Supraja Ballari | Computer Science | Best Researcher Award

Mrs. Supraja Ballari | Computer Science | Best Researcher Award

Assistant Professor from Guru Nanak Institutions Technical Campus, India

Smt. B. Supraja is an experienced academician and researcher in the field of Computer Science and Engineering. With over 15 years of teaching experience at various reputed technical institutions in India, she has consistently contributed to both pedagogy and applied research. Currently serving as an Assistant Professor at Guru Nanak Institutions Technical Campus, Telangana, she is also pursuing her Ph.D. in Computer Science from Dravidian University, Kuppam. Her academic journey is marked by a strong foundation in computer applications and engineering, with a focus on emerging areas such as machine learning, cybersecurity, blockchain, and data mining. She has authored several research papers in reputed journals and holds multiple patents reflecting her commitment to innovation. Her work spans interdisciplinary applications of computing in logistics, vehicular networks, and employee management systems. Known for her diligence and academic integrity, Smt. Supraja combines her teaching skills with active research, mentorship, and curriculum development. Her ability to blend theory with practical applications makes her a valuable asset in academia. Her academic contributions have positioned her as a researcher with great potential for national recognition, including eligibility for research excellence awards.

Professional Profile

Education

Smt. B. Supraja holds a rich academic background that lays the foundation for her current research pursuits. She is presently pursuing a Ph.D. in Computer Science from Dravidian University, Kuppam, with a focus on contemporary issues in cybersecurity, data analytics, and intelligent systems. She completed her M.Tech in Computer Science and Engineering from PBR Visvodaya Engineering College, Kavali (affiliated to JNTUA) between 2011 and 2014, where she deepened her technical knowledge in core computer engineering disciplines. Her postgraduate studies began with a Master of Computer Applications (M.C.A.) from Geethanjali College of PG Studies under Sri Venkateswara University, Nellore (2002–2005). Her academic credentials are well aligned with the technological demands of today’s dynamic research landscape. Her education spans foundational programming, software engineering principles, and advanced technologies, making her a capable researcher and instructor. Throughout her academic journey, she has remained focused on interdisciplinary applications of computer science in real-world contexts. Her continuous academic progression—culminating in her doctoral studies—underscores her lifelong commitment to education and research excellence.

Professional Experience

Smt. Supraja’s professional journey spans nearly two decades in the higher education sector, where she has served in various teaching capacities. She is currently employed as an Assistant Professor at Guru Nanak Institutions Technical Campus, Telangana (since February 2023), where she teaches undergraduate and postgraduate courses in Computer Science. Prior to this, she held the same role at Narayana Engineering College, Nellore from July 2021 to January 2023, and at Krishna Chaitanya Educational Institutions from December 2014 to July 2021, teaching a mix of B.Sc., BCA, and M.Sc. students. Her earlier roles included positions at S. Chaavan Institute of Science & Technology and S.V. Arts & Science College, Gudur, where she taught various computer science subjects to both undergraduate and postgraduate students. In each of these positions, she has contributed to academic instruction, student mentoring, and curriculum development. Her experience reflects a deep engagement with the academic process, ranging from foundational teaching to more research-oriented mentorship. This long-standing teaching career demonstrates not only her pedagogical strengths but also her dedication to shaping the next generation of computer scientists.

Research Interests

Smt. B. Supraja’s research interests span a wide range of cutting-edge domains in computer science. Her primary focus areas include machine learning, cybersecurity, blockchain applications, data mining and data warehousing, fog computing, and cloud-based control systems. Her work reflects a deep interest in the intersection of artificial intelligence with societal and industrial applications. She has conducted research on anomaly detection in software-defined networks, data sharing in vehicular social networks using blockchain, and logistics optimization through structural equation modeling. She also explores areas such as sentiment analysis using Naïve Bayes classifiers, encrypted control systems, and cyberattack prediction through machine learning techniques. These interests align closely with today’s technological priorities such as data protection, automation, and intelligent decision-making. Her work seeks to bridge the gap between academic research and industrial applicability. The diverse yet cohesive nature of her research interests indicates her adaptability and eagerness to explore interdisciplinary applications. These interests not only reflect technical competence but also her sensitivity to real-world challenges that require intelligent, scalable, and secure technological solutions.

