he applies in his research on structural health monitoring and artificial intelligence. Additionally, Mr. Heravi is well-versed in engineering software like ETABS and SAP2000, crucial for structural analysis and design. He also has experience with various Python libraries, including Numpy, OpenCV, and Pandas, which aid in data manipulation and image processing. Beyond his technical capabilities, Mr. Heravi excels in non-programming software such as Microsoft Office, Photoshop, and Adobe Premiere, which enhance his ability to present research findings and manage projects effectively. His skill set reflects a well-rounded expertise in both the theoretical and practical aspects of civil engineering and artificial intelligence.

Conclusion

Mr. Mohammadali Heravi’s strong academic background, extensive research experience, technical skills, and dedication to advancing civil engineering make him an exemplary candidate for the Best Researcher Award. His contributions to structural health monitoring, particularly through innovative AI applications, highlight his potential to significantly impact the field.

Publications Top Notes

Shear Strength Prediction of Reinforced Concrete Shear Wall Using ANN, GMDH-NN and GEP

  • Authors: H. Naderpour, M. Sharei, P. Fakharian, M.A. Heravi
  • Journal: Journal of Soft Computing in Civil Engineering
  • Volume: 6 (1), 66-87
  • Cited By: 30
  • Year: 2022

Structural Health Monitoring by Probability Density Function of Autoregressive-Based Damage Features and Fast Distance Correlation Method

  • Authors: M.A. Heravi, S.M. Tavakkoli, A. Entezami
  • Journal: Journal of Vibration and Control
  • Volume: 28 (19-20), 2786-2802
  • Cited By: 10
  • Year: 2022

Transferring Damage Detection Knowledge Across Rotating Machines and Framed Structures: Harnessing Domain Adaptation and Contrastive Learning

  • Authors: R. Soleimani-Babakamali, M.H. Soleimani-Babakamali, M.A. Heravi, et al.
  • Journal: Mechanical Systems and Signal Processing
  • Volume: 221, 111743
  • Year: 2024

Deep Ensemble Learning for Rapid Large-Scale Post-Earthquake Damage Assessment—Application to 2023 Kahramanmaraş Earthquake Sequence

  • Authors: M.H. Soleimani-Babakamali, M. Askari, M.A. Heravi, R. Sisman, N. Attarchian, et al.
  • Year: 2023