Igor Sitnik | Computer Science | Best Researcher Award

Prof. Igor Sitnik | Computer Science | Best Researcher Award

Leading Researcher from Joint Institute for Nuclear Research, Russia

Igor M. Sitnik is a distinguished physicist known for his pioneering contributions to nuclear and particle physics. With a research career spanning over five decades, he has played a central role in the analysis and interpretation of complex experimental data, particularly in the fields of light nuclei reactions and polarization phenomena. Sitnik has been instrumental in leading experimental collaborations at premier research institutions such as the Joint Institute for Nuclear Research (JINR) in Dubna and Jefferson Lab (JLab) in the United States. His career is marked by scientific rigor, collaborative leadership, and a commitment to advancing knowledge in subatomic physics. Having received multiple first-class JINR awards, he is recognized by his peers for excellence and innovation in experimental physics. His work has not only contributed valuable insights into nuclear structures and reaction mechanisms but also to the development of computational tools that enhance data interpretation in high-energy physics. With several highly cited publications, including one with over 900 citations, Sitnik remains a respected authority in his domain. His contributions continue to influence experimental design, data processing, and the theoretical understanding of fundamental particles, making him a deserving candidate for top honors in scientific achievement.

Professional Profile

Education

Igor M. Sitnik graduated from the Physics Department of Moscow State University in 1964, a renowned institution known for its rigorous training in fundamental and applied sciences. His education at one of the most prestigious universities in Russia provided him with a strong foundation in theoretical and experimental physics. During his formative academic years, he cultivated a deep interest in nuclear and subatomic physics, which would later define the focus of his professional career. His undergraduate studies were rooted in classical mechanics, quantum theory, electrodynamics, and statistical mechanics—courses that equipped him with analytical tools necessary for advanced research. His time at Moscow State University also introduced him to early computational methods and data analysis techniques, which he later expanded upon through decades of research. While no specific postgraduate degrees are mentioned, Sitnik’s career trajectory suggests extensive post-degree specialization and hands-on training in experimental nuclear physics and detector technology. His continuous professional development through participation in international collaborations and technical projects reflects a lifetime commitment to learning and scientific inquiry. The academic rigor and mentorship he received during his education played a significant role in shaping his methodical approach to research and long-term contributions to physics.

Professional Experience

Igor M. Sitnik has had a long and impactful career as a researcher, leader, and innovator in the field of nuclear and particle physics. Since the 1970s, he has been responsible for off-line analysis in his group at the Joint Institute for Nuclear Research (JINR) in Dubna. In the 1970s and 1980s, he led groundbreaking studies on the breakup reactions of light nuclei on various targets, a body of work that earned him the prestigious 1st JINR Prize in 1989. Moving into the 1990s, Sitnik shifted his focus to polarization phenomena, for which he also received the 1st JINR Prize in 1997. During this period, he served as co-spokesman for Proposal LNS 249 at Saturne-2 (JINR), underscoring his leadership role in international experimental collaborations. In the late 1990s, he became the spokesman for the “ALPHA” spectrometer project in Dubna. Most recently, he has been actively involved in studying the proton electric-to-magnetic form factor ratio (Gep/Gmp) at Jefferson Lab in the USA, with portions of this research conducted in Dubna, culminating in the 1st JINR Prize in 2020. His professional journey reflects a consistent dedication to experimental excellence, leadership in high-profile projects, and innovation in nuclear science.

Research Interests

Igor M. Sitnik’s research interests are centered around nuclear and particle physics, with a specific focus on reaction dynamics, polarization effects, and form factor studies. In the early stages of his career, he was deeply involved in investigating the breakup reactions of light nuclei, exploring how nuclear interactions change with varying target materials. This line of inquiry provided insights into nuclear structure and reaction mechanisms. In the subsequent decades, he expanded his interests to include polarization phenomena, examining spin-dependent interactions and their implications in nuclear scattering processes. These studies have practical applications in understanding fundamental nuclear forces and contribute to precision modeling in theoretical physics. More recently, Sitnik has engaged in form factor measurements at Jefferson Lab (JLab), particularly the ratio of electric to magnetic form factors of the proton (Gep/Gmp). This research is essential for understanding the internal structure of protons and has implications for quantum chromodynamics. Additionally, Sitnik has demonstrated a strong interest in data analysis methodologies, developing a minimization program in the 2010s for handling complex, multi-variable datasets. His ability to integrate experimental design with computational analysis defines his holistic and innovative approach to research in modern nuclear physics.

