Reza Mohammadi | Composite Materials | Best Researcher Award

Dr. Reza Mohammadi | Composite Materials | Best Researcher Award

Postdoc researcher, TUDELFT, Netherlands.

Reza Mohammadi is a Postdoctoral Researcher at the Department of Civil Engineering and Geosciences at Delft University of Technology. He holds a Ph.D. in Mechanical Engineering from Amirkabir University of Technology, where he specialized in the fracture and damage mechanics of composite materials, particularly focusing on fatigue behavior and delamination in laminates. His research utilizes advanced techniques such as acoustic emission and finite element methods. Reza has received numerous accolades, including awards for the best Ph.D. and Master’s theses, as well as recognition for his academic excellence at both national and university levels. He has authored several high-impact journal articles in top-tier publications, with an H-index of 14, reflecting his significant contributions to the field. Additionally, Reza has extensive teaching experience and proficiency in various engineering software, including ABAQUS and MATLAB. His current research focuses on high-performance, impact-resistant composites, with a strong emphasis on structural health monitoring.

Profile:

Education

Reza Mohammadi holds a strong educational background in mechanical engineering, with a focus on composite materials and fracture mechanics. He completed his Ph.D. in Mechanical Engineering from Amirkabir University of Technology, Tehran, Iran, in 2021. His doctoral research explored the effects of electrospun nanofibers on the damage mechanisms of composite laminates under fatigue loading, using both acoustic emission techniques and finite element modeling. Prior to his Ph.D., Reza earned his Master of Science (M.Sc.) degree in Mechanical Engineering from the same institution in 2015, where he focused on damage identification in composites using similar methodologies. His academic journey began with a Bachelor of Science (B.Sc.) in Mechanical Engineering from the University of Tabriz, Iran, which he completed in 2013. Throughout his studies, Reza demonstrated exceptional academic performance, consistently ranking first in his class, and earning various honors and accolades for his innovative research.

Professional Experience

Reza Mohammadi is a Postdoctoral Researcher at the Department of Civil Engineering and Geosciences, Delft University of Technology (TU Delft), where he has been working since January 2023. His research focuses on developing next-generation high-performance impact-resistant composites with visible damage. Prior to this, he served as a Lecturer at the Department of Mechanical Engineering, Islamic Azad University, East Tehran Branch, from 2021 to 2023. Additionally, Reza gained international experience as a Visiting Ph.D. Scholar in the Department of Aerospace Engineering at TU Delft in 2019, under the supervision of Dr. Dimitrios Zarouchas. His academic journey includes a Ph.D. in Mechanical Engineering from Amirkabir University of Technology, Tehran, where he specialized in damage mechanisms of composite laminates. Throughout his career, Reza has been involved in high-impact research on fracture and damage mechanics, composite materials, and fatigue of laminates, contributing to advancing knowledge in these fields through numerous publications and awards.

Research Interest:

Reza Mohammadi’s research interests focus on the mechanics and behavior of advanced composite materials, particularly in relation to fracture and damage mechanics. He is deeply engaged in studying the fatigue and delamination processes of composite laminates, with a keen interest in acoustic emission techniques for damage detection and structural health monitoring. His work on electrospun nanofibers offers innovative insights into enhancing the toughness and durability of these materials. Reza’s research also extends to applying the finite element method (FEM) for predictive modeling, enabling a more detailed understanding of the failure mechanisms in composites. Additionally, his expertise encompasses the development of high-performance impact-resistant composites, aiming to improve their application in industries where lightweight and high-strength materials are essential. Through his cutting-edge research, Reza is contributing to advancements in the design and optimization of composite structures, with potential applications in aerospace, automotive, and civil engineering sectors.

Research Skills

Reza Mohammadi has extensive research skills in the field of mechanical and materials engineering, with a particular focus on fracture and damage mechanics of composite materials. His expertise spans acoustic emission techniques, fatigue analysis of composite laminates, and delamination, which he has investigated using finite element methods. Additionally, he has specialized knowledge in the development of electrospun nanofibers and their application in enhancing the durability and performance of composite structures. Reza’s proficiency with advanced tools such as ABAQUS for finite element analysis, MATLAB for programming, and software like SolidWorks and CATIA for design highlights his technical versatility. His research has led to numerous publications in high-impact journals, reflecting his ability to contribute to cutting-edge advancements in structural health monitoring. His collaboration with leading institutions like Delft University of Technology further demonstrates his capability to work on interdisciplinary projects aimed at solving complex engineering challenges.

