Jing Li | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Jing Li | Materials Science | Best Researcher Award

Associate Professor from Hainan University, China

Dr. Jing Li is an accomplished researcher currently serving as an associate researcher at the School of Marine Science and Engineering, Hainan University. With a strong foundation in chemical and energy engineering, she focuses her research on hydrogen production technologies, particularly through water electrolysis and seawater electrolysis. Her work contributes significantly to the development of clean and renewable energy systems, aligning with global goals for sustainable energy and decarbonization. Dr. Li is deeply involved in investigating the mechanisms behind seawater electrolysis, aiming to enhance its efficiency and feasibility for practical applications. She combines theoretical analysis with experimental methods to advance the field of hydrogen energy, while also contributing to the design and optimization of related electrochemical devices. Her scientific contributions are becoming increasingly relevant as nations seek alternatives to fossil fuels and move toward hydrogen-based energy systems. Through her commitment to excellence and innovation, Dr. Li has emerged as a key contributor to the field of green hydrogen research. Her dedication to environmental sustainability and energy efficiency reflects in her work, making her a valuable asset to her institution and the broader scientific community. She represents a new generation of researchers addressing urgent global challenges through advanced science and technology.

Professional Profile

Education

Dr. Jing Li received her Ph.D. degree from South China University of Technology, a leading institution in the fields of chemical engineering and materials science. During her doctoral studies, she focused on electrochemical energy conversion systems, developing a strong background in hydrogen production technologies and electrolysis processes. Her doctoral research laid a solid foundation for her future work on hydrogen generation and device optimization. The rigorous training she received at South China University of Technology equipped her with comprehensive knowledge of physical chemistry, materials synthesis, electrochemical mechanisms, and energy systems. Her academic path emphasized both theoretical modeling and hands-on laboratory experimentation, preparing her to tackle complex problems in energy conversion and sustainability. The curriculum and research environment of her alma mater encouraged innovation, cross-disciplinary integration, and critical thinking—skills that are now central to her research endeavors. As a result, Dr. Li emerged from her Ph.D. studies with a well-rounded academic background, capable of contributing original and impactful research to the field of renewable energy. Her advanced education continues to be the driving force behind her current projects and scientific achievements in marine-based hydrogen technologies.

Professional Experience

Dr. Jing Li currently holds the position of Associate Researcher at the School of Marine Science and Engineering, Hainan University. In this role, she leads and contributes to multiple research projects focused on hydrogen production and electrochemical energy systems. Her responsibilities include the design and optimization of experimental protocols for seawater electrolysis, analysis of reaction mechanisms, and development of innovative device architectures. Prior to her current role, she gained valuable research experience through academic and industrial collaborations during her doctoral studies, participating in joint projects that combined advanced materials science with sustainable energy applications. At Hainan University, she actively mentors graduate students, fosters interdisciplinary research, and contributes to the university’s growing reputation in marine engineering and clean energy. She is involved in securing research funding, publishing peer-reviewed articles, and presenting her findings at national and international conferences. Her academic career is marked by a clear trajectory of research focus and practical innovation. Dr. Li’s professional journey reflects her commitment to addressing global energy challenges through scientific rigor, collaborative teamwork, and a passion for renewable energy solutions, positioning her as a rising expert in hydrogen energy systems and electrochemical engineering.

Research Interest

Dr. Jing Li’s primary research interests revolve around hydrogen energy production, particularly through electrochemical methods such as water and seawater electrolysis. She is deeply focused on advancing the fundamental understanding and practical efficiency of hydrogen generation technologies, which play a pivotal role in global strategies for achieving carbon neutrality. Her specific interests include the development of novel catalysts and electrodes for electrolysis, the optimization of electrochemical devices, and the study of reaction pathways and mechanisms involved in seawater splitting. Her work aims to overcome critical barriers such as low efficiency, high energy consumption, and corrosion challenges associated with seawater electrolysis. In addition, Dr. Li is interested in sustainable device engineering and system integration for on-site hydrogen generation, particularly in marine and coastal environments. She explores new materials and surface treatments to improve the durability and output of electrolysis systems. Her interdisciplinary approach draws from materials science, electrochemistry, environmental science, and marine engineering, positioning her research at the intersection of clean energy and sustainable water resources. Ultimately, Dr. Li’s research contributes to building a hydrogen-based energy economy by developing cost-effective, scalable, and eco-friendly solutions for renewable hydrogen production from natural water sources.