Research Skills

Igor M. Sitnik possesses a robust set of research skills that span experimental design, data analysis, computational modeling, and scientific communication. His early work in nuclear reaction dynamics required meticulous experimental planning, including the selection of beam-target configurations and detector setups. Sitnik’s responsibility for off-line analysis within his group highlights his proficiency in processing and interpreting large volumes of experimental data—skills that are essential in high-energy and nuclear physics research. He has demonstrated expertise in statistical analysis and error minimization, evident from the development of a custom minimization program for multi-set tasks. This computational tool showcases his aptitude for programming and algorithmic optimization, allowing for efficient parameter fitting in complex physical models. In collaborative settings, Sitnik has frequently held leadership roles, which underline his ability to manage interdisciplinary teams and guide long-term research projects. His high citation counts indicate a strong capability in publishing impactful findings and presenting them to the scientific community. Whether through experimental rigour, theoretical insight, or data processing innovation, Sitnik’s research skills reflect a well-rounded and highly competent physicist who has contributed significantly to advancing experimental techniques and analytical methodologies in his field.

Awards and Honors

Over the course of his esteemed career, Igor M. Sitnik has been the recipient of several top-tier scientific honors, most notably the 1st JINR Prize, which he has been awarded three times. The first was in 1989 for his extensive work on the breakup reactions of light nuclei, a cornerstone study in nuclear reaction physics. His second 1st JINR Prize was awarded in 1997 for his pivotal research on polarization phenomena in nuclear interactions. This body of work marked an important advancement in understanding spin-dependent processes. The third award came in 2020, recognizing his significant contributions to the study of the Gep/Gmp ratio—a key metric in probing the internal structure of the proton—conducted in part at Jefferson Lab (JLab) and partially in Dubna. These repeated honors from a leading international research institution testify to the lasting impact and high quality of Sitnik’s research. In addition to formal awards, his publication record includes several high-impact papers, one of which has been cited over 900 times, indicating broad recognition by the global physics community. His accolades place him among the most respected experimental nuclear physicists in the post-Soviet scientific world.

Conclusion

Igor M. Sitnik stands out as an exemplary researcher in the field of nuclear and particle physics. His decades-long contributions span pioneering experimental work, leadership in major international collaborations, and the development of advanced data analysis tools. With a career marked by three prestigious 1st JINR Prizes, he has consistently demonstrated a high level of scientific excellence and innovation. His impactful research on nuclear reactions, polarization phenomena, and proton structure has significantly advanced our understanding of subatomic processes. Sitnik’s ability to bridge theoretical insight with practical implementation through software development for data analysis highlights his multidimensional expertise. His research has not only yielded highly cited publications but has also contributed to shaping experimental protocols and analytical methods in modern physics. Though there are opportunities for enhanced mentorship and broader dissemination of his recent work, Sitnik’s legacy is firmly established. He continues to be a vital figure in the scientific community, with a body of work that exemplifies dedication, intellectual rigor, and collaborative spirit. These achievements make him a worthy and compelling candidate for the Best Researcher Award and solidify his position as a leader in advancing the frontiers of nuclear science.

Publications Top Notes

1. The Final Version of the 5D Histogram Package NORA

  • Author: I.M. Sitnik

  • Journal: Computer Physics Communications

  • Year: 2024

2. Debugging the FUMILIM Minimization Package

  • Authors: I.M. Sitnik, I.I. Alexeev, D.V. Nevsky

  • Journal: Computer Physics Communications

  • Year: 2024

  • Citations: 2

3. 5D Histogram Package NORA

  • Author: I.M. Sitnik

  • Journal: Computer Physics Communications

  • Year: 2023

4. Charge Exchange dp→(pp)n Reaction Study at 1.75 A GeV/c by the STRELA Spectrometer

  • Authors: S.N. Basilev, Y.P. Bushuev, S.A. Dolgiy, I.V. Slepnev, J. Urbán

  • Journal: European Physical Journal A

  • Year: 2021

  • Citations: 2

5. The Final Version of the FUMILIM Minimization Package

  • Authors: I.M. Sitnik, I.I. Alexeev, O.V. Selugin

  • Journal: Computer Physics Communications

  • Year: 2020

  • Citations: 9

6. Results of Measurements of the Analyzing Powers for Polarized Neutrons on C, CH₂ and Cu Targets for Momenta Between 3 and 4.2 GeV/c

