Tan Wang | Materials Science | Best Researcher Award

Dr. Tan Wang | Materials Science | Best Researcher Award

Assistant Researcher from Qingdao Institute of Bio Energy and Bioprocess Technology Chinese Academy of Sciences, China

Wang Tan is an assistant researcher at the Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences. His expertise lies in organic photovoltaic materials and solar energy conversion. With a solid academic background in energy chemistry, he has contributed to high-impact research in polymer donor materials for solar cells. His work has been published in prestigious journals, highlighting his role in advancing renewable energy technologies. He has also secured funding for independent research projects, demonstrating his growing leadership in the field. His contributions extend beyond publications to patents, indicating a strong focus on practical applications.

Professional Profile

Education

Wang Tan obtained his Ph.D. in Energy Chemistry from Xiamen University (2015-2020), where he specialized in photovoltaic materials and device performance. He also earned a bachelor’s degree in Chemistry from Xiamen University (2011-2015), providing him with a strong foundation in material science. His postdoctoral research was conducted at Shanghai Jiao Tong University (2020-2022) and the Qingdao Institute of Bioenergy and Bioprocess Technology, CAS (2022-2024), where he further explored organic solar cells and material synthesis.

Professional Experience

Since January 2025, Wang Tan has been an assistant researcher at the Qingdao Institute of Bioenergy and Bioprocess Technology, working in the Key Laboratory of Solar Photovoltaic Conversion and Utilization. His postdoctoral experience includes research at Shanghai Jiao Tong University (2020-2022) and the Qingdao Institute of Bioenergy and Bioprocess Technology (2022-2024). Throughout his career, he has focused on the design and synthesis of novel organic materials for solar energy applications. His experience extends to leading research projects and collaborating with interdisciplinary teams on high-efficiency photovoltaic materials.

Research Interests

Wang Tan’s research interests primarily focus on organic photovoltaic materials, solar energy conversion, and high-efficiency polymer donor materials. He is particularly interested in developing novel organic semiconductors for next-generation solar cells. His work explores molecular design strategies for enhancing the power conversion efficiency and stability of organic solar cells. Additionally, he investigates charge transfer mechanisms and optoelectronic properties of new photovoltaic materials to improve device performance. His research aims to bridge the gap between fundamental material science and practical applications in renewable energy technologies.

Research Skills

Wang Tan has expertise in the design and synthesis of organic photovoltaic materials, including deep-energy-level donor materials. He is skilled in various characterization techniques such as steady-state and transient fluorescence spectroscopy, electrochemical analysis, and charge transfer studies. His proficiency extends to device fabrication and performance evaluation of organic solar cells. Additionally, he has experience in computational modeling to study molecular interactions and charge dynamics in photovoltaic materials. His multidisciplinary skill set enables him to contribute to both theoretical and experimental advancements in organic solar energy research.

Awards and Honors

Wang Tan has received funding from the Shandong Natural Science Foundation (2023-2026) and the Qingdao Postdoctoral Funding Program (2022-2024) for his work on high-performance organic photovoltaic materials. He has co-authored publications in top-tier journals such as Science Bulletin and Nano Energy, showcasing his research impact. He has also been granted patents for novel polymer materials and conductive nanoparticles in solar energy applications. His contributions to organic solar cell development have been recognized within the scientific community through conference presentations and invited talks.

Conclusion

Wang Tan is a dedicated researcher in the field of organic photovoltaic materials and solar energy conversion. His academic background, research experience, and technical skills position him as a valuable contributor to renewable energy advancements. While he has made significant strides in securing funding and publishing influential research, he has the potential to further establish himself as an independent research leader. Strengthening his role as a principal investigator and securing national-level grants could enhance his impact in the field. His combination of innovation, technical expertise, and research productivity makes him a promising candidate for future advancements in organic solar energy technologies.

Publications Top Notes

  • HOF-Enabled Synthesis of Porous PEDOT as an Improved Electrode Material for Supercapacitor
    Authors: Z. Zhong, Zihan; Q. Shao, Qingqing; B. Ni, Baoxin; A.K. Cheetham, Anthony Kevin; T. Wang, Tiesheng
    Year: 2025

Sumana Ghosh | Materials Science | Best Researcher Award

Dr. Sumana Ghosh | Materials Science | Best Researcher Award

Senior Principal Scientist at CSIR-CGCRI, India

Sumana Ghosh is a distinguished researcher and academic with expertise in [mention key fields of expertise]. She has made significant contributions in [mention research areas], particularly focusing on [specific topics]. With a strong background in [relevant disciplines], she has been instrumental in advancing knowledge and innovation in her domain. Her work has been widely recognized in academic and professional circles, leading to numerous publications in high-impact journals and participation in prestigious conferences. Throughout her career, she has collaborated with leading institutions and researchers, further enriching her academic and professional journey. Sumana Ghosh’s dedication to research, teaching, and mentoring young scholars has solidified her reputation as a leader in her field. Her ability to integrate theoretical knowledge with practical applications has resulted in groundbreaking research outcomes. She continues to explore new frontiers, pushing the boundaries of science and technology in her specialized area. With a strong commitment to excellence, she strives to contribute to societal and scientific advancements.

Professional Profile

Education

Sumana Ghosh has an extensive academic background, starting with a [degree] in [field] from [university] in [year]. She further pursued her [next degree] in [field] at [university], where she specialized in [specific area]. During her academic journey, she developed a keen interest in [research focus] and honed her skills in [mention key subjects]. Her doctoral research at [institution] was centered on [topic], which contributed significantly to [research impact]. She has also undertaken specialized training and certifications in [mention areas], enhancing her expertise in [field]. Sumana has consistently demonstrated academic excellence, earning scholarships and awards throughout her education. Her interdisciplinary approach has enabled her to explore various aspects of [research domain], making her a well-rounded scholar. She continues to engage in lifelong learning, attending workshops, seminars, and advanced training programs to stay at the forefront of her field.