Award and Recognition

Reza Mohammadi has earned numerous prestigious awards and recognitions for his outstanding contributions to mechanical engineering and composite materials research. In 2021, he was ranked 1st in a university-wide competition for the best PhD thesis at Amirkabir University of Technology, reflecting the high impact of his research. His academic excellence led to his admission to the PhD program without an entrance examination in 2015, based on his merit. Reza has also received recognition for his Master’s and PhD work, including being awarded the best Master Thesis in 2016 and securing 1st rank in his department’s PhD qualifying exam. In addition, he has co-authored several award-winning conference papers, two of which were selected as the best at the 23rd Annual International Mechanical Engineering Conference. His affiliation with Iran’s National Elite Institute and the Exceptional Talents Center further highlights his exceptional academic achievements and commitment to advancing the field of composite materials.

Conclusion

Reza Mohammadi’s strong academic background, innovative research contributions, and relevant industrial applications make him a highly suitable candidate for the Best Researcher Award. His high-impact publications, patent achievements, and recognition in the academic community indicate that he is an accomplished researcher with significant expertise in his field. While there is room for improvement in English proficiency and international collaboration, his research has demonstrated both depth and impact in the domain of composite materials and damage mechanics, making him a competitive nominee for this prestigious award.

Publication Top Notes

  • Correlation of acoustic emission with finite element predicted damages in open-hole tensile laminated composites
    • Authors: R Mohammadi, MA Najafabadi, M Saeedifar, J Yousefi, G Minak
    • Year: 2017
    • Journal: Composites Part B: Engineering
    • Volume/Page: 108, 427-435
    • Citations: 139
  • Using passive and active acoustic methods for impact damage assessment of composite structures
    • Authors: M Saeedifar, J Mansvelder, R Mohammadi, D Zarouchas
    • Year: 2019
    • Journal: Composite Structures
    • Volume/Page: 226, 111252
    • Citations: 60
  • Delamination analysis in composite laminates by means of acoustic emission and bi-linear/tri-linear cohesive zone modeling
    • Authors: M Saeedifar, MA Najafabadi, J Yousefi, R Mohammadi, HH Toudeshky, …
    • Year: 2017
    • Journal: Composite Structures
    • Volume/Page: 161, 505-512
    • Citations: 60
  • Prediction of delamination growth in carbon/epoxy composites using a novel acoustic emission-based approach
    • Authors: R Mohammadi, M Saeedifar, HH Toudeshky, MA Najafabadi, M Fotouhi
    • Year: 2015
    • Journal: Journal of Reinforced Plastics and Composites
    • Volume/Page: 34(11), 868-878
    • Citations: 53
  • A quantitative assessment of the damage mechanisms of CFRP laminates interleaved by PA66 electrospun nanofibers using acoustic emission
    • Authors: R Mohammadi, MA Najafabadi, H Saghafi, M Saeedifar, D Zarouchas
    • Year: 2021
    • Journal: Composite Structures
    • Volume/Page: 258, 113395
    • Citations: 48
  • Delamination characterization in composite laminates using acoustic emission features, micro visualization, and finite element modeling
    • Authors: J Yousefi, R Mohammadi, M Saeedifar, M Ahmadi, H Hosseini-Toudeshky
    • Year: 2016
    • Journal: Journal of Composite Materials
    • Volume/Page: 50(22), 3133-3145
    • Citations: 42
  • Investigation of delamination and interlaminar fracture toughness assessment of Glass/Epoxy composite by acoustic emission
    • Authors: M Saeedifar, M Fotouhi, R Mohammadi, MA Najafabadi, HH Toudeshky
    • Year: 2014
    • Journal: Modares Mechanical Engineering
    • Volume/Page: 14(4), 1-11
    • Citations: 33
  • Considering damage during fracture tests on nanomodified laminates using the acoustic emission method
    • Authors: A Gholizadeh, MA Najafabadi, H Saghafi, R Mohammadi
    • Year: 2018
    • Journal: European Journal of Mechanics-A/Solids
    • Volume/Page: 72, 452-463
    • Citations: 25
  • Considering damages to open-holed composite laminates modified by nanofibers under the three-point bending test
    • Authors: A Gholizadeh, MA Najafabadi, H Saghafi, R Mohammadi
    • Year: 2018
    • Journal: Polymer Testing
    • Volume/Page: 70, 363-377
    • Citations: 25
  • Acoustic emission-based methodology to evaluate delamination crack growth under quasi-static and fatigue loading conditions
    • Authors: M Saeedifar, M Ahmadi Najafabadi, K Mohammadi, M Fotouhi, …
    • Year: 2018
    • Journal: Journal of Nondestructive Evaluation
    • Volume/Page: 37, 1-13
    • Citations: 24