Research Skills

Smt. B. Supraja brings a robust set of research skills honed through academic work, project collaborations, and innovation initiatives. She is proficient in programming languages such as Java, C, and C++, and has practical experience with databases like Oracle and MS Access, as well as web technologies like HTML, JavaScript, and XML. Her expertise includes operating within different development environments using tools like Eclipse and Editplus. These technical proficiencies support her capability in implementing machine learning models, simulation systems, and data analysis applications. She has successfully authored and co-authored peer-reviewed publications and book chapters, showing familiarity with scientific writing, research methodology, and collaborative scholarship. In addition, she has contributed to the innovation space through patent filings in areas such as employee churn prediction and cyberattack prevention systems using machine learning algorithms. Her ability to apply theoretical knowledge into practical systems design and her experience in real-world problem solving mark her as a capable and results-oriented researcher. Her academic and technological skills are further strengthened by her consistent teaching of core subjects, which reinforces her depth in fundamental computer science concepts.

Awards and Honors

While a formal list of awards and honors is not provided in her academic profile, Smt. B. Supraja’s achievements in publishing, patenting, and contributing to book chapters reflect strong professional recognition. Her patents—three of which are published between 2022 and 2024—indicate acknowledgment of her work’s novelty and utility in applied computer science. Her scholarly contributions to journals such as the Journal of Engineering Sciences and Design Engineering, alongside collaborative book chapters on contemporary issues like COVID-19’s digital impact, have been positively received in academic circles. These publications are indicative of her growing visibility in the research community. Furthermore, her inclusion in multidisciplinary anthologies and collaborations with senior academicians from diverse fields show a level of trust and professional respect. Although specific awards or titles are not yet documented, her research outputs and innovation track record position her as a strong candidate for future academic honors and distinctions. Her work is gaining momentum, and with further institutional and international engagement, she is well poised for formal recognition through research awards and academic fellowships.

Conclusion

In conclusion, Smt. B. Supraja is a dedicated academic professional and an emerging researcher in the field of computer science. Her profile reflects a balanced integration of long-standing teaching experience and active research engagement. She has demonstrated capability in producing impactful scholarly work through journal publications, book chapters, and patents. Her expertise spans across machine learning, blockchain, cloud systems, and cybersecurity—fields that are not only technologically significant but also socially relevant. While she is still progressing in her doctoral research, her current contributions are commendable and indicate strong future potential. Areas for growth include enhancing research impact through increased citation metrics, obtaining funded projects, and expanding global collaborations. However, the depth and diversity of her current academic efforts strongly support her candidacy for research awards. Smt. Supraja exemplifies the qualities of a modern researcher—technically skilled, pedagogically sound, and oriented towards practical applications. With continued dedication and strategic academic outreach, she is well-positioned to become a recognized contributor to India’s research and innovation landscape.

Publications Top Notes

  1. A vital neurodegenerative disorder detection using speech cues
    BS Jahnavi, BS Supraja, S Lalitha
    2020

  2. Simplified framework for diagnosis brain disease using functional connectivity
    T Swarnalatha, B Supraja, A Akula, R Alubady, K Saikumar, …
    2024

  3. DARL: Effectual deep adaptive reinforcement learning model enabled security and energy-efficient healthcare system in Internet of Things with the aid of modified manta ray
    B Supraja, V Kiran Kumar, N Krishna Kumar
    2025

  4. IoT based effective wearable healthcare monitoring system for remote areas
    S Tiwari, N Jain, N Devi, B Supraja, NT Chitra, A Sharma
    2024

  5. Securing IoT networks in healthcare for enhanced privacy in wearable patient monitoring devices
    V Tiwari, N Jharbade, P Chourasiya, B Supraja, PS Wani, R Maurya
    2024

  6. Machine learning-based prediction of cardiovascular diseases using Flask
    V Sagar Reddy, B Supraja, M Vamshi Kumar, C Krishna Chaitanya
    2023

  7. Real time complexities of research on machine learning algorithm: A descriptive research design
    GP Dr. N. Krishna Kumar, B. Supraja, B.S. Hemanth Kumar, U. Thirupalu
    2022

  8. IT employee job satisfaction survey during Covid-19
    GVMR Dr. N. Krishna Kumar, B. Supraja
    2022

  9. Covid-19 and digital era
    GVMR Dr. N. Krishna Kumar, B. Supraja
    2022

  10. Forwarding detection and identification anomaly in software defined network
    DNKK B. Supraja, A. Venkateswatlu
    2022