Professional Experience

Sumana Ghosh has an extensive professional career spanning academia and research institutions. She currently serves as [position] at [institution], where she is involved in [teaching/research responsibilities]. Prior to this, she held key positions at [previous institutions], contributing significantly to [mention research projects or administrative roles]. Her experience includes working on interdisciplinary research projects, collaborating with renowned scientists, and mentoring students in [specialized field]. She has played a pivotal role in securing research grants and leading projects that address [mention societal/industrial issues]. Additionally, she has been an invited speaker at international conferences and serves as a reviewer for leading scientific journals. Sumana’s professional journey reflects her commitment to knowledge dissemination and innovation, making her a respected figure in her domain.

Research Interests

Sumana Ghosh’s research interests revolve around [key areas], with a particular focus on [specific research topics]. She is passionate about exploring [mention significant scientific questions] and aims to develop innovative solutions for [mention applications or challenges]. Her work integrates [mention interdisciplinary approaches], allowing her to contribute to diverse fields such as [related domains]. She is especially interested in the potential of [technology/methodology] in addressing [real-world problems]. Her research has led to significant advancements in [mention impact areas], and she continues to explore emerging trends in [field].

Research Skills

Sumana Ghosh possesses a diverse set of research skills that enable her to conduct high-quality studies in [field]. She is proficient in [mention experimental techniques, data analysis methods, software/tools, or methodologies]. Her expertise in [specific technique] has allowed her to develop new methodologies for [research application]. Additionally, she has strong analytical skills, enabling her to interpret complex datasets and derive meaningful conclusions. Sumana is adept at writing scientific papers, grant proposals, and technical reports, further enhancing her contributions to the research community.

Awards and Honors

Throughout her career, Sumana Ghosh has received numerous awards and recognitions for her contributions to [field]. She has been honored with [specific awards], acknowledging her groundbreaking research and dedication. Additionally, she has been recognized by [institutions/organizations] for her excellence in academia and research. Her work has been widely cited, and she has received grants and fellowships that support her innovative projects. Her commitment to excellence continues to earn her accolades, making her a distinguished figure in her domain.

Conclusion

Sumana Ghosh’s journey as a researcher and academic has been marked by dedication, innovation, and impact. With a strong foundation in [field], she continues to push the boundaries of knowledge and inspire future generations of scholars. Her contributions to research, teaching, and professional service have established her as a leader in her domain. Looking ahead, she remains committed to driving advancements in [mention field], fostering collaborations, and making meaningful contributions to science and society.

Publication Top Notes

  1. Thermal shock performance of glass–ceramic based double bond coated novel TBC system”

    • Authors: Pallabi Roy, Karthiga Parthiban, and Sumana Ghosh
    • Year: 2025
    • Journal: Thermal Science and Engineering Progress
    • DOI: 10.1016/j.tsep.2024.103176
  2. “Mitigating TGO growth with glass-ceramic based thermal barrier coatings for gas turbine applications”

    • Authors: Karthiga Parthiban, Sandip Bysakh, Abhijit Date, Everson Kandare, and Sumana Ghosh
    • Year: 2024
    • Journal: Materials Today Communications
  3. “Novel oxide based anti-corrosion composite coating for gas turbines”

    • Authors: Karthiga Parthiban, Sandip Bykash, and Sumana Ghosh
    • Year: 2024
    • Journal: Surface and Coatings Technology

 

 

Feng Yu | Composite Structures | Best Researcher Award

Mr. Feng Yu | Composite Structures | Best Researcher Award

Professor/Dean at Anhui University of Technology, China

Feng Yu is an accomplished scholar and leading figure in civil engineering with expertise in composite structures, the application of Fiber Reinforced Polymer (FRP) materials, and the development of sustainable building solutions. Serving as Dean of the School of Civil Engineering at Anhui University of Technology, he holds multiple prestigious titles, including Wanjiang Scholar Distinguished Professor and Anhui Province Outstanding Young Scientist. His career is marked by significant academic contributions, including 145 published papers—81 of which are SCI-indexed—demonstrating his dedication to advancing civil engineering technology and sustainability. Feng Yu also leads critical industry-focused research as the Director of the Anhui Metallurgical Solid Waste Green Construction Engineering Technology Research Center and has secured funding for numerous national projects. His practical achievements include 30 invention patents and participation in setting industry standards. Feng Yu’s commitment to teaching, mentorship, and technological innovation highlights his influence and dedication to advancing civil engineering and supporting young researchers in the field.

Professional Profile

Education

Feng Yu’s academic journey in civil engineering is distinguished by advanced degrees from top Chinese institutions. He completed his Bachelor’s degree in Civil Engineering at Nanchang University in 2002. Subsequently, he pursued a Master’s degree (2002–2005) and a Ph.D. (2004–2007) in Structural Engineering at Xi’an University of Architecture and Technology. This dual focus provided him with a comprehensive foundation in structural engineering principles, materials science, and innovative civil engineering applications. His expertise was further refined through a postdoctoral fellowship at Chang’an University (2007–2009), where he researched under a distinguished supervisor, focusing on composite materials and structural integrity. This extensive educational background laid a solid foundation for his future research in composite structures, FRP applications, and concrete durability. His academic achievements positioned him well for an influential role in civil engineering, both in academia and in practical engineering solutions for industry challenges.

Professional Experience

Feng Yu has developed an impressive professional trajectory since 2008, primarily at Anhui University of Technology’s School of Civil Engineering, where he has progressed from lecturer to professor and Dean of the School. His roles extend beyond academia, as he serves as Director of the Anhui Metallurgical Solid Waste Green Construction Engineering Technology Research Center and holds leadership positions in various engineering organizations, such as the China Steel Structure Association. His work emphasizes sustainable engineering practices, the application of solid waste materials, and the reinforcement of engineering structures. As a distinguished academic leader, Feng Yu also contributes significantly to standards and policy development in China’s construction industry. His professional background illustrates a commitment to bridging academic research with practical engineering applications and policy, enhancing both the academic landscape and industrial practices in civil engineering.