Research Skills

Dr. Jing Li possesses a comprehensive set of research skills essential for advanced studies in hydrogen production and electrochemical systems. Her expertise includes electrochemical characterization techniques such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry, which she uses to investigate reaction kinetics and evaluate catalyst performance. She is proficient in synthesizing and modifying electrocatalyst materials, utilizing both wet chemistry and solid-state methods. Additionally, she is skilled in the structural and surface characterization of materials using tools such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Her research also involves the design and fabrication of prototype electrolysis cells and custom test platforms for real-time performance assessment. Dr. Li has experience with computational modeling and data analysis, enabling her to link experimental results with theoretical insights. Her laboratory management skills include supervising junior researchers, ensuring safety compliance, and maintaining the quality and reproducibility of experimental protocols. She is also adept at scientific writing and communication, regularly contributing to peer-reviewed publications and technical reports. Overall, her diverse technical and analytical competencies enable her to lead innovative research in clean hydrogen energy with precision, depth, and scientific integrity.

Awards and Honors

Dr. Jing Li has received recognition for her promising contributions to sustainable energy research through awards and institutional support, although she is still in the early stages of accumulating large-scale accolades. During her Ph.D. studies, she was awarded scholarships and research grants that supported her work in electrochemical energy conversion. Her research excellence has been acknowledged through conference presentations, invitations to collaborative projects, and institutional funding for emerging researchers at Hainan University. These honors reflect her growing impact and the scientific merit of her research topics. She has also been nominated for early-career researcher awards within university-level initiatives and has gained positive peer recognition for her work on seawater electrolysis. While her list of international or national awards is still developing, her consistent scientific output and growing portfolio of research projects suggest she is on a strong trajectory toward more prestigious recognitions. As her career advances and her contributions to hydrogen energy research expand, Dr. Li is well-positioned to receive further awards and honors that reflect her dedication, innovation, and potential to drive meaningful change in the field of clean energy technology.

Conclusion

Dr. Jing Li is a dedicated and emerging researcher in the field of hydrogen energy, with a clear focus on water and seawater electrolysis. Her work is contributing to one of the most pressing challenges of our time: the transition to clean and sustainable energy. With a strong academic background, growing publication record, and hands-on expertise in electrochemical systems, she is steadily building a research profile that addresses both theoretical and practical aspects of hydrogen production. Her commitment to advancing fundamental understanding while developing scalable technologies demonstrates a balanced and forward-thinking research philosophy. While she would benefit from expanded collaborations, a broader international presence, and increased visibility through publications and patents, she has already shown a strong capacity for impactful innovation. Dr. Li represents the next generation of energy researchers who are not only contributing to academic knowledge but also offering real-world solutions. Her continued progress and dedication make her a strong and deserving candidate for the Best Researcher Award, and recognition at this stage would further support and motivate her promising research career in the energy sciences.