 

Leila Nasiri | Composite Materials | Best Researcher Award

Leila Nasiri, born on August 28, 1988, is an accomplished academic and researcher at Shahed University, Iran. With a Ph.D. in Physiology, her research focuses on the biological effects of social stress and the health implications for chemically injured veterans. Her master’s thesis on antioxidant enzyme activity in broiler chickens led to five ISI publications. Nasiri’s doctoral work on the impact of sulfur mustard exposure on health earned high praise, resulting in numerous publications in prestigious journals. She has actively participated in various international conferences and workshops, enhancing her expertise in health equity and biological aging. Her academic contributions include leadership roles in symposiums and a notable H-index of 6 in Google Scholar. Nasiri’s work not only addresses critical health issues but also seeks to understand the complex interplay between socioeconomic factors and health outcomes. Her dedication positions her as a strong candidate for the Best Researcher Award.

Profile:

Education

Leila Nasiri holds a B.Sc. in General Biology from Shiraz University, Iran, completed in July 2013. She then pursued her M.Sc. in Physiology at Shahrekord University, where she focused on the evaluation of gene expression and antioxidant enzyme activity in broiler chickens with pulmonary hypertension, graduating with excellent honors in June 2015. Following her master’s degree, she continued her academic journey by enrolling in a Ph.D. program in Physiology at Shahed University, Tehran, from September 2017 to February 2022. Her doctoral research investigated the effects of sulfur mustard exposure on physiological health and premature aging in Iranian chemical victims, earning high praise from her thesis committee. Leila’s strong academic performance throughout her studies, reflected in her excellent thesis grades, showcases her dedication and expertise in the field of physiology and health equity.

Professional Experience

Leila Nasiri is an accomplished academic and researcher with significant experience in the fields of physiology and health equity. She served as a Visiting Professor at Islamic Azad University, teaching a range of subjects including general biology and biochemistry. Following her Ph.D., she worked at the Traditional Medicine Clinical Trial Research Center and the Immunoregulation Research Center at Shahed University, where she contributed to research on the biological effects of chemical exposure on health. As an Assistant Professor in the Department of Health Equity at Shahed University, she has focused on the impacts of socioeconomic status and social stress on physical and mental health, particularly among chemically injured veterans. Her research has resulted in numerous publications in high-impact journals, addressing critical issues related to biological aging, health disparities, and the physiological consequences of environmental toxins. Leila’s expertise positions her as a key contributor to advancing understanding in her field.

Research Skills

Leila Nasiri possesses a robust set of research skills that significantly contribute to her expertise in physiology and health equity. Her proficiency in advanced methodologies is demonstrated through her experience with clinical trials and research projects focused on the biological effects of chemical exposure. Leila has published numerous articles in prestigious international journals, showcasing her ability to conduct high-impact research in areas such as biological aging, immunoregulation, and the socioeconomic determinants of health. She is adept in techniques like real-time PCR and has participated in various workshops and conferences, further enhancing her knowledge base. Her collaborative work with established researchers and her role as a keynote speaker reflect her strong communication skills and leadership in scientific discourse. Leila’s diverse research interests, combined with her hands-on experience in both laboratory and field settings, position her as a valuable contributor to the scientific community, particularly in understanding the interplay between health and social factors.

Research Interest

Leila Nasiri’s research interests lie at the intersection of physiology, health equity, and the biological effects of social stress. She focuses on the mechanisms of aging, particularly in relation to socioeconomic status and its impact on health outcomes. Her work investigates the physiological health of chemically injured veterans, emphasizing the relationship between environmental exposures—such as sulfur mustard—and premature aging. Through her research, Nasiri aims to understand the biological markers of aging, including telomere length and inflammatory responses, to develop effective interventions for affected populations. Additionally, she explores the broader implications of social inequalities on physical and mental health, advocating for social justice in health policies. Her contributions in these areas aim to enhance our understanding of how socio-economic factors influence health and to promote equitable healthcare solutions.

Awards and Honors

Leila Nasiri has garnered several notable awards and honors throughout her academic career. She demonstrated exceptional talent during her master’s program in physiology, leading to recognition for her outstanding achievements. Her research contributions, particularly in the field of biological effects of social stress and the health impacts of chemical exposure, have been published in prestigious international journals, enhancing her reputation in the scientific community. In 2022, she served as a keynote speaker at the 26th National Congress and the 5th International Congress of Physiology and Pharmacology, showcasing her expertise and leadership. Additionally, Nasiri’s role as the executive secretary for significant symposia reflects her commitment to advancing research in health equity and social determinants of health. Her ongoing participation in international conferences and workshops highlights her dedication to continuous learning and collaboration, further solidifying her status as an emerging leader in her field. 🏆

Conclusion

Leila Nasiri is a highly qualified candidate for the Research for Best Researcher Award, showcasing significant contributions to the fields of physiology and health equity. Her strong publication record, leadership roles, and impactful research on the effects of environmental toxins highlight her potential to drive forward meaningful change in public health. Addressing areas for improvement, particularly in enhancing the reach of her research and securing funding, will bolster her already impressive profile. Overall, Leila’s work embodies the spirit of innovation and commitment that this award seeks to recognize. 🏆🌟

Publication Top Notes

  1. Title: Relationships between DNA oxidative damage, testosterone, and body mass index in sulfur mustard-chemical veterans
    Authors: Nasiri, L., Vaez-Mahdavi, M.-R., Hassanpour, H., Kaboudanian Ardestani, S., Behboudi, H.
    Journal: Toxicologie Analytique et Clinique
    Year: 2024
    Volume: 36(2), pp. 166–172
  2. Title: Evaluation of metabolic profile following delayed toxicity of sulfur mustard in chemical veterans
    Authors: Nasiri, L., Vaez-Mahdavi, M.-R., Ghazanfari, T., Hassanpour, H., Ardestani, S.K.
    Journal: Toxicologie Analytique et Clinique
    Year: 2024
    Citations: 0 (Article in Press)
  3. Title: Transcription of biological aging markers (ANRIL, P16INK4a, TBX2, and TERRA) and their correlations with severity of sulfur mustard exposure in veterans
    Authors: Nasiri, L., Vaez-Mahdavi, M.-R., Hassanpour, H., Ghaffarpour, S., Zamani, M.S.
    Journal: Drug and Chemical Toxicology
    Year: 2024
    Citations: 0 (Article in Press)
  4. Title: Canine sperm motility is associated with telomere shortening and changes in expression of shelterin genes
    Authors: Hassanpour, H., Mirshokraei, P., Salehpour, M., Ghareghani, P., Nasiri, L.
    Journal: BMC Veterinary Research
    Year: 2023
    Volume: 19(1), 236
  5. Title: Increased serum lipofuscin associated with leukocyte telomere shortening in veterans: a possible role for sulfur mustard exposure in delayed-onset accelerated cellular senescence
    Authors: Nasiri, L., Vaez-Mahdavi, M.-R., Hassanpour, H., Mohseni Majd, M.-A., Rahimlou, B.
    Journal: International Immunopharmacology
    Year: 2023
    Volume: 114, 109549
  6. Title: Concomitant use of relative telomere length, biological health score and physical/social statuses in the biological aging evaluation of mustard-chemical veterans
    Authors: Nasiri, L., Vaez-Mahdavi, M.-R., Hassanpour, H., Ardestani, S.K., Ghazanfari, T.
    Journal: International Immunopharmacology
    Year: 2022
    Volume: 109, 108785
  7. Title: Sulfur mustard and biological ageing: A multisystem biological health score approach as an extension of the allostatic load in Sardasht chemical veterans
    Authors: Nasiri, L., Vaez-Mahdavi, M.-R., Hassanpour, H., Kaboudanian Ardestani, S., Askari, N.
    Journal: International Immunopharmacology
    Year: 2021
    Volume: 101, 108375
  8. Title: ELECTROCARDIOGRAM ANALYSIS of the GOLDEN (CHRYSOLOPHUS PICTUS) and SILVER (LOPHURA NYCTHEMERA) PHEASANTS
    Authors: Hassanpour, H., Zarei, H., Nasiri, L., Hojjati, P.
    Journal: Journal of Zoo and Wildlife Medicine
    Year: 2018
    Volume: 49(4), pp. 881–886
  9. Title: Analysis of the Normal Electrocardiogram in Wild Rooks (Corvus frugilegus)
    Authors: Hassanpour, H., Dehkordi, H.A., Khosravi, M., Soltani, S., Nasiri, L.
    Journal: Journal of Avian Medicine and Surgery
    Year: 2016
    Volume: 30(4), pp. 329–334
  10. Title: Variation of heat shock protein gene expression in the brain of cold-induced pulmonary hypertensive chickens
    Authors: Hassanpour, H., Khosravi Alekoohi, Z., Madreseh, S., Bahadoran, S., Nasiri, L.
    Journal: British Poultry Science
    Year: 2016
    Volume: 57(5), pp. 636–642