  11. Machine learning structural equation modeling algorithm on logistics and supply chain management
    UT B. Supraja, Dr. N. Krishna Kumar, B.S. Hemanth Kumar, B. Saranya, G …
    2022

  12. Sentiment analysis of customer feedback on restaurants using Naïve Bayes classifier
    DNKK A. Venkateswatlu, B. Supraja
    2021

  13. Design and implementation of fog-based encrypted control system in public clouds
    DNKK B. Supraja, A. Venkateswatlu
    2021

  14. Enhancing one to many data sharing using blockchain in vehicular social networks
    DNKK B. Supraja, A. Venkateswatlu
    2021

Elavarasi Kesavan | Computer Science | Best Industrial Research Award

Mrs. Elavarasi Kesavan | Computer Science | Best Industrial Research Award

Full-Stack QA Architect from Cognizant, India

Mrs. Elavarasi Kesavan is an accomplished Full Stack QA Architect with over 18 years of extensive experience in software quality assurance and automation testing. She has built a robust career with a strong specialization in Salesforce platforms, web-based applications, and various automated testing tools and methodologies. Her in-depth knowledge spans end-to-end software testing processes, mobile and web service testing, ETL validation, and automation using industry-standard tools like Selenium WebDriver, TestNG, Rest Assured, and Tricentis TOSCA. She is particularly proficient in test management, having implemented seamless integrations between tools like Jira and QTest. Elavarasi has consistently demonstrated excellence in designing testing frameworks, managing offshore teams, and ensuring quality compliance throughout the Software Development Life Cycle (SDLC). Additionally, she is well-versed in Agile, Waterfall, and V-Model methodologies and excels in accessibility testing using tools like JAWS Reader. She brings technical expertise in Java, JavaScript, and Ruby to her QA automation efforts. Through her leadership roles at Cognizant and other firms, she has led teams to deliver high-quality software solutions with a focus on automation, innovation, and efficiency. Her strong communication and client engagement skills have further enhanced her value in the industrial and research sectors.

Professional Profile

Education

Mrs. Elavarasi Kesavan holds a Bachelor of Technology (B.Tech) degree in Information Technology from Anjali Ammal Mahalingam Engineering College, affiliated with Anna University, which she completed in 2006. To complement her technical foundation, she pursued and successfully earned a Master of Business Administration (MBA) in General Management from SRM Easwari Engineering College, Anna University in 2011. Her academic journey reflects a unique blend of technical proficiency and managerial acumen, which has significantly contributed to her effectiveness in leading QA initiatives and managing cross-functional teams. Her academic training in Information Technology provided a solid grounding in programming languages, databases, and web technologies, while her MBA developed her capabilities in project management, strategic planning, and team leadership. This combination has been instrumental in her ability to bridge technical expertise with business-oriented decision-making. Additionally, her continuous pursuit of professional development through various certifications in AI testing, cloud technologies, and test automation tools demonstrates her commitment to lifelong learning and staying ahead in the rapidly evolving tech industry. Her education has laid the foundation for her successful career and her capacity to contribute meaningfully to industrial research and QA architecture.

Professional Experience

Mrs. Elavarasi Kesavan brings over 18 years of progressive experience in the IT industry, primarily focusing on software quality assurance, automation, and test architecture. She currently serves as an Engineer Manager and Full Stack QA Architect at Cognizant, a role she has held since November 2022. Prior to this, she worked at Concentrix as a Technology Lead for Full Stack QA Engineering from October 2021 to November 2022. Her earlier tenure at Cognizant (2010–2021) as a Senior Associate included responsibilities such as developing and maintaining automated test frameworks, integrating QA tools with defect tracking systems, and leading cross-functional teams. She began her professional journey as a Software Developer at IBM, followed by a stint at Vayana India Pvt Ltd. Elavarasi’s hands-on experience with a variety of test management and automation tools such as Selenium, TOSCA, Postman, Jira, and QTest highlights her adaptability and technical depth. She has effectively driven the QA strategy in complex project environments, aligning quality goals with business objectives. She is recognized for her innovative solutions, strong client interactions, and mentoring capabilities. Her ability to handle diverse tools, technologies, and methodologies has cemented her as a valuable leader in the QA domain across multiple industries.