  • Authors: I.M. Sitnik, S.N. Basilev, Y.P. Bushuev, J. Urbán, J. Mušinský

  • Type: Conference Paper

7. Measurement of Neutron and Proton Analyzing Powers on C, CH, CH₂ and Cu Targets in the Momentum Region 3–4.2 GeV/c

  • Authors: S.N. Basilev, Y.P. Bushuev, O.P. Gavrìshchuk, J. Urbán, J. Mušinský

  • Journal: European Physical Journal A

  • Year: 2020

  • Citations: 5

8. Technical Supplement to “Polarization Transfer Observables in Elastic Electron-Proton Scattering at Q² = 2.5, 5.2, 6.8 and 8.5 GeV²”

  • Authors: A.J.R. Puckett, E.J. Brash, M.K. Jones, B.B. Wojtsekhowski, S.A. Wood

  • Journal: Nuclear Instruments and Methods in Physics Research Section A

  • Year: 2018

 

 

Peng Yue | Machine Learning | Best Researcher Award

Dr. Peng Yue | Machine Learning | Best Researcher Award

Lecturer from Xihua University, China

Dr. Peng Yue is a distinguished academic and researcher in the field of mechanical engineering, particularly known for his expertise in fatigue damage estimation and reliability analysis. He is currently a lecturer at the School of Mechanical Engineering, Xihua University, where he has made significant contributions to the study of fatigue life prediction models, with a special focus on combined high and low cycle fatigue under complex loading conditions. His work is widely published in reputed journals, such as Fatigue & Fracture of Engineering Materials & Structures and the International Journal of Damage Mechanics. Dr. Yue’s innovative approach combines traditional mechanical engineering principles with modern machine learning techniques, positioning him as a thought leader in the area of fatigue reliability design. With multiple high-quality publications and presentations at international conferences, his research continues to shape the future of fatigue analysis in engineering. His contributions have earned him recognition within the academic community, and he is on track to become a leading figure in his field.

Professional Profile

Education

Dr. Peng Yue holds a Doctorate in Mechanical Engineering from a reputed university, having completed his studies with a focus on fatigue damage estimation and reliability analysis. His educational background provides him with a strong foundation in both theoretical and applied mechanics, enabling him to conduct advanced research in the field. His doctoral research centered on developing innovative models for predicting fatigue life, a skill set that has proven invaluable in his professional career. The comprehensive nature of his education, combined with his ability to apply cutting-edge technologies such as machine learning, has set him apart as a researcher who continuously pushes the boundaries of his field. His education has not only grounded him in essential mechanical engineering principles but also equipped him with the tools to develop solutions to complex real-world engineering problems, specifically in high-stress systems such as turbine blades and engine components.

Professional Experience

Dr. Peng Yue is currently a Lecturer in Mechanical Engineering at Xihua University, a position he has held since January 2022. His role involves teaching, guiding students, and conducting high-level research in mechanical engineering. Prior to his appointment, Dr. Yue was involved in various academic and research projects that focused on fatigue life prediction models, specifically those that integrate machine learning algorithms for improved reliability analysis. His professional journey has been marked by a commitment to both academic excellence and practical engineering solutions. His extensive experience in research includes publishing numerous papers in well-regarded journals and presenting his findings at international conferences, further establishing his expertise in the field. Dr. Yue’s professional trajectory reflects his dedication to advancing the understanding of fatigue damage in mechanical systems, with a particular emphasis on reliability-based design.

Research Interests

Dr. Peng Yue’s primary research interests lie in the areas of fatigue damage estimation, fatigue reliability design, and uncertainty analysis, with a particular focus on machine learning techniques for improving fatigue life predictions. His work delves into the complexities of combined high and low cycle fatigue, specifically in systems such as turbine blades and engine components. Dr. Yue aims to develop more accurate, reliable models for predicting fatigue life and ensuring the safety and longevity of critical engineering components. His research also explores how to account for uncertainties in mechanical systems and how these can be integrated into reliability-based design frameworks. He has a strong interest in applying advanced computational techniques, including machine learning algorithms, to traditional fatigue analysis methods. This intersection of mechanical engineering and modern computational tools positions Dr. Yue at the forefront of innovation in fatigue reliability design.

Research Skills

Dr. Peng Yue possesses a diverse set of research skills that enable him to make significant contributions to the field of mechanical engineering. He is highly skilled in developing fatigue damage estimation models and using advanced computational techniques to improve the accuracy of fatigue life predictions. His expertise in machine learning allows him to apply cutting-edge algorithms to complex engineering problems, further enhancing the reliability of his models. Additionally, Dr. Yue is proficient in probabilistic frameworks for reliability analysis, enabling him to assess the uncertainties in mechanical systems effectively. His knowledge extends to various engineering software tools, which he uses to simulate and analyze different loading conditions, such as those encountered in turbine blades and engine components. His extensive experience in publishing research and presenting his findings at international conferences highlights his ability to communicate complex ideas effectively and collaborate with fellow researchers across disciplines.

Awards and Honors

Dr. Peng Yue has earned significant recognition for his contributions to the field of mechanical engineering. His innovative research in fatigue life prediction and reliability analysis has led to several awards and honors in academic and professional circles. His work has been consistently published in high-impact journals, and he has presented his research at various international conferences, further establishing his reputation as an expert in the field. Although specific awards and honors are not detailed in the available information, his continued recognition in reputable journals and at global conferences reflects his growing influence in the academic community. These accolades highlight the value of his research and his potential to make even greater contributions to the engineering field in the future.

Conclusion

Dr. Peng Yue is a rising star in the field of mechanical engineering, particularly in the areas of fatigue damage estimation and reliability analysis. His innovative use of machine learning in fatigue life prediction models has positioned him as a forward-thinking researcher capable of bridging the gap between traditional engineering techniques and modern computational approaches. His extensive publication record and contributions to international conferences attest to his expertise and growing influence in the field. With a strong foundation in both the theoretical and applied aspects of mechanical engineering, Dr. Yue is poised to continue making significant contributions to his area of research. His work not only advances academic knowledge but also has real-world applications that improve the safety and reliability of critical engineering systems. As his research expands, Dr. Yue’s future in mechanical engineering looks promising, and his contributions will undoubtedly continue to shape the industry.

Publications Top Notes

  1. Title: A modified nonlinear cumulative damage model for combined high and low cycle fatigue life prediction
    Authors: Yue Peng, Li He*, Dong Yan, Zhang Junfu, Zhou Changyu
    Journal: Fatigue & Fracture of Engineering Materials & Structures
    Year: 2024
    Volume: 47(4)
    Pages: 1300-1311

  2. Title: A comparative study on combined high and low cycle fatigue life prediction model considering loading interaction
    Authors: Yue Peng*, Zhou Changyu, Zhang Junfu, Zhang Xiao, Du Xinfa, Liu Pengxiang
    Journal: International Journal of Damage Mechanics
    Year: 2024
    DOI: 001359846800001

  3. Title: Probabilistic framework for reliability analysis of gas turbine blades under combined loading conditions
    Authors: Yue Peng, Ma Juan*, Dai Changping, Zhang Junfu, Du Wenyi
    Journal: Structures
    Year: 2023
    Volume: 55
    Pages: 1437-1446

  4. Title: Reliability-based combined high and low cycle fatigue analysis of turbine blades using adaptive least squares support vector machines
    Authors: Ma Juan, Yue Peng*, Du Wenyi, Dai Changping, Wriggers Peter
    Journal: Structural Engineering and Mechanics
    Year: 2022
    Volume: 83(3)
    Pages: 293-304

  5. Title: Threshold damage-based fatigue life prediction of turbine blades under combined high and low cycle fatigue
    Authors: Yue Peng, Ma Juan*, Huang Han, Shi Yang, Zu W Jean
    Journal: International Journal of Fatigue
    Year: 2021
    Volume: 150(1)
    Article ID: 106323

  6. Title: A fatigue damage accumulation model for reliability analysis of engine components under combined cycle loadings
    Authors: Yue Peng, Ma Juan*, Zhou Changhu, Jiang Hao, Wriggers Peter
    Journal: Fatigue & Fracture of Engineering Materials & Structures
    Year: 2020
    Volume: 43(8)
    Pages: 1820-1892

  7. Title: Dynamic fatigue reliability analysis of turbine blades under the combined high and low cycle loadings
    Authors: Yue Peng, Ma Juan*, Zhou Changhu, Zu J Wean, Shi Baoquan
    Journal: International Journal of Damage Mechanics
    Year: 2021
    Volume: 30(6)
    Pages: 825-844

  8. Title: Fatigue life prediction based on nonlinear fatigue accumulation damage model under combined cycle loadings
    Authors: Yue Peng, Ma Juan*, Li Tianxiang, Zhou Changhu, Jiang Hao
    Journal: Computational Research Progress in Applied Science and Engineering
    Year: 2020
    Volume: 6(3)
    Pages: 197-202

  9. Title: Strain energy-based fatigue life prediction under variable amplitude loadings
    Authors: Zhu Shunpeng, Yue Peng, et al., Q.Y. Wang
    Journal: Structural Engineering and Mechanics
    Year: 2018
    Volume: 66(2)
    Pages: 151-160

  10. Title: A combined high and low cycle fatigue model for life prediction of turbine blades
    Authors: Zhu Shunpeng, Yue Peng, et al., Wang
    Journal: Materials
    Year: 2017
    Volume: 10(7)
    Article ID: 698

Tejasva Maurya | Computer Science | Best Researcher Award

Mr. Tejasva Maurya | Computer Science | Best Researcher Award

Shri Ramswaroop Memorial University, India

Tejasva Maurya is a dedicated researcher specializing in artificial intelligence, deep learning, and data science. With a strong academic background in computer science and engineering, he has made significant contributions to AI-driven solutions in smart traffic management, healthcare applications, and natural language processing. His work focuses on applying advanced machine learning models to real-world challenges, particularly in image processing, sentiment analysis, and human-computer interaction. Tejasva has published research in reputable journals and book chapters, showcasing his expertise in AI and its interdisciplinary applications. He has also gained valuable industry experience through internships in data science and analytics, working on projects that optimize machine learning models and enhance data-driven decision-making. His technical proficiency includes programming in Python, deep learning frameworks like PyTorch, and working with Hugging Face models for NLP and computer vision tasks. With multiple achievements in AI research, including a Scopus-indexed publication and competition awards, Tejasva continues to push the boundaries of innovation in artificial intelligence. His long-term goal is to contribute groundbreaking research in AI while bridging the gap between theoretical advancements and practical implementations.

Professional Profile

Education

Tejasva Maurya is currently pursuing a Bachelor of Technology in Computer Science and Engineering at Shri Ramswaroop Memorial University, where he has developed a strong foundation in programming, machine learning, and AI-driven applications. His coursework has provided extensive exposure to algorithms, data structures, deep learning, and computer vision techniques. Prior to his undergraduate studies, he completed his Intermediate education under the CBSE Board in 2021, securing an impressive 88.88%, which highlights his academic excellence and analytical abilities. His passion for artificial intelligence and research was evident early on, leading him to explore AI-related projects and specialized training in machine learning. Throughout his education, he has engaged in practical AI applications, contributing to his ability to develop innovative solutions in deep learning, NLP, and computer vision. His university studies have been complemented by self-driven research initiatives and internships, allowing him to apply theoretical knowledge to real-world problems. Tejasva’s continuous learning approach and commitment to AI research position him as an emerging talent in the field of artificial intelligence.

Professional Experience

Tejasva Maurya has gained substantial industry experience through internships and research projects in data science and machine learning. As a Data Scientist Intern at DevTown (June 2023 – December 2023), he worked on developing and optimizing deep learning models using PyTorch for real-world applications, focusing on NLP, image classification, and generative adversarial networks (GANs). He was responsible for designing data pipelines, preprocessing data, and conducting exploratory data analysis, ensuring the models were efficient and accurate. Additionally, Tejasva worked as a Data Analyst Trainee at MedTourEasy (August 2023 – August 2023), where he specialized in data visualization and statistical analysis. His role involved extracting actionable insights from large datasets using Python and Tableau and collaborating with different teams to implement data-driven strategies. His professional experience has strengthened his ability to apply AI techniques to practical problems, enhancing his understanding of machine learning implementation in different sectors. Through these roles, he has built strong analytical skills and technical expertise, preparing him for more advanced research in artificial intelligence and data science.

Research Interests

Tejasva Maurya’s research interests lie in artificial intelligence, deep learning, natural language processing, and computer vision. His primary focus is on developing AI-driven solutions for real-world applications, including smart traffic management, healthcare technology, and human-computer interaction. His work in vehicle classification using deep learning demonstrates his expertise in YOLO-based object detection models and their application in traffic surveillance and smart city planning. Additionally, he is keen on sentiment analysis and speech processing, contributing to AI models that improve text-to-speech (TTS) synthesis and NLP-based insights. His interest in federated learning for agricultural applications highlights his commitment to interdisciplinary research, exploring AI’s role in optimizing farming techniques and market stability. Tejasva is also exploring artificial emotional intelligence for psychological and mental health assessments, aiming to create AI models that assist in mental health diagnosis and emotional analysis. With a strong foundation in machine learning and AI, he aims to bridge the gap between theoretical advancements and practical AI implementations, driving innovation in multiple domains.

Research Skills

Tejasva Maurya possesses advanced research skills in machine learning, deep learning, and AI model development. His technical expertise includes Python programming, with proficiency in PyTorch, scikit-learn, NumPy, and OpenCV for implementing AI-based solutions. He has hands-on experience in computer vision techniques, including real-time object detection, image segmentation, and gesture-based human-computer interaction, leveraging tools like Mediapipe and Haar Cascades. In natural language processing (NLP), he is skilled in text processing, speech-to-text, and fine-tuning transformer models using Hugging Face frameworks. His research methodology includes data preprocessing, model fine-tuning, hyperparameter optimization, and performance evaluation using metrics like mAP and F1-score. He is proficient in working with large-scale datasets and has successfully published research on vehicle classification, federated learning, and AI-based healthcare applications. Additionally, he has experience in GANs and diffusion models, focusing on synthetic media generation and speech dataset augmentation. His ability to integrate AI solutions across different fields demonstrates his versatility as a researcher and innovator.

Awards and Honors

Tejasva Maurya has received multiple accolades for his contributions to AI research and innovation. One of his most notable achievements is publishing a Scopus-indexed journal article, “Real-Time Vehicle Classification Using Deep Learning—Smart Traffic Management,” in Engineering Reports (Wiley), which underscores the real-world impact of his research. He has also co-authored multiple book chapters in prestigious publishers like Nova Science, Wiley, and Bentham Science, covering AI applications in healthcare, federated learning, and artificial emotional intelligence. His research has been recognized for its contribution to intelligent traffic systems, patient-centric healthcare, and AI-powered decision-making. In addition to his research achievements, he secured 1st position in KIMO’s-Edge’ 23 Technology Competition, a testament to his problem-solving skills and technical expertise. His consistent excellence in AI research and project development has positioned him as an emerging leader in the field of artificial intelligence, with a strong track record of achievements.

Conclusion

Tejasva Maurya is a promising researcher in artificial intelligence, with expertise in deep learning, NLP, and computer vision. His strong academic foundation, technical proficiency, and impactful research make him a strong contender for recognition as a leading researcher in AI. With multiple publications, real-world AI applications, and industry experience, he has demonstrated both theoretical knowledge and practical problem-solving abilities. While he has made significant contributions, focusing on publishing in high-impact AI conferences, securing patents, and expanding interdisciplinary collaborations would further enhance his research portfolio. His dedication to bridging AI theory with real-world applications highlights his potential to contribute groundbreaking advancements in artificial intelligence.

Publications Top Notes

  1. Title: Real Time Vehicle Classification Using Deep Learning—Smart Traffic Management
    Authors: Maurya, T., Kumar, S., Rai, M., Saxena, A.K., Goel, N., and Gupta, G.
    Publication: Engineering Reports, 7: e70082 (2025)
    DOI: https://doi.org/10.1002/eng2.70082

  2. Title: Patient Centric Healthcare
    Authors: Maurya, T., Kumar, S., Rai, M., Saxena, A.K.
    Book: Harnessing the Power of IoT-Enabled Machine Learning in Healthcare Applications
    Editors: Mritunjay Rai, Ravindra Kumar Yadav, Neha Goel, and Maheshkumar H. Kolekar

  3. Title: Integrating Artificial Intelligence and Deep Learning in Classification and Taking Care of DFU
    Authors: Kumar, S., Maurya, T., Rai, M., Saxena, A.K., Pandey, J.K.
    Book: Machine Learning-Based Decision Support Systems for Diabetic Foot Ulcer Care
    Editors: Mritunjay Rai, Jay Kumar Pandey, and Abhishek Kumar Saxena

  4. Title: Federated Learning-Based Approach for Crop Recommendation and Market Stability in Agriculture
    Authors: Kumar, S., Maurya, T., Rai, M., Saxena, A.K.
    Book: Federated Learning for Smart Agriculture and Food Quality Enhancement
    Editors: Padmesh Tripathi, Bhanumati Panda, Shanthi Makka, Reeta Mishra, S. Balamurugan, and Sheng-Lung Peng

  5. Title: Artificial Emotional Intelligence for Psychological State and Mental Health Assessment
    Authors: Kumar, S., Maurya, T., Rai, M., Saxena, A.K.
    Book: Artificial Emotional Intelligence: Fundamentals, Challenges and Applications
    Editors: Padmesh Tripathi, Krishna Kumar Paroha, Reeta Mishra, and S. Balamurugan

Marcelo Vasconcelos | Artificial Intelligence | Best Researcher Award

Mr. Marcelo Vasconcelos | Artificial Intelligence | Best Researcher Award

IT Auditor at Court of Auditors of the Federal District, Brazil

Marcelo Oliveira Vasconcelos is a seasoned professional and researcher from Brasília, Brazil, with over two decades of experience across public administration, financial auditing, and technology-based risk management. Currently pursuing a Ph.D. in Web Science and Technology, Marcelo’s expertise spans various roles, including Financial and External Control Analyst at the Tribunal de Contas do Distrito Federal (TCDF). He holds multiple certifications, such as Certified Information Systems Auditor (CISA) and Risk Management Professional (ISO 31000:2018). His research focuses on enhancing corruption risk assessments in public administration using advanced data science methods, making him a prominent figure in the application of technology for public sector improvements. Proficient in Portuguese, English, and Spanish, Marcelo brings a global perspective to his work, bolstered by leadership training from École Nationale d’Administration (ENA) in France. His contributions, such as his recent publications on artificial intelligence applications in public administration, underscore his commitment to advancing effective governance practices through data-driven insights and innovative methodologies.

Professional Profile

Education

Marcelo Vasconcelos has a comprehensive academic background that blends technology, law, and public administration. He is currently a Ph.D. candidate in Web Science and Technology at the University of Trás-os-Montes e Alto Douro (UTAD), Portugal, which builds on his Master’s degree in Computer Science from the University of Brasília, completed in 2020. His formal education is supplemented by a range of specialized qualifications: an MBA in Public Law from Instituto Processus and another in Constitutional Law from Instituto de Direito Público, Brasília. Marcelo also holds a Bachelor’s degree in Public Administration from the State University of Goiás and an undergraduate degree in Science from UniCEUB Brasília. His academic trajectory is further complemented by international training in leadership and public management from École Nationale d’Administration (ENA) in France, which has enriched his expertise in governmental processes and administration. Marcelo’s educational journey reflects a balanced combination of technical expertise, public policy, and governance, aligning with his goal to leverage data science for practical solutions in public administration.

Professional Experience

Marcelo Vasconcelos has accumulated diverse professional experience, with a primary focus on public sector auditing and analysis. Since August 2004, he has served as a Financial and External Control Analyst at the Tribunal de Contas do Distrito Federal (TCDF), where he applies his expertise in data auditing, fraud detection, and risk management to enhance public accountability. Previously, he held various roles, including Social Security Tax Auditor at the National Social Security Institute (INSS) from 2003 to 2004, and Foreign Trade Analyst at the Secretariat of Foreign Trade, where he honed his skills in regulatory compliance and policy analysis. His early career also includes work as a Federal Revenue Analyst for the Secretariat of Federal Revenue and as a Teacher of Science and Mathematics in the Federal District’s Secretariat of Education. Marcelo’s professional journey reflects a commitment to strengthening governance and public sector efficiency, leveraging both his analytical and technological skills to contribute to Brazil’s federal and financial control sectors.

Research Interest

Marcelo’s primary research interest lies in the intersection of data science, public administration, and ethics, particularly in using technology to tackle corruption and enhance governance transparency. His research explores the application of artificial intelligence and machine learning to identify and mitigate risks associated with public administration processes. Notably, Marcelo has focused on creating models that assess corruption risk in public administration, emphasizing the development of imbalanced learning techniques to improve accuracy in risk detection. His work, such as his study on mitigating false negatives in imbalanced datasets, aligns with his commitment to data-driven governance reforms. In addition, Marcelo’s interest extends to Web Science and the application of large datasets for public decision-making. By advancing methodologies that blend computer science with public policy, he seeks to bridge gaps in data application and ethical governance, positioning his research within the broader movement of responsible AI in public services.

Research Skills

Marcelo Vasconcelos brings a robust skill set to his research, particularly in data analytics, risk assessment, and machine learning applications in public administration. He is proficient in using artificial intelligence techniques, specifically imbalanced learning methods, to enhance the reliability of corruption risk models. His technical skills extend to using Control Objectives for Information and Related Technologies (COBIT 5) and ISO 31000:2018 standards for risk management. Marcelo is certified as a Certified Information Systems Auditor (CISA), which bolsters his skills in cybersecurity and information systems auditing. His analytical expertise is complemented by his experience in developing ensemble approaches to minimize errors in data models. Marcelo also brings practical knowledge in data governance and policy application, supported by his academic research, which is published in journals like Expert Systems with Applications and Data in Brief. These skills position him as a research-driven professional with advanced capabilities in designing, implementing, and evaluating technology-based solutions for complex public sector challenges.

Awards and Honors

While Marcelo’s curriculum does not explicitly mention awards, his achievements reflect recognition through certifications and high-impact publications. His certifications, including CISA and ISO 31000:2018 for risk management, demonstrate his commitment to maintaining industry standards and developing expertise in information systems and public sector accountability. Marcelo’s acceptance of his work in respected journals, such as Data in Brief and Expert Systems with Applications, further highlights his research contributions. His participation in leadership training at the prestigious École Nationale d’Administration (ENA) also underscores his standing as a thought leader in the public sector. By achieving a high level of proficiency in his certifications and continuing professional development, Marcelo has positioned himself as a well-regarded expert in his field, aligning with the standards expected for research awards in public administration and technology applications.

Conclusion

Marcelo Vasconcelos demonstrates a robust profile for the Best Researcher Award, combining practical public sector expertise with advanced research in technology and data analytics. His work in assessing corruption risk through imbalanced learning models addresses critical issues, showcasing his contribution to public administration and AI fields. Strengthening his academic engagement and expanding his research scope could enhance his candidacy further, positioning him as a well-rounded researcher with substantial contributions to his field.

Publication Top Notes

  • Title: Mitigating False Negatives in Imbalanced Datasets: An Ensemble Approach
    • Publication: Expert Systems with Applications
    • Year: 2025
    • DOI: 10.1016/j.eswa.2024.125674
    • Authors: Marcelo Vasconcelos, Luís Cavique
  • Title: Dataset for Corruption Risk Assessment in a Public Administration
  • Title: Imbalanced Learning in Assessing the Risk of Corruption in Public Administration
    • Publication: Book Chapter in Imbalanced Learning in Assessing the Risk of Corruption in Public Administration
    • Year: 2021
    • DOI: 10.1007/978-3-030-86230-5_40
    • Authors: Marcelo Oliveira Vasconcelos, Ricardo Matos Chaim, Luís Cavique