Research Interests

Feng Yu’s research focuses on the innovative application of composite materials in civil engineering, specifically in FRP materials for structure reinforcement and sustainable building practices. His work addresses critical issues in engineering maintenance, the durability of concrete structures, and the use of solid waste in construction, aligning with global sustainability goals. His projects often explore ways to improve the resilience and longevity of civil infrastructure, making substantial contributions to sustainable engineering. Feng Yu is particularly interested in FRP-reinforced concrete structures, which offer durability and environmental benefits by utilizing advanced composite materials. His research efforts aim to integrate eco-friendly solutions into traditional civil engineering practices, paving the way for greener construction technologies and resilient infrastructures that address modern environmental challenges.

Research Skills

Feng Yu is highly skilled in structural analysis, materials testing, and composite design, with particular expertise in FRP applications and concrete durability testing. His work involves advanced experimental techniques and simulations to assess the mechanical behavior of composite materials under various conditions. Feng Yu’s experience in managing large-scale, multi-disciplinary research projects demonstrates his strengths in project coordination, data analysis, and problem-solving within civil engineering contexts. Additionally, he possesses significant expertise in developing and evaluating sustainable materials, such as the use of solid waste in civil engineering, which requires an intricate understanding of material properties and environmental impact assessments. His research skills are complemented by his ability to lead cross-functional teams, secure funding, and manage technical collaborations with academic and industrial stakeholders.

Awards and Honors

Feng Yu’s contributions to civil engineering have earned him numerous accolades, both for his scientific research and his teaching. Recognized as a Wanjiang Scholar Distinguished Professor, he is celebrated for his outstanding contributions to composite materials and FRP applications. He has been honored with awards from the China Steel Structure Association, including first prizes for science and technology achievements. Additionally, he received the Anhui Province Outstanding Young Scientist Award, acknowledging his leadership and technical contributions in civil engineering. Feng Yu has also been awarded provincial and ministerial prizes for his teaching and research efforts, emphasizing his commitment to both academic excellence and practical impact. His honors reflect a career dedicated to advancing the field of civil engineering, from pioneering sustainable building materials to supporting the next generation of engineers.

Conclusion

Feng Yu is a well-qualified candidate for the Young Scientist Award in Research, particularly due to his contributions in civil engineering materials, innovation in FRP applications, and dedication to sustainable building practices. With an impressive record in academic publication, industry standards, and national research leadership, he embodies the qualities sought in this award. With enhanced international collaboration and further diversification of research themes, Feng Yu’s work could achieve even broader impact in the field. Overall, his achievements and potential for future advancements make him a strong nominee for the award.

Publications Top Publications

  1. Crack-healing and rheological properties of high content fly ash/slag/silica fume green and sustainable cement-based materials incorporating crystalline admixture and calcium alginate biomass hydrogel
    • Authors: He, P., Yu, F., Yu, J., Yang, Z., Zhang, S.
    • Journal: Case Studies in Construction Materials, 2024, Vol. 21, Article e03598
  2. Experimental study on PVC-CFRP confined concrete column-beam interior joint reinforced with core steel tube under low cyclic loading
    • Authors: Yu, F., Liu, W., Feng, C., Fang, Y.
    • Journal: Archives of Civil and Mechanical Engineering, 2024, Vol. 24(4), Article 213
  3. Investigation on chloride resistance of high-volume slag low-carbon cement-based materials with crystalline admixture under seawater
    • Authors: He, P., Yu, J., Yu, F., Fang, Y., Du, W.
    • Journal: Journal of Materials Science, 2024, Vol. 59(37), pp. 17708–17729
  4. A MODEL FOR PREDICTING THE MOMENT-CURVATURE BEHAVIOR OF STEEL TUBE CONFINED REINFORCED SELF-STRESSING STEEL SLAG CONCRETE COLUMNS UNDER CYCLIC LOADING
    • Authors: Yu, F., Liu, W., Bu, S.-S., Kuang, G.-F., Fang, Y.
    • Journal: Advanced Steel Construction, 2024, Vol. 20(3), pp. 310–318
  5. Flexural performance tests and numerical analysis of fabricated light-gauge steel reinforced foam concrete filled steel mesh formwork wallboards
    • Authors: Yu, F., Kuang, G., Bu, S., Chen, L.
    • Journal: Structures, 2024, Vol. 66, Article 106813
  6. A review of the application of steel slag in concrete
    • Authors: Li, Y., Liu, F., Yu, F., Du, T.
    • Journal: Structures, 2024, Vol. 63, Article 106352
    • Citations: 8
  7. Finite element analysis of the seismic performance of PVC-CFRP confined concrete column-ring beam interior joints
    • Authors: Yu, F., Xu, B., Wu, C., Fang, Y., Lin, X.
    • Journal: Structures, 2024, Vol. 62, Article 106186
  8. Influence of joint forms on the seismic behavior of concrete-filled PVC-CFRP tubular column-RC beam joints connected with core steel tubes
    • Authors: Yu, F., Xu, B., Wang, J., Chen, Z., Zhang, Y.
    • Journal: Engineering Structures, 2024, Vol. 303, Article 117499
    • Citations: 1
  9. Flexural behavior evaluation of PET foam core curved sandwich beam: Experimental study and numerical simulation
    • Authors: Xie, H., Hou, X., Fang, H., Fang, Y., Yu, F.
    • Journal: Construction and Building Materials, 2024, Vol. 414, Article 135000
    • Citations: 4
  10. Flexural behavior evaluation of a foam core curved sandwich beam
    • Authors: Xie, H., Li, W., Fang, H., Fang, Y., Yu, F.
    • Journal: Composite Structures, 2024, Vol. 328, Article 117729
    • Citations: 11

 

Reza Mohammadi | Composite Materials | Best Researcher Award

Dr. Reza Mohammadi | Composite Materials | Best Researcher Award

Postdoc researcher, TUDELFT, Netherlands.

Reza Mohammadi is a Postdoctoral Researcher at the Department of Civil Engineering and Geosciences at Delft University of Technology. He holds a Ph.D. in Mechanical Engineering from Amirkabir University of Technology, where he specialized in the fracture and damage mechanics of composite materials, particularly focusing on fatigue behavior and delamination in laminates. His research utilizes advanced techniques such as acoustic emission and finite element methods. Reza has received numerous accolades, including awards for the best Ph.D. and Master’s theses, as well as recognition for his academic excellence at both national and university levels. He has authored several high-impact journal articles in top-tier publications, with an H-index of 14, reflecting his significant contributions to the field. Additionally, Reza has extensive teaching experience and proficiency in various engineering software, including ABAQUS and MATLAB. His current research focuses on high-performance, impact-resistant composites, with a strong emphasis on structural health monitoring.

Profile:

Education

Reza Mohammadi holds a strong educational background in mechanical engineering, with a focus on composite materials and fracture mechanics. He completed his Ph.D. in Mechanical Engineering from Amirkabir University of Technology, Tehran, Iran, in 2021. His doctoral research explored the effects of electrospun nanofibers on the damage mechanisms of composite laminates under fatigue loading, using both acoustic emission techniques and finite element modeling. Prior to his Ph.D., Reza earned his Master of Science (M.Sc.) degree in Mechanical Engineering from the same institution in 2015, where he focused on damage identification in composites using similar methodologies. His academic journey began with a Bachelor of Science (B.Sc.) in Mechanical Engineering from the University of Tabriz, Iran, which he completed in 2013. Throughout his studies, Reza demonstrated exceptional academic performance, consistently ranking first in his class, and earning various honors and accolades for his innovative research.

Professional Experience

Reza Mohammadi is a Postdoctoral Researcher at the Department of Civil Engineering and Geosciences, Delft University of Technology (TU Delft), where he has been working since January 2023. His research focuses on developing next-generation high-performance impact-resistant composites with visible damage. Prior to this, he served as a Lecturer at the Department of Mechanical Engineering, Islamic Azad University, East Tehran Branch, from 2021 to 2023. Additionally, Reza gained international experience as a Visiting Ph.D. Scholar in the Department of Aerospace Engineering at TU Delft in 2019, under the supervision of Dr. Dimitrios Zarouchas. His academic journey includes a Ph.D. in Mechanical Engineering from Amirkabir University of Technology, Tehran, where he specialized in damage mechanisms of composite laminates. Throughout his career, Reza has been involved in high-impact research on fracture and damage mechanics, composite materials, and fatigue of laminates, contributing to advancing knowledge in these fields through numerous publications and awards.

Research Interest:

Reza Mohammadi’s research interests focus on the mechanics and behavior of advanced composite materials, particularly in relation to fracture and damage mechanics. He is deeply engaged in studying the fatigue and delamination processes of composite laminates, with a keen interest in acoustic emission techniques for damage detection and structural health monitoring. His work on electrospun nanofibers offers innovative insights into enhancing the toughness and durability of these materials. Reza’s research also extends to applying the finite element method (FEM) for predictive modeling, enabling a more detailed understanding of the failure mechanisms in composites. Additionally, his expertise encompasses the development of high-performance impact-resistant composites, aiming to improve their application in industries where lightweight and high-strength materials are essential. Through his cutting-edge research, Reza is contributing to advancements in the design and optimization of composite structures, with potential applications in aerospace, automotive, and civil engineering sectors.

Research Skills

Reza Mohammadi has extensive research skills in the field of mechanical and materials engineering, with a particular focus on fracture and damage mechanics of composite materials. His expertise spans acoustic emission techniques, fatigue analysis of composite laminates, and delamination, which he has investigated using finite element methods. Additionally, he has specialized knowledge in the development of electrospun nanofibers and their application in enhancing the durability and performance of composite structures. Reza’s proficiency with advanced tools such as ABAQUS for finite element analysis, MATLAB for programming, and software like SolidWorks and CATIA for design highlights his technical versatility. His research has led to numerous publications in high-impact journals, reflecting his ability to contribute to cutting-edge advancements in structural health monitoring. His collaboration with leading institutions like Delft University of Technology further demonstrates his capability to work on interdisciplinary projects aimed at solving complex engineering challenges.

Award and Recognition

Reza Mohammadi has earned numerous prestigious awards and recognitions for his outstanding contributions to mechanical engineering and composite materials research. In 2021, he was ranked 1st in a university-wide competition for the best PhD thesis at Amirkabir University of Technology, reflecting the high impact of his research. His academic excellence led to his admission to the PhD program without an entrance examination in 2015, based on his merit. Reza has also received recognition for his Master’s and PhD work, including being awarded the best Master Thesis in 2016 and securing 1st rank in his department’s PhD qualifying exam. In addition, he has co-authored several award-winning conference papers, two of which were selected as the best at the 23rd Annual International Mechanical Engineering Conference. His affiliation with Iran’s National Elite Institute and the Exceptional Talents Center further highlights his exceptional academic achievements and commitment to advancing the field of composite materials.

Conclusion

Reza Mohammadi’s strong academic background, innovative research contributions, and relevant industrial applications make him a highly suitable candidate for the Best Researcher Award. His high-impact publications, patent achievements, and recognition in the academic community indicate that he is an accomplished researcher with significant expertise in his field. While there is room for improvement in English proficiency and international collaboration, his research has demonstrated both depth and impact in the domain of composite materials and damage mechanics, making him a competitive nominee for this prestigious award.