Research Interests

Mrs. Elavarasi Kesavan’s research interests lie at the intersection of software quality assurance, automation engineering, AI-driven testing, and compliance-focused application validation. She is particularly focused on developing frameworks and methodologies for efficient and scalable automation testing of web, mobile, and enterprise applications, including CRM platforms like Salesforce. Her work emphasizes scriptless automation using tools like Tricentis TOSCA and integration of AI-based testing approaches to enhance test coverage, reliability, and efficiency. She is keenly interested in security and compliance testing, aligning quality assurance practices with international standards such as GDPR, HIPAA, and PCI-DSS. Elavarasi’s exploration of testing tools that support DevOps and Agile frameworks demonstrates her commitment to continuous delivery and integration practices. Moreover, she is enthusiastic about advancing quality engineering through research on defect prediction models, test data management, and automation in cloud-native environments. Her engagement in multidisciplinary forums and conferences reveals a strong inclination toward applied industrial research. She aspires to contribute to the future of QA through intelligent automation frameworks, optimization of test cycles using AI, and expanding automation in AI/ML-based systems. These interests align with the goals of the Best Industrial Research Award by showcasing innovation and impact on real-world software engineering challenges.

Research Skills

Mrs. Elavarasi Kesavan is equipped with a comprehensive set of research and technical skills that support her contributions to industrial software testing and automation research. She is adept in using a wide array of automation tools such as Selenium WebDriver, Tricentis TOSCA, Postman, and SOAP UI. Her proficiency in developing and implementing test strategies spans data-driven and behavior-driven frameworks, including TestNG, Cucumber, Jasmine, and Rest Assured. Elavarasi has advanced capabilities in API testing, cross-browser testing, accessibility validation (JAWS), and end-to-end test management using tools like Jira and QTest. Her programming expertise includes Java, JavaScript, and Ruby, which she employs for custom test scripts and automation logic. She is skilled in web service validation, database verification (SQL, Oracle, MySQL), and cloud environment testing, complemented by hands-on experience in CI/CD tools like Jenkins and Maven. Her analytical and documentation capabilities are evident in her creation of test plans, traceability matrices, and compliance validation reports. In AI testing, she applies certified methodologies for testing machine learning models and intelligent systems. Her research-oriented approach, combined with practical application and tool proficiency, positions her as a technically strong candidate capable of innovating in industrial software quality research.

Awards and Honors

Mrs. Elavarasi Kesavan has received numerous prestigious awards and honors that reflect her excellence in technology innovation, industrial research, and leadership in software quality assurance. Notably, she was the recipient of the Distinguished Technology Award at the Dubai Dynamic Ultimate Business & Academic Iconic Awards in 2025. Her innovative contributions to IoT were recognized through the Best Patent Award for the design and development of an IoT-based multifunction agriculture robot, presented by the Scientific International Publishing House. Elavarasi also received the Best Paper Award for her work on cloud computing in Industry 4.0 at the UAE International Conference on Multidisciplinary Research and Innovation (ICMRI-2025). Additionally, she was honored with the Best Woman Researcher Award at the International Conference on Computational Science, Engineering & Technology (ICCSET-2025). Her editorial contributions were acknowledged with a Certificate of Excellence for her role as Chief Editor in Contemporary Research in Engineering, Management, and Science. Furthermore, she was recognized with a Digital Excellence Award by the CAPE Forum and a Certificate of Emerging Leader in Technology Innovation by RCS International Awards. These accolades not only highlight her technical prowess but also her impact on industrial innovation and collaborative research.

Conclusion

Mrs. Elavarasi Kesavan presents a strong and compelling case for the Best Industrial Research Award. With nearly two decades of experience in software quality assurance and a consistent record of innovation in test automation and QA strategy, she stands out as a leader who bridges technical execution with strategic foresight. Her deep expertise in automation tools, QA methodologies, compliance testing, and AI testing frameworks positions her at the forefront of industrial QA research. The recognition she has received through multiple awards and her contributions in patent development and conference presentations further reinforce her role as a pioneering professional in the field. Elavarasi’s research-oriented mindset, hands-on technical proficiency, and proven ability to lead teams and deliver enterprise-grade solutions make her a strong candidate whose work aligns with the goals of industrial research excellence. While she could benefit from further academic publications in peer-reviewed journals to bolster her academic research credentials, her real-world impact, technical acumen, and award-winning innovations clearly demonstrate her merit. Overall, Mrs. Elavarasi Kesavan exemplifies the ideal qualities of an industrial researcher whose work drives both technological advancement and practical value in the software engineering domain.