Publications Top Notes

1. Tip carbon encapsulation customizes cationic enrichment and valence stabilization for low K+ acidic CO2 electroreduction

Authors: Zhitong Wang, Dongyu Liu, Chenfeng Xia, … Bao Yu Xia, Xinlong Tian

Journal: Nature Communications

Year: 2025

Citations: 1

2. Plant derived multifunctional binders for shuttle-free zinc-iodine batteries

Authors: Jiahao Zhu, Shan Guo, Yang Zhang, … Xinlong Tian, Xiaodong Shi

Journal: Nano Energy

Year: 2025

3. Pyrrole-type TM-N3 sites as high-efficient bifunctional oxygen reactions electrocatalysts: From theoretical prediction to experimental validation

Authors: Chunxia Wu, Yanhui Yu, Yiming Song, … Xinlong Tian, Daoxiong Wu

Journal: Journal of Energy Chemistry

Year: 2025

Citations: 2

4. Oxygen-Coordinated Cr Single-Atom Catalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel CellsAuthors: Junming Luo, Yating Zhang, Zhe Lü, … Zhengpei Miao, Xinlong Tian

Journal: Angewandte Chemie International Edition

Year: 2025

5. Ni-N-C support boosts PtRu sub-nanocluster for effective methanol oxidation reaction

Authors: Xue Zhang, Chunxia Wu, Ye Bu, … Xinlong Tian, Peilin Deng

Journal: Chemical Engineering Journal

Year: 2025

6. Layered Organic Molecular Crystal with One-Dimensional Ion Migration Channel for Durable Magnesium-Based Dual-Ion Batteries

Authors: Yanzeng Ge, Baoquan Liu, Daoxiong Wu, … Xinlong Tian, Jinlin Yang

Journal: ACS Energy Letters

Year: 2025

Citations: 2

7. Hard Lewis acid induced chloride repulsion for durable neutral seawater electrolysis (Review)

Authors: Suyang Feng, Gai Li, Qingyi Wei, … Xinlong Tian, Zhenye Kang

Year: 2025

Citations: 1

8. Iridium-based electrocatalysts for acidic oxygen evolution reaction (Review)

Authors: Yanhui Yu, Gai Li, Yutong Xiao, … Xinlong Tian, Yuliang Yuan

Year: 2025

Citations: 1

9. Recent advances of CuSbS₂ and CuPbSbS₃ as photocatalyst in the application of photocatalytic hydrogen evolution and degradation (Review)

Authors: Xinlong Zheng, Zhongyun Shao, Jiaxin Lin, … Xinlong Tian, Yuhao Liu

Year: 2025

Citations: 1

10. Sulfonated Lignin Binder Blocks Active Iodine Dissolution and Polyiodide Shuttle Toward Durable Zinc-Iodine Batteries

Authors: Zhixiang Chen, Jie Zhang, Chuancong Zhou, … Xinlong Tian, Xiaodong Shi

Journal: Advanced Energy Materials

Year: 2025

Citations: 4

Mayuri Gupta | Materials Science | Best Researcher Award

Dr. Mayuri Gupta | Materials Science | Best Researcher Award

Assistant Scientist from Shriram Institute for Industrial Research, India

Dr. Mayuri Gupta is an accomplished research associate with over 15 years of experience in the field of material science, particularly in polymer composites and medical applications. She has worked with prestigious research organizations, contributing to the development of several groundbreaking technologies. Dr. Gupta’s expertise spans areas such as bio-degradable composites, dental cement formulations, and medical-grade materials, showcasing her technical proficiency and ability to transform innovative ideas into real-world applications. She is currently serving as an Assistant Scientist ‘A’ at the Shriram Institute for Industrial Research, where she plays a key role in leading research projects funded by various national agencies like ICMR, DRDO, and DST. Dr. Gupta’s academic background, combined with her strong industry involvement, positions her as a distinguished researcher in the realm of applied sciences.

Professional Profile

Education

Dr. Mayuri Gupta’s educational background includes a Ph.D. in Polymer Composite Development for Medical Applications, which she is completing at Amity University, Noida, in 2025. She earned her Master’s degree in Chemical Science from Dr. B. R. Ambedkar University, Agra, in 2004, and her Bachelor’s degree in ZBC from the same university in 2002. Dr. Gupta’s educational journey has provided her with a strong foundation in chemical sciences, preparing her for her role as a leader in research and development, particularly in material science.

Professional Experience

Dr. Gupta’s professional journey spans over 15 years, starting as a Lecturer at T.R. Girls Degree College in Aligarh (2007-2008). Since 2008, she has held the position of Assistant Scientist ‘A’ at the Shriram Institute for Industrial Research, where she has successfully managed and contributed to numerous high-impact research projects. Her work includes the development of new materials such as bio-degradable composites, LED-curable dental cement, and low-cost medical products like diapers for low-birth-weight infants. Dr. Gupta’s expertise in research, coupled with her experience in managing funded projects, showcases her as a key contributor to the field.

Research Interests

Dr. Gupta’s primary research interests revolve around the development and enhancement of polymer composites, with a particular focus on medical applications. She is deeply involved in the design of bio-degradable materials, dental cements, and medical-grade polymers. Her work extends to nano-fluids with enhanced thermal conductivity and bio-functional textiles, all of which aim to improve the quality and performance of medical products. Dr. Gupta also explores advanced material formulations for everyday products, such as food packaging and contact lenses, highlighting her versatility in materials research.

Research Skills

Dr. Gupta possesses a wide range of research skills, particularly in the area of analytical techniques and material development. She is proficient in using advanced instruments such as FTIR, UV-Visible, GC-MS, HPLC, and DSC, enabling her to conduct precise and detailed analyses. Additionally, Dr. Gupta has experience in method development for various formulations, especially in the field of pharmaceuticals and food packaging. Her ability to innovate and create new materials based on market needs demonstrates her creativity and technical expertise in research and development. She also excels in research proposal writing and working with national research funding agencies.

Awards and Honors

Dr. Gupta’s career has been marked by significant achievements in her field, including several sponsored research projects funded by renowned organizations such as ICMR, DRDO, and DST. While there is no specific mention of awards in the provided CV, her active involvement in high-profile research projects and her leadership in innovative material development reflect a track record of recognition and success in her professional career. Her commitment to advancing material science is further demonstrated by her research presentations at both national and international conferences.

Conclusion

Dr. Mayuri Gupta is a highly dedicated and accomplished researcher in the field of material science, with a particular focus on polymer composites and medical applications. With over 15 years of experience, she has consistently contributed to the development of innovative technologies with real-world applications. Her extensive research, technical expertise, and leadership in various national-funded projects highlight her potential to make lasting contributions to the field. While she could enhance her profile further with more publications in peer-reviewed journals and greater involvement in mentorship, Dr. Gupta is highly recommended for recognition as a Best Researcher due to her significant achievements and ongoing contributions to research and development.

Publications Top Notes

  1. Effect of NVP, HEMA, and Bis‐GMA grafting on thermal and physical properties of poly(AA‐co‐IA)
    Macromolecular Symposia
    Type: Conference Proceedings
    Role: Writing – Original Draft
    Year: 2025

  2. Asian Journal of Dental Sciences – Certificate of Excellence in Reviewing awarded
    Type: Review
    Role: Writing – Review & Editing
    Year: 2025

  3. Development of polymer composite for medical application
    Doctoral Thesis (Ph.D.)
    Type: Dissertation or Thesis
    Role: Writing – Original Draft
    Year: 2024

  4. Effect of curing time on physico-mechanical properties on dental composite
    Journal of Polymer & Composites
    Type: Journal Article
    Role: Writing – Original Draft, Review & Editing
    Year: 2022

  5. Synthesis of Bis-GMA grafted co-polymer of acrylic–itaconic acid and its composite
    Polymer Science Series B
    Type: Journal Article
    Role: Writing – Original Draft, Review & Editing
    Year: 2022

Feng Yu | Composite Structures | Best Researcher Award

Mr. Feng Yu | Composite Structures | Best Researcher Award

Professor/Dean at Anhui University of Technology, China

Feng Yu is an accomplished scholar and leading figure in civil engineering with expertise in composite structures, the application of Fiber Reinforced Polymer (FRP) materials, and the development of sustainable building solutions. Serving as Dean of the School of Civil Engineering at Anhui University of Technology, he holds multiple prestigious titles, including Wanjiang Scholar Distinguished Professor and Anhui Province Outstanding Young Scientist. His career is marked by significant academic contributions, including 145 published papers—81 of which are SCI-indexed—demonstrating his dedication to advancing civil engineering technology and sustainability. Feng Yu also leads critical industry-focused research as the Director of the Anhui Metallurgical Solid Waste Green Construction Engineering Technology Research Center and has secured funding for numerous national projects. His practical achievements include 30 invention patents and participation in setting industry standards. Feng Yu’s commitment to teaching, mentorship, and technological innovation highlights his influence and dedication to advancing civil engineering and supporting young researchers in the field.

Professional Profile

Education

Feng Yu’s academic journey in civil engineering is distinguished by advanced degrees from top Chinese institutions. He completed his Bachelor’s degree in Civil Engineering at Nanchang University in 2002. Subsequently, he pursued a Master’s degree (2002–2005) and a Ph.D. (2004–2007) in Structural Engineering at Xi’an University of Architecture and Technology. This dual focus provided him with a comprehensive foundation in structural engineering principles, materials science, and innovative civil engineering applications. His expertise was further refined through a postdoctoral fellowship at Chang’an University (2007–2009), where he researched under a distinguished supervisor, focusing on composite materials and structural integrity. This extensive educational background laid a solid foundation for his future research in composite structures, FRP applications, and concrete durability. His academic achievements positioned him well for an influential role in civil engineering, both in academia and in practical engineering solutions for industry challenges.

Professional Experience

Feng Yu has developed an impressive professional trajectory since 2008, primarily at Anhui University of Technology’s School of Civil Engineering, where he has progressed from lecturer to professor and Dean of the School. His roles extend beyond academia, as he serves as Director of the Anhui Metallurgical Solid Waste Green Construction Engineering Technology Research Center and holds leadership positions in various engineering organizations, such as the China Steel Structure Association. His work emphasizes sustainable engineering practices, the application of solid waste materials, and the reinforcement of engineering structures. As a distinguished academic leader, Feng Yu also contributes significantly to standards and policy development in China’s construction industry. His professional background illustrates a commitment to bridging academic research with practical engineering applications and policy, enhancing both the academic landscape and industrial practices in civil engineering.

Research Interests

Feng Yu’s research focuses on the innovative application of composite materials in civil engineering, specifically in FRP materials for structure reinforcement and sustainable building practices. His work addresses critical issues in engineering maintenance, the durability of concrete structures, and the use of solid waste in construction, aligning with global sustainability goals. His projects often explore ways to improve the resilience and longevity of civil infrastructure, making substantial contributions to sustainable engineering. Feng Yu is particularly interested in FRP-reinforced concrete structures, which offer durability and environmental benefits by utilizing advanced composite materials. His research efforts aim to integrate eco-friendly solutions into traditional civil engineering practices, paving the way for greener construction technologies and resilient infrastructures that address modern environmental challenges.

Research Skills

Feng Yu is highly skilled in structural analysis, materials testing, and composite design, with particular expertise in FRP applications and concrete durability testing. His work involves advanced experimental techniques and simulations to assess the mechanical behavior of composite materials under various conditions. Feng Yu’s experience in managing large-scale, multi-disciplinary research projects demonstrates his strengths in project coordination, data analysis, and problem-solving within civil engineering contexts. Additionally, he possesses significant expertise in developing and evaluating sustainable materials, such as the use of solid waste in civil engineering, which requires an intricate understanding of material properties and environmental impact assessments. His research skills are complemented by his ability to lead cross-functional teams, secure funding, and manage technical collaborations with academic and industrial stakeholders.

Awards and Honors

Feng Yu’s contributions to civil engineering have earned him numerous accolades, both for his scientific research and his teaching. Recognized as a Wanjiang Scholar Distinguished Professor, he is celebrated for his outstanding contributions to composite materials and FRP applications. He has been honored with awards from the China Steel Structure Association, including first prizes for science and technology achievements. Additionally, he received the Anhui Province Outstanding Young Scientist Award, acknowledging his leadership and technical contributions in civil engineering. Feng Yu has also been awarded provincial and ministerial prizes for his teaching and research efforts, emphasizing his commitment to both academic excellence and practical impact. His honors reflect a career dedicated to advancing the field of civil engineering, from pioneering sustainable building materials to supporting the next generation of engineers.

Conclusion

Feng Yu is a well-qualified candidate for the Young Scientist Award in Research, particularly due to his contributions in civil engineering materials, innovation in FRP applications, and dedication to sustainable building practices. With an impressive record in academic publication, industry standards, and national research leadership, he embodies the qualities sought in this award. With enhanced international collaboration and further diversification of research themes, Feng Yu’s work could achieve even broader impact in the field. Overall, his achievements and potential for future advancements make him a strong nominee for the award.

Publications Top Publications

  1. Crack-healing and rheological properties of high content fly ash/slag/silica fume green and sustainable cement-based materials incorporating crystalline admixture and calcium alginate biomass hydrogel
    • Authors: He, P., Yu, F., Yu, J., Yang, Z., Zhang, S.
    • Journal: Case Studies in Construction Materials, 2024, Vol. 21, Article e03598
  2. Experimental study on PVC-CFRP confined concrete column-beam interior joint reinforced with core steel tube under low cyclic loading
    • Authors: Yu, F., Liu, W., Feng, C., Fang, Y.
    • Journal: Archives of Civil and Mechanical Engineering, 2024, Vol. 24(4), Article 213
  3. Investigation on chloride resistance of high-volume slag low-carbon cement-based materials with crystalline admixture under seawater
    • Authors: He, P., Yu, J., Yu, F., Fang, Y., Du, W.
    • Journal: Journal of Materials Science, 2024, Vol. 59(37), pp. 17708–17729
  4. A MODEL FOR PREDICTING THE MOMENT-CURVATURE BEHAVIOR OF STEEL TUBE CONFINED REINFORCED SELF-STRESSING STEEL SLAG CONCRETE COLUMNS UNDER CYCLIC LOADING
    • Authors: Yu, F., Liu, W., Bu, S.-S., Kuang, G.-F., Fang, Y.
    • Journal: Advanced Steel Construction, 2024, Vol. 20(3), pp. 310–318
  5. Flexural performance tests and numerical analysis of fabricated light-gauge steel reinforced foam concrete filled steel mesh formwork wallboards
    • Authors: Yu, F., Kuang, G., Bu, S., Chen, L.
    • Journal: Structures, 2024, Vol. 66, Article 106813
  6. A review of the application of steel slag in concrete
    • Authors: Li, Y., Liu, F., Yu, F., Du, T.
    • Journal: Structures, 2024, Vol. 63, Article 106352
    • Citations: 8
  7. Finite element analysis of the seismic performance of PVC-CFRP confined concrete column-ring beam interior joints
    • Authors: Yu, F., Xu, B., Wu, C., Fang, Y., Lin, X.
    • Journal: Structures, 2024, Vol. 62, Article 106186
  8. Influence of joint forms on the seismic behavior of concrete-filled PVC-CFRP tubular column-RC beam joints connected with core steel tubes
    • Authors: Yu, F., Xu, B., Wang, J., Chen, Z., Zhang, Y.
    • Journal: Engineering Structures, 2024, Vol. 303, Article 117499
    • Citations: 1
  9. Flexural behavior evaluation of PET foam core curved sandwich beam: Experimental study and numerical simulation
    • Authors: Xie, H., Hou, X., Fang, H., Fang, Y., Yu, F.
    • Journal: Construction and Building Materials, 2024, Vol. 414, Article 135000
    • Citations: 4
  10. Flexural behavior evaluation of a foam core curved sandwich beam
    • Authors: Xie, H., Li, W., Fang, H., Fang, Y., Yu, F.
    • Journal: Composite Structures, 2024, Vol. 328, Article 117729
    • Citations: 11

 

Mohammed El Fallaki Idrissi | Composite Materials Award | Best Researcher Award

Dr. Mohammed El Fallaki Idrissi | Composite Materials Award | Best Researcher Award

Doctor of Philosophy at Arts et Métiers institute of technologies/ LEM3, Ethiopia.

Dr. Mohammed El Fallaki Idrissi is a dedicated researcher with a strong academic background and diverse experiences in mechanics and materials science. He was recently awarded a Ph.D. after conducting extensive studies on digital, virtual, and hybrid twins, alongside multiscale simulation of composite materials. His specialization includes implementing model order reduction techniques and utilizing Artificial Intelligence models to advance the understanding and analysis of composite materials across various scales.

Professional Profiles:

Education:

Dr. Mohammed El Fallaki Idrissi pursued his academic journey with a focus on advanced materials and data science. He completed his Ph.D. at Arts et Métiers Institute of Technology, France, from 2020 to 2023, specializing in multi-scale modeling and simulation of composite materials, along with data-driven computational mechanics of composite materials/real-time simulations. Prior to his Ph.D., he obtained a Master’s degree in Material Science and Engineering from the same institute, graduating in 2020. His Master’s thesis centered on materials and manufacturing engineering, specifically in the area of experimental and numerical investigation of materials. Before his time in France, Dr. El Fallaki Idrissi completed his Engineering Master’s Degree in Mechanical Engineering at the National School of Arts and Crafts, Morocco, from 2016 to 2020. His specialization during this period was in aeronautical and automotive engineering studies, focusing on new product design and material selection processes.

Experience:

Dr. Mohammed El Fallaki Idrissi is a skilled Data Scientist and Mechanical Research Engineer with diverse experience in the field. From 2020 to 2023, he worked at the Chair ESI Group-AMVALOR in France, focusing on computational vademecum and virtual charts for optimization and real-time simulation of complex problems. He also created digital and hybrid twins for composite structures. In 2020, he completed an internship at LEM3 in France, working on modeling and simulation of shape memory alloys. Prior to his time in France, he gained experience in mechanical design, analyses, and maintenance during internships in Morocco, where he worked on projects ranging from designing marking devices to conducting static, dynamic, and fatigue studies of chairs.

Training:

In 2022, Dr. Mohammed El Fallaki Idrissi participated in the CISM-ECCOMAS Summer School in Italy, focusing on Data-Driven Mechanics with a Constitutive Model-Free Approach. This summer school covered the model-free data-driven paradigm for computational solid mechanics, ranging from imaging to data-driven numerical simulation in nonlinear mechanics of structures. In 2021, he attended the Computational Materials Science Summer School at Texas A&M University in the USA. This program aimed to investigate materials phenomena at multiple scales, ranging from the continuum to the electronic structure level. Also in 2021, Dr. El Fallaki Idrissi participated in the EIT Manufacturing Summer School, organized by the European Institute of Innovation & Technology in Hungary and the University of Tartu in Estonia. This summer school focused on design thinking, proof of concept, ROS (Robot Operating System), and levels of autonomy.

Teaching:

During his time at Arts et Métiers Institute of Technology in Metz, France, from 2020 to 2023, Dr. Mohammed El Fallaki Idrissi engaged in practical work focused on energetic fluid mechanics and heat transfer. These practical experiences would have provided him with hands-on exposure to fundamental concepts and applications in these areas of study. Energetic fluid mechanics likely covered topics related to the behavior of fluids in motion and their energy interactions, while heat transfer would have explored the mechanisms of heat exchange between different mediums and surfaces. These practical sessions would have complemented his theoretical knowledge, providing him with valuable insights and skills applicable to various engineering and research contexts.