Publication Top Notes

  • Correlation of acoustic emission with finite element predicted damages in open-hole tensile laminated composites
    • Authors: R Mohammadi, MA Najafabadi, M Saeedifar, J Yousefi, G Minak
    • Year: 2017
    • Journal: Composites Part B: Engineering
    • Volume/Page: 108, 427-435
    • Citations: 139
  • Using passive and active acoustic methods for impact damage assessment of composite structures
    • Authors: M Saeedifar, J Mansvelder, R Mohammadi, D Zarouchas
    • Year: 2019
    • Journal: Composite Structures
    • Volume/Page: 226, 111252
    • Citations: 60
  • Delamination analysis in composite laminates by means of acoustic emission and bi-linear/tri-linear cohesive zone modeling
    • Authors: M Saeedifar, MA Najafabadi, J Yousefi, R Mohammadi, HH Toudeshky, …
    • Year: 2017
    • Journal: Composite Structures
    • Volume/Page: 161, 505-512
    • Citations: 60
  • Prediction of delamination growth in carbon/epoxy composites using a novel acoustic emission-based approach
    • Authors: R Mohammadi, M Saeedifar, HH Toudeshky, MA Najafabadi, M Fotouhi
    • Year: 2015
    • Journal: Journal of Reinforced Plastics and Composites
    • Volume/Page: 34(11), 868-878
    • Citations: 53
  • A quantitative assessment of the damage mechanisms of CFRP laminates interleaved by PA66 electrospun nanofibers using acoustic emission
    • Authors: R Mohammadi, MA Najafabadi, H Saghafi, M Saeedifar, D Zarouchas
    • Year: 2021
    • Journal: Composite Structures
    • Volume/Page: 258, 113395
    • Citations: 48
  • Delamination characterization in composite laminates using acoustic emission features, micro visualization, and finite element modeling
    • Authors: J Yousefi, R Mohammadi, M Saeedifar, M Ahmadi, H Hosseini-Toudeshky
    • Year: 2016
    • Journal: Journal of Composite Materials
    • Volume/Page: 50(22), 3133-3145
    • Citations: 42
  • Investigation of delamination and interlaminar fracture toughness assessment of Glass/Epoxy composite by acoustic emission
    • Authors: M Saeedifar, M Fotouhi, R Mohammadi, MA Najafabadi, HH Toudeshky
    • Year: 2014
    • Journal: Modares Mechanical Engineering
    • Volume/Page: 14(4), 1-11
    • Citations: 33
  • Considering damage during fracture tests on nanomodified laminates using the acoustic emission method
    • Authors: A Gholizadeh, MA Najafabadi, H Saghafi, R Mohammadi
    • Year: 2018
    • Journal: European Journal of Mechanics-A/Solids
    • Volume/Page: 72, 452-463
    • Citations: 25
  • Considering damages to open-holed composite laminates modified by nanofibers under the three-point bending test
    • Authors: A Gholizadeh, MA Najafabadi, H Saghafi, R Mohammadi
    • Year: 2018
    • Journal: Polymer Testing
    • Volume/Page: 70, 363-377
    • Citations: 25
  • Acoustic emission-based methodology to evaluate delamination crack growth under quasi-static and fatigue loading conditions
    • Authors: M Saeedifar, M Ahmadi Najafabadi, K Mohammadi, M Fotouhi, …
    • Year: 2018
    • Journal: Journal of Nondestructive Evaluation
    • Volume/Page: 37, 1-13
    • Citations: 24

 

Leila Nasiri | Composite Materials | Best Researcher Award

Leila Nasiri, born on August 28, 1988, is an accomplished academic and researcher at Shahed University, Iran. With a Ph.D. in Physiology, her research focuses on the biological effects of social stress and the health implications for chemically injured veterans. Her master’s thesis on antioxidant enzyme activity in broiler chickens led to five ISI publications. Nasiri’s doctoral work on the impact of sulfur mustard exposure on health earned high praise, resulting in numerous publications in prestigious journals. She has actively participated in various international conferences and workshops, enhancing her expertise in health equity and biological aging. Her academic contributions include leadership roles in symposiums and a notable H-index of 6 in Google Scholar. Nasiri’s work not only addresses critical health issues but also seeks to understand the complex interplay between socioeconomic factors and health outcomes. Her dedication positions her as a strong candidate for the Best Researcher Award.

Profile:

Education

Leila Nasiri holds a B.Sc. in General Biology from Shiraz University, Iran, completed in July 2013. She then pursued her M.Sc. in Physiology at Shahrekord University, where she focused on the evaluation of gene expression and antioxidant enzyme activity in broiler chickens with pulmonary hypertension, graduating with excellent honors in June 2015. Following her master’s degree, she continued her academic journey by enrolling in a Ph.D. program in Physiology at Shahed University, Tehran, from September 2017 to February 2022. Her doctoral research investigated the effects of sulfur mustard exposure on physiological health and premature aging in Iranian chemical victims, earning high praise from her thesis committee. Leila’s strong academic performance throughout her studies, reflected in her excellent thesis grades, showcases her dedication and expertise in the field of physiology and health equity.

Professional Experience

Leila Nasiri is an accomplished academic and researcher with significant experience in the fields of physiology and health equity. She served as a Visiting Professor at Islamic Azad University, teaching a range of subjects including general biology and biochemistry. Following her Ph.D., she worked at the Traditional Medicine Clinical Trial Research Center and the Immunoregulation Research Center at Shahed University, where she contributed to research on the biological effects of chemical exposure on health. As an Assistant Professor in the Department of Health Equity at Shahed University, she has focused on the impacts of socioeconomic status and social stress on physical and mental health, particularly among chemically injured veterans. Her research has resulted in numerous publications in high-impact journals, addressing critical issues related to biological aging, health disparities, and the physiological consequences of environmental toxins. Leila’s expertise positions her as a key contributor to advancing understanding in her field.

Research Skills

Leila Nasiri possesses a robust set of research skills that significantly contribute to her expertise in physiology and health equity. Her proficiency in advanced methodologies is demonstrated through her experience with clinical trials and research projects focused on the biological effects of chemical exposure. Leila has published numerous articles in prestigious international journals, showcasing her ability to conduct high-impact research in areas such as biological aging, immunoregulation, and the socioeconomic determinants of health. She is adept in techniques like real-time PCR and has participated in various workshops and conferences, further enhancing her knowledge base. Her collaborative work with established researchers and her role as a keynote speaker reflect her strong communication skills and leadership in scientific discourse. Leila’s diverse research interests, combined with her hands-on experience in both laboratory and field settings, position her as a valuable contributor to the scientific community, particularly in understanding the interplay between health and social factors.

Research Interest

Leila Nasiri’s research interests lie at the intersection of physiology, health equity, and the biological effects of social stress. She focuses on the mechanisms of aging, particularly in relation to socioeconomic status and its impact on health outcomes. Her work investigates the physiological health of chemically injured veterans, emphasizing the relationship between environmental exposures—such as sulfur mustard—and premature aging. Through her research, Nasiri aims to understand the biological markers of aging, including telomere length and inflammatory responses, to develop effective interventions for affected populations. Additionally, she explores the broader implications of social inequalities on physical and mental health, advocating for social justice in health policies. Her contributions in these areas aim to enhance our understanding of how socio-economic factors influence health and to promote equitable healthcare solutions.

Awards and Honors

Leila Nasiri has garnered several notable awards and honors throughout her academic career. She demonstrated exceptional talent during her master’s program in physiology, leading to recognition for her outstanding achievements. Her research contributions, particularly in the field of biological effects of social stress and the health impacts of chemical exposure, have been published in prestigious international journals, enhancing her reputation in the scientific community. In 2022, she served as a keynote speaker at the 26th National Congress and the 5th International Congress of Physiology and Pharmacology, showcasing her expertise and leadership. Additionally, Nasiri’s role as the executive secretary for significant symposia reflects her commitment to advancing research in health equity and social determinants of health. Her ongoing participation in international conferences and workshops highlights her dedication to continuous learning and collaboration, further solidifying her status as an emerging leader in her field. 🏆

Conclusion

Leila Nasiri is a highly qualified candidate for the Research for Best Researcher Award, showcasing significant contributions to the fields of physiology and health equity. Her strong publication record, leadership roles, and impactful research on the effects of environmental toxins highlight her potential to drive forward meaningful change in public health. Addressing areas for improvement, particularly in enhancing the reach of her research and securing funding, will bolster her already impressive profile. Overall, Leila’s work embodies the spirit of innovation and commitment that this award seeks to recognize. 🏆🌟

Publication Top Notes

  1. Title: Relationships between DNA oxidative damage, testosterone, and body mass index in sulfur mustard-chemical veterans
    Authors: Nasiri, L., Vaez-Mahdavi, M.-R., Hassanpour, H., Kaboudanian Ardestani, S., Behboudi, H.
    Journal: Toxicologie Analytique et Clinique
    Year: 2024
    Volume: 36(2), pp. 166–172
  2. Title: Evaluation of metabolic profile following delayed toxicity of sulfur mustard in chemical veterans
    Authors: Nasiri, L., Vaez-Mahdavi, M.-R., Ghazanfari, T., Hassanpour, H., Ardestani, S.K.
    Journal: Toxicologie Analytique et Clinique
    Year: 2024
    Citations: 0 (Article in Press)
  3. Title: Transcription of biological aging markers (ANRIL, P16INK4a, TBX2, and TERRA) and their correlations with severity of sulfur mustard exposure in veterans
    Authors: Nasiri, L., Vaez-Mahdavi, M.-R., Hassanpour, H., Ghaffarpour, S., Zamani, M.S.
    Journal: Drug and Chemical Toxicology
    Year: 2024
    Citations: 0 (Article in Press)
  4. Title: Canine sperm motility is associated with telomere shortening and changes in expression of shelterin genes
    Authors: Hassanpour, H., Mirshokraei, P., Salehpour, M., Ghareghani, P., Nasiri, L.
    Journal: BMC Veterinary Research
    Year: 2023
    Volume: 19(1), 236
  5. Title: Increased serum lipofuscin associated with leukocyte telomere shortening in veterans: a possible role for sulfur mustard exposure in delayed-onset accelerated cellular senescence
    Authors: Nasiri, L., Vaez-Mahdavi, M.-R., Hassanpour, H., Mohseni Majd, M.-A., Rahimlou, B.
    Journal: International Immunopharmacology
    Year: 2023
    Volume: 114, 109549
  6. Title: Concomitant use of relative telomere length, biological health score and physical/social statuses in the biological aging evaluation of mustard-chemical veterans
    Authors: Nasiri, L., Vaez-Mahdavi, M.-R., Hassanpour, H., Ardestani, S.K., Ghazanfari, T.
    Journal: International Immunopharmacology
    Year: 2022
    Volume: 109, 108785
  7. Title: Sulfur mustard and biological ageing: A multisystem biological health score approach as an extension of the allostatic load in Sardasht chemical veterans
    Authors: Nasiri, L., Vaez-Mahdavi, M.-R., Hassanpour, H., Kaboudanian Ardestani, S., Askari, N.
    Journal: International Immunopharmacology
    Year: 2021
    Volume: 101, 108375
  8. Title: ELECTROCARDIOGRAM ANALYSIS of the GOLDEN (CHRYSOLOPHUS PICTUS) and SILVER (LOPHURA NYCTHEMERA) PHEASANTS
    Authors: Hassanpour, H., Zarei, H., Nasiri, L., Hojjati, P.
    Journal: Journal of Zoo and Wildlife Medicine
    Year: 2018
    Volume: 49(4), pp. 881–886
  9. Title: Analysis of the Normal Electrocardiogram in Wild Rooks (Corvus frugilegus)
    Authors: Hassanpour, H., Dehkordi, H.A., Khosravi, M., Soltani, S., Nasiri, L.
    Journal: Journal of Avian Medicine and Surgery
    Year: 2016
    Volume: 30(4), pp. 329–334
  10. Title: Variation of heat shock protein gene expression in the brain of cold-induced pulmonary hypertensive chickens
    Authors: Hassanpour, H., Khosravi Alekoohi, Z., Madreseh, S., Bahadoran, S., Nasiri, L.
    Journal: British Poultry Science
    Year: 2016
    Volume: 57(5), pp. 636–642

 

Soma A. El Mogy | Materials Science | Best Researcher Award

Assoc Prof Dr. Soma A. El Mogy | Materials Science | Best Researcher Award

Associate Professor, National institute of standards, Egypt

Assoc. Prof. Dr. Soma A. El Mogy is a distinguished researcher in Materials Science, recognized for her innovative contributions to the field. With a deep understanding of material properties and their applications, Dr. El Mogy has authored numerous influential publications that have advanced the understanding of materials engineering. Her work, which often intersects with sustainability and technological advancements, has earned her the prestigious Best Researcher Award, highlighting her impact on both academia and industry. Dr. El Mogy’s dedication to research and education continues to inspire the next generation of scientists in the field.

Profile

Education 

Assoc. Prof. Dr. Soma A. El Mogy earned her Bachelor of Science degree in Special Chemistry with an “Excellent with honor” distinction from Al-Azhar University in 2005. She continued her academic journey at the College of Science at Al-Azhar University, where she completed her Pre-Masters in 2007, achieving an overall grade of “Very Good.” In 2011, she obtained her Master’s degree in Physical Chemistry, with a thesis titled “Using Rice-Husk as a Filler for Production and Characterization of New Polymer-Composites having Industrial Applications.” Dr. El Mogy further advanced her research, earning her Ph.D. in Science in 2015 with a focus on “Study of the physico-mechanical properties of polypropylene filled with carbon nanotubes.” Her extensive academic background and research expertise have positioned her as a leader in the field of Materials Science.

Training Courses

Assoc. Prof. Dr. Soma A. El Mogy has a robust background in quality training and laboratory techniques, significantly enhancing her expertise in materials science. She has completed numerous quality training courses, including awareness of ISO/IEC 17025:2017 requirements, internal auditing, and method validation for calibration laboratories at the National Institute of Standards. Her training also encompasses quality control charts, intermediate calibration checks, and the estimation of uncertainty in chemical measurements, with a foundational introduction to ISO 17025 dating back to 2008. Additionally, Dr. El Mogy has gained hands-on experience with advanced laboratory equipment for plastics and rubber, having undertaken specialized courses on operating instructions for hardness testers, hardness calibrators, melt flow index (MFI), and Z010/TH2A machines, all completed in compliance with machinery directives in June 2017.

Internationally, she has expanded her expertise through training in nanotechnology technologies and applications under the Association of Materials Science and Engineering and Nanotechnology, as well as academic writing and statistical analysis using SPSS. Her local training includes courses on EndNote application, scientific paper writing and presentation, proposal and report writing, and nanoscience and nanotechnology. She has also engaged in workshops on publishing research open access, nanocarriers and drug delivery, nanostructures, and the future prospects of scientific research. These extensive training experiences highlight Dr. El Mogy’s dedication to maintaining a high standard of excellence in her research and professional activities.

Career

Assoc. Prof. Dr. Soma A. El Mogy began her career as a Research Assistant at the National Institute of Standards in the Metrology and Polymer Technology lab on May 10, 2006. She was promoted to Assistant Researcher on July 11, 2011, and later became a Doctor at the same lab on November 1, 2015. In June 2021, Dr. El Mogy was appointed as an Assistant Professor at the National Institute of Standards in the Material Testing and Surface Chemical Analysis lab in Giza, Egypt. Additionally, she served as a Lecturer in the Chemistry Department at the Faculty of Science, Al-Azhar University (Girls Branch) from September 2016 until 2020.

 

Scientific Workshop Attended

Assoc. Prof. Dr. Soma A. El Mogy has an extensive background in practical and theoretical aspects of scientific research, demonstrated by her participation in numerous specialized training courses and workshops. She has actively engaged in learning about the selection, writing, and submission of research projects, highlighted by her training at the Agricultural Research Center’s Animal Reproduction Research Institute in February 2020. Her skills in synthesizing chitosan nanoparticles were honed at the Naqaa Foundation for Scientific Research in 2019. Dr. El Mogy has also been involved in initiatives that support women in science, energy and water challenges, and the applications of nanotechnology for sustainable packaging, showcasing her commitment to addressing global scientific and environmental issues.

Her expertise extends to intellectual property management and its application in scientific research, as evidenced by her training at the Academy of Scientific Research and Technology in 2019. She has acquired advanced knowledge in scientific research methodologies, publishing within international databases, and managing resources using tools like Mendeley and EndNote. Dr. El Mogy’s dedication to combating predatory journals, reducing fraud in scientific research, and ensuring the integrity of academic work is reflected in her numerous certifications from leading universities and institutions across Iraq and the Middle East. Her participation in workshops on aligning with the publishing process, utilizing statistical data, and leveraging modern knowledge cycles further emphasizes her ongoing pursuit of excellence in research and publication.

Publication Top Notes

  • El Mogy, S. A. (2019). Processing of Polyurethane Nanocomposite Reinforced with Nanosized Zinc Oxide: Effect on Mechanical and Acoustic Properties. Egyptian Journal of Chemistry, 62, 333-341.
  • El Mogy, S. A. (2019). Radiation Crosslinking of Acrylic Rubber/Styrene Butadiene Rubber Blends Containing Polyfunctional Monomers. Radiation Physics and Chemistry, April.
  • Lawandy, S. N., El Mogy, S. A. (2020). Effect of Natural Oil Content and Viscosity on the Adhesion of Nitrile Rubber to Polyester Fabric. Adhesion Science and Technology, Accepted Manuscript, Published online 15 May.
  • Saleh, B. K., El Mogy, S. A. (2020). Use of Waste Rubber and Bionanofiller in Preparation of Rubber Nanocomposites for Friendly Environmental Flooring Applications. Egyptian Journal of Chemistry, 63(7).
  • El Mogy, S. A., Darwish, N. A., Awad, A. (2020). Comparative Study of the Cure Characteristics and Mechanical Properties of Natural Rubber Filled with Different Calcium Carbonate Resources. Journal of Vinyl and Additive Technology, 26(3).
  • Eyssa, H. M., El Mogy, S. A., Youssef, H. A. (2020). Impact of Foaming Agent and Nanoparticle Fillers on the Properties of Irradiated Rubber. Radiochimica Acta, Accepted 2 Nov.
  • Moustafa, H. A. Z., El Mogy, S. A., Mohamed, S. A., Darwish, N. A., Abd El Megeed, A. A. (2020). Bio-Enveloping Inorganic Filler Based Eggshell Wastes for Enhancing the Properties of Natural Rubber Biocomposites. Tire Science & Technology Journal, Accepted 22 July.
  • El Mogy, S. A., Abd El Megeed, A. A. (2020). Improvement of EPDM Properties Using Nanofiller Derived from Biogenic Wastes. International Journal of Science and Research, Accepted 1 Dec.
  • El Mogy, S. A., Khodier, S. A., Abd El-Megeed, A. A. (2017). Effect of Thermal Ageing on Mechanical and Optical Properties of Polystyrene. 13th Arab International Conference on Polymer Science and Technology, 22-26 October, Sharm El-Sheikh, Egypt.
  • El Mogy, S. A., Lawandy, S. N. (2023). Enhancement of the Cure Behavior and Mechanical Properties of Nanoclay Reinforced NR/SBR Vulcanizates Based on Waste Tire Rubber. Journal of Thermoplastic Composite Materials, 08927057231180493.
  • El Mogy, S. A., Lawandy, S. N. (2023). Effect of Black Sand Nanoparticles on Physical-Mechanical Properties of Butyl Rubber Compounds. Journal of Thermoplastic Composite Materials, 36(8), 3361-3382.
  • Abdel-Hakim, A., El Mogy, S. A., Abou-Kandil, A. I. (2021). Novel Modification of Styrene Butadiene Rubber/Acrylic Rubber Blends to Improve Mechanical, Dynamic Mechanical, and Swelling Behavior for Oil Sealing Applications. Polymers and Polymer Composites, 29(9_suppl), S959-S968.
  • El-Wakil, A. E. A. A., El Mogy, S., Halim, S. F., Abdel-Hakim, A. (2022). Enhancement of Aging Resistance of EPDM Rubber by Natural Rubber-g-N (4-phenylenediamine) Maleimide as a Grafted Antioxidant. Journal of Vinyl and Additive Technology, 28(2), 367-378.
  • Abdel-Hakim, A., El-Wakil, A. E. A. A., El Mogy, S., Halim, S. (2021). Effect of Fiber Coating on the Mechanical Performance, Water Absorption, and Biodegradability of Sisal Fiber/Natural Rubber Composite. Polymer International, 70(9), 1356-1366.
  • Rabee, M., El Mogy, S. A., Morsy, M., Lawandy, S., Zahran, M. A. H., Moustafa, H. (2023). Biosynthesis of MgO Nanoparticles and Their Impact on the Properties of the PVA/Gelatin Nanocomposites for Smart Food Packaging Applications. ACS Applied Bio Materials.

Mohammed El Fallaki Idrissi | Composite Materials Award | Best Researcher Award

Dr. Mohammed El Fallaki Idrissi | Composite Materials Award | Best Researcher Award

Doctor of Philosophy at Arts et Métiers institute of technologies/ LEM3, Ethiopia.

Dr. Mohammed El Fallaki Idrissi is a dedicated researcher with a strong academic background and diverse experiences in mechanics and materials science. He was recently awarded a Ph.D. after conducting extensive studies on digital, virtual, and hybrid twins, alongside multiscale simulation of composite materials. His specialization includes implementing model order reduction techniques and utilizing Artificial Intelligence models to advance the understanding and analysis of composite materials across various scales.

Professional Profiles:

Education:

Dr. Mohammed El Fallaki Idrissi pursued his academic journey with a focus on advanced materials and data science. He completed his Ph.D. at Arts et Métiers Institute of Technology, France, from 2020 to 2023, specializing in multi-scale modeling and simulation of composite materials, along with data-driven computational mechanics of composite materials/real-time simulations. Prior to his Ph.D., he obtained a Master’s degree in Material Science and Engineering from the same institute, graduating in 2020. His Master’s thesis centered on materials and manufacturing engineering, specifically in the area of experimental and numerical investigation of materials. Before his time in France, Dr. El Fallaki Idrissi completed his Engineering Master’s Degree in Mechanical Engineering at the National School of Arts and Crafts, Morocco, from 2016 to 2020. His specialization during this period was in aeronautical and automotive engineering studies, focusing on new product design and material selection processes.

Experience:

Dr. Mohammed El Fallaki Idrissi is a skilled Data Scientist and Mechanical Research Engineer with diverse experience in the field. From 2020 to 2023, he worked at the Chair ESI Group-AMVALOR in France, focusing on computational vademecum and virtual charts for optimization and real-time simulation of complex problems. He also created digital and hybrid twins for composite structures. In 2020, he completed an internship at LEM3 in France, working on modeling and simulation of shape memory alloys. Prior to his time in France, he gained experience in mechanical design, analyses, and maintenance during internships in Morocco, where he worked on projects ranging from designing marking devices to conducting static, dynamic, and fatigue studies of chairs.

Training:

In 2022, Dr. Mohammed El Fallaki Idrissi participated in the CISM-ECCOMAS Summer School in Italy, focusing on Data-Driven Mechanics with a Constitutive Model-Free Approach. This summer school covered the model-free data-driven paradigm for computational solid mechanics, ranging from imaging to data-driven numerical simulation in nonlinear mechanics of structures. In 2021, he attended the Computational Materials Science Summer School at Texas A&M University in the USA. This program aimed to investigate materials phenomena at multiple scales, ranging from the continuum to the electronic structure level. Also in 2021, Dr. El Fallaki Idrissi participated in the EIT Manufacturing Summer School, organized by the European Institute of Innovation & Technology in Hungary and the University of Tartu in Estonia. This summer school focused on design thinking, proof of concept, ROS (Robot Operating System), and levels of autonomy.

Teaching:

During his time at Arts et Métiers Institute of Technology in Metz, France, from 2020 to 2023, Dr. Mohammed El Fallaki Idrissi engaged in practical work focused on energetic fluid mechanics and heat transfer. These practical experiences would have provided him with hands-on exposure to fundamental concepts and applications in these areas of study. Energetic fluid mechanics likely covered topics related to the behavior of fluids in motion and their energy interactions, while heat transfer would have explored the mechanisms of heat exchange between different mediums and surfaces. These practical sessions would have complemented his theoretical knowledge, providing him with valuable insights and skills applicable to various engineering and research contexts.