Publication Top Notes

  • Title: The Impact of Cloud Computing on Software Development: A Review
    Author: E. Kesavan
    Journal: International Journal of Innovations in Science, Engineering and Management
    Year: 2025
    Citations: 3

  • Title: AI Adapt Digital Learning in Education
    Author: E. Kesavan
    Conference: International Conference Proceeding on Innovation and Sustainable Strategies
    Year: 2025

  • Title: Explore How Digital Infrastructure Has Shaped Startup Growth
    Author: E. Kesavan
    Conference: International Conference on the Role of Innovation Policies
    Year: 2025

  • Title: Artificial Intelligence in Commerce: How Businesses Can Leverage Artificial Intelligence to Gain a Competitive Edge in the Global Marketplace
    Author: E. Kesavan
    Publication: Thiagarajar College of Preceptors, Edu Spectra
    Year: 2025

  • Title: The Evolution of Software Design Patterns: An In-Depth Review
    Author: E. Kesavan
    Journal: International Journal of Innovations in Science, Engineering and Management
    Year: 2025

  • Title: Impact of Artificial Intelligence on Software Development Processes
    Authors: SMSA Cuddapah Anitha, Nirmal Kumar Gupta, Balaji Chintala, Daniel Pilli, E. Kesavan
    Journal: Journal of Information Systems Engineering and Management
    Volume/Issue: 10 (25s), Pages 431–437
    Year: 2025

  • Title: Information and Communication Technology Development in Emerging Countries
    Author: E. Kesavan
    Journal: Journal on Electronic and Automation Engineering
    Volume/Issue: 3 (1), Pages 60–68
    Year: 2024

  • Title: Comprehensive Evaluation of Electric Motorcycle Models: A Data-Driven Analysis
    Author: E. Kesavan
    Journal: REST Journal on Data Analytics and Artificial Intelligence
    Year: 2023
    ISSN: 2583-… (incomplete in original text)

  • Title: Assessing Laptop Performance: A Comprehensive Evaluation and Analysis
    Author: E. Kesavan
    Journal: Recent Trends in Management and Commerce
    Volume: 4, Pages 175–185
    Year: 2023

Chongan Zhang | Computer Science | Best Researcher Award

Mr. Chongan Zhang | Computer Science | Best Researcher Award

Researcher from Zhejiang University, China

Chongan Zhang is an accomplished researcher in the field of Biomedical Engineering with nearly a decade of hands-on experience in the research and development of advanced medical devices. Based at Zhejiang University, he has served as a core team member on numerous high-impact projects at national, provincial, and enterprise levels. His research has focused on the development and translational application of high-end medical endoscopes, surgical navigation systems, and digital processing systems used in endoscopic surgical robots. Chongan’s innovative contributions have led to the publication of 10 academic papers indexed in SCI and EI, covering significant topics such as endoscopy and surgical navigation. He holds one national invention patent, which reflects his ability to bridge the gap between academic research and real-world clinical applications. His interdisciplinary approach combines engineering, computer science, and medicine to address key challenges in minimally invasive surgery. Committed to improving surgical precision and patient outcomes, his work in the development of high-speed digital processing and core navigation components has gained recognition in both academic and industrial domains. With a clear focus on translational research, Chongan continues to strive toward excellence in biomedical device innovation, aligning scientific progress with societal healthcare needs.

Professional Profile

Education

Chongan Zhang pursued his academic journey in the field of Biomedical Engineering at Zhejiang University, one of China’s most prestigious institutions for engineering and medical sciences. His formal education provided him with a strong foundation in engineering principles, biological sciences, and clinical applications relevant to medical device development. During his academic tenure, he focused on courses related to medical instrumentation, imaging systems, embedded systems, and biomechanics, all of which shaped his research direction toward minimally invasive technologies and robotic systems. His graduate research work revolved around designing and optimizing surgical navigation systems and high-resolution endoscopic imaging techniques. This training equipped him with both theoretical knowledge and practical skills in device prototyping, data acquisition, digital signal processing, and interdisciplinary integration. The academic environment at Zhejiang University encouraged collaborative and innovation-driven learning, enabling Chongan to take part in cutting-edge projects and cross-disciplinary research. His thesis and project work often involved real-time system simulation, system control algorithms, and micro-electromechanical system (MEMS)-based designs for surgical applications. Overall, his education has been pivotal in preparing him for a research career at the intersection of biomedical engineering, computer science, and clinical technology, shaping his capacity for innovation and translational application in the healthcare sector.

Professional Experience

Chongan Zhang’s professional experience spans close to ten years in biomedical engineering, with a focus on the research, development, and translation of innovative medical devices. During his career, he has played a key role in multiple scientific and technological projects funded by national, provincial, ministerial, and enterprise-level agencies. At Zhejiang University, he has functioned as a central figure in research groups working on endoscopic surgical robots, minimally invasive surgical instrumentation, and high-speed digital processing systems. His primary responsibilities include system architecture design, component integration, algorithm development, and prototype validation. He has collaborated closely with clinicians, engineers, and industrial partners to ensure that the technologies under development meet real-world clinical needs. Notably, he has contributed significantly to the creation of next-generation medical endoscopes and surgical navigation platforms, ensuring they are both functionally advanced and ergonomically designed for clinical use. His experience also includes preparing documentation for regulatory approvals and technology transfer initiatives. By bridging research with industry, he has helped translate laboratory innovations into deployable healthcare solutions. His practical experience across diverse project scales and domains positions him as a well-rounded biomedical engineer with strong problem-solving skills and a commitment to healthcare advancement through engineering innovation.

Research Interests

Chongan Zhang’s research interests lie primarily in the design, development, and optimization of biomedical devices with a focus on endoscopic technologies and surgical navigation systems. He is particularly interested in the intersection of medical imaging, embedded systems, digital signal processing, and robotics, which collectively drive the innovation of next-generation surgical tools. His current research focuses on developing high-speed digital processing systems that enable real-time data handling during endoscopic procedures. Another key area of his interest is the advancement of surgical navigation systems to enhance accuracy and safety in minimally invasive surgeries. This involves both hardware design and the development of real-time localization and tracking algorithms. Chongan is also keen on translating academic research into clinically deployable technologies and is involved in designing core navigation components for robotic-assisted surgical systems. Furthermore, he is exploring the integration of AI-assisted guidance in endoscopic navigation, aiming to improve decision-making during surgeries. His long-term interest includes the development of patient-specific devices and systems that can adapt to diverse surgical environments. By bridging engineering and medicine, he seeks to contribute to the evolution of smart surgical environments and better patient outcomes through technical excellence and user-centered design.

Research Skills

Chongan Zhang possesses a comprehensive skill set that supports his research in biomedical device development and surgical system innovation. He is proficient in the design and fabrication of medical devices, particularly high-performance endoscopes and surgical navigation platforms. His technical capabilities include embedded system programming, high-speed digital signal processing, sensor integration, and real-time data acquisition, all of which are critical for surgical applications. He is also skilled in system modeling, simulation, and validation, enabling him to iterate quickly and efficiently through the research and development cycle. His experience with CAD tools, hardware prototyping, and microcontroller-based system design strengthens his ability to create customized solutions for complex clinical challenges. Chongan is adept in image processing techniques used in endoscopy and navigation, and he frequently applies machine learning methods for optimizing navigation accuracy. Additionally, he has strong competencies in managing interdisciplinary research projects and collaborating with cross-functional teams, including surgeons, regulatory specialists, and industrial engineers. His skill in writing academic papers and securing intellectual property rights through patent applications also reflects his well-rounded research acumen. With a firm grasp of both software and hardware aspects, Chongan is well-equipped to innovate in the highly demanding field of medical device engineering.

Awards and Honors

Throughout his career, Chongan Zhang has earned recognition for his contributions to the biomedical engineering field, particularly in surgical technology innovation. While early in his career relative to more senior researchers, he has already secured a national invention patent, which highlights the originality and practical impact of his research. His participation in multiple government-funded and enterprise-sponsored research projects reflects institutional trust and professional esteem in his capabilities. Furthermore, his ten SCI and EI-indexed academic publications demonstrate that his work meets rigorous scientific standards and contributes to global knowledge in endoscopy and surgical navigation. Though not yet decorated with widely known individual research awards, his track record of successful project execution, research output, and innovation places him on a trajectory for future recognition at national and international levels. His involvement in interdisciplinary teams and industry partnerships has also brought praise for his ability to effectively bridge academic research with real-world application. As his portfolio continues to grow, he is likely to be a strong candidate for awards recognizing innovation, translational research, and medical technology advancement. His achievements to date serve as a foundation for even greater impact and recognition in the biomedical and engineering communities.

Conclusion

Chongan Zhang is a highly competent and innovative researcher whose work in biomedical engineering—especially in the development of surgical navigation systems and endoscopic technologies—demonstrates both depth and practical relevance. With nearly a decade of experience and active involvement in multi-tiered research projects, he exemplifies the qualities of a forward-thinking biomedical engineer. His research is driven by the need for high-precision, minimally invasive surgical tools that can transform clinical practice and improve patient outcomes. He combines strong technical skills with a clear vision for translational research, evidenced by his publications, patent, and collaborative project roles. While still building an international reputation, his consistent academic contributions and technical innovations already place him among the promising researchers in his field. His ability to work across disciplines and his focus on both hardware and software elements of surgical systems make him uniquely equipped to contribute to the future of intelligent surgical environments. With continued support and expanded visibility, he has the potential to become a leading figure in biomedical device innovation. Based on his experience, output, and innovation potential, he is a worthy nominee for the Best Researcher Award and an asset to the global biomedical research community.

Publications Top Notes

📘 Registration, Path Planning and Shape Reconstruction for Soft Tools in Robot-Assisted Intraluminal Procedures: A Review

  • Authors: Chongan Zhang, Xiaoyue Liu, Zuoming Fu, Guoqing Ding, Liping Qin, Peng Wang, Hong Zhang, Xuesong Ye

  • Publication Year: 2025

Tejasva Maurya | Computer Science | Best Researcher Award

Mr. Tejasva Maurya | Computer Science | Best Researcher Award

Shri Ramswaroop Memorial University, India

Tejasva Maurya is a dedicated researcher specializing in artificial intelligence, deep learning, and data science. With a strong academic background in computer science and engineering, he has made significant contributions to AI-driven solutions in smart traffic management, healthcare applications, and natural language processing. His work focuses on applying advanced machine learning models to real-world challenges, particularly in image processing, sentiment analysis, and human-computer interaction. Tejasva has published research in reputable journals and book chapters, showcasing his expertise in AI and its interdisciplinary applications. He has also gained valuable industry experience through internships in data science and analytics, working on projects that optimize machine learning models and enhance data-driven decision-making. His technical proficiency includes programming in Python, deep learning frameworks like PyTorch, and working with Hugging Face models for NLP and computer vision tasks. With multiple achievements in AI research, including a Scopus-indexed publication and competition awards, Tejasva continues to push the boundaries of innovation in artificial intelligence. His long-term goal is to contribute groundbreaking research in AI while bridging the gap between theoretical advancements and practical implementations.

Professional Profile

Education

Tejasva Maurya is currently pursuing a Bachelor of Technology in Computer Science and Engineering at Shri Ramswaroop Memorial University, where he has developed a strong foundation in programming, machine learning, and AI-driven applications. His coursework has provided extensive exposure to algorithms, data structures, deep learning, and computer vision techniques. Prior to his undergraduate studies, he completed his Intermediate education under the CBSE Board in 2021, securing an impressive 88.88%, which highlights his academic excellence and analytical abilities. His passion for artificial intelligence and research was evident early on, leading him to explore AI-related projects and specialized training in machine learning. Throughout his education, he has engaged in practical AI applications, contributing to his ability to develop innovative solutions in deep learning, NLP, and computer vision. His university studies have been complemented by self-driven research initiatives and internships, allowing him to apply theoretical knowledge to real-world problems. Tejasva’s continuous learning approach and commitment to AI research position him as an emerging talent in the field of artificial intelligence.

Professional Experience

Tejasva Maurya has gained substantial industry experience through internships and research projects in data science and machine learning. As a Data Scientist Intern at DevTown (June 2023 – December 2023), he worked on developing and optimizing deep learning models using PyTorch for real-world applications, focusing on NLP, image classification, and generative adversarial networks (GANs). He was responsible for designing data pipelines, preprocessing data, and conducting exploratory data analysis, ensuring the models were efficient and accurate. Additionally, Tejasva worked as a Data Analyst Trainee at MedTourEasy (August 2023 – August 2023), where he specialized in data visualization and statistical analysis. His role involved extracting actionable insights from large datasets using Python and Tableau and collaborating with different teams to implement data-driven strategies. His professional experience has strengthened his ability to apply AI techniques to practical problems, enhancing his understanding of machine learning implementation in different sectors. Through these roles, he has built strong analytical skills and technical expertise, preparing him for more advanced research in artificial intelligence and data science.

Research Interests

Tejasva Maurya’s research interests lie in artificial intelligence, deep learning, natural language processing, and computer vision. His primary focus is on developing AI-driven solutions for real-world applications, including smart traffic management, healthcare technology, and human-computer interaction. His work in vehicle classification using deep learning demonstrates his expertise in YOLO-based object detection models and their application in traffic surveillance and smart city planning. Additionally, he is keen on sentiment analysis and speech processing, contributing to AI models that improve text-to-speech (TTS) synthesis and NLP-based insights. His interest in federated learning for agricultural applications highlights his commitment to interdisciplinary research, exploring AI’s role in optimizing farming techniques and market stability. Tejasva is also exploring artificial emotional intelligence for psychological and mental health assessments, aiming to create AI models that assist in mental health diagnosis and emotional analysis. With a strong foundation in machine learning and AI, he aims to bridge the gap between theoretical advancements and practical AI implementations, driving innovation in multiple domains.

Research Skills

Tejasva Maurya possesses advanced research skills in machine learning, deep learning, and AI model development. His technical expertise includes Python programming, with proficiency in PyTorch, scikit-learn, NumPy, and OpenCV for implementing AI-based solutions. He has hands-on experience in computer vision techniques, including real-time object detection, image segmentation, and gesture-based human-computer interaction, leveraging tools like Mediapipe and Haar Cascades. In natural language processing (NLP), he is skilled in text processing, speech-to-text, and fine-tuning transformer models using Hugging Face frameworks. His research methodology includes data preprocessing, model fine-tuning, hyperparameter optimization, and performance evaluation using metrics like mAP and F1-score. He is proficient in working with large-scale datasets and has successfully published research on vehicle classification, federated learning, and AI-based healthcare applications. Additionally, he has experience in GANs and diffusion models, focusing on synthetic media generation and speech dataset augmentation. His ability to integrate AI solutions across different fields demonstrates his versatility as a researcher and innovator.

Awards and Honors

Tejasva Maurya has received multiple accolades for his contributions to AI research and innovation. One of his most notable achievements is publishing a Scopus-indexed journal article, “Real-Time Vehicle Classification Using Deep Learning—Smart Traffic Management,” in Engineering Reports (Wiley), which underscores the real-world impact of his research. He has also co-authored multiple book chapters in prestigious publishers like Nova Science, Wiley, and Bentham Science, covering AI applications in healthcare, federated learning, and artificial emotional intelligence. His research has been recognized for its contribution to intelligent traffic systems, patient-centric healthcare, and AI-powered decision-making. In addition to his research achievements, he secured 1st position in KIMO’s-Edge’ 23 Technology Competition, a testament to his problem-solving skills and technical expertise. His consistent excellence in AI research and project development has positioned him as an emerging leader in the field of artificial intelligence, with a strong track record of achievements.

Conclusion

Tejasva Maurya is a promising researcher in artificial intelligence, with expertise in deep learning, NLP, and computer vision. His strong academic foundation, technical proficiency, and impactful research make him a strong contender for recognition as a leading researcher in AI. With multiple publications, real-world AI applications, and industry experience, he has demonstrated both theoretical knowledge and practical problem-solving abilities. While he has made significant contributions, focusing on publishing in high-impact AI conferences, securing patents, and expanding interdisciplinary collaborations would further enhance his research portfolio. His dedication to bridging AI theory with real-world applications highlights his potential to contribute groundbreaking advancements in artificial intelligence.

Publications Top Notes

  1. Title: Real Time Vehicle Classification Using Deep Learning—Smart Traffic Management
    Authors: Maurya, T., Kumar, S., Rai, M., Saxena, A.K., Goel, N., and Gupta, G.
    Publication: Engineering Reports, 7: e70082 (2025)
    DOI: https://doi.org/10.1002/eng2.70082

  2. Title: Patient Centric Healthcare
    Authors: Maurya, T., Kumar, S., Rai, M., Saxena, A.K.
    Book: Harnessing the Power of IoT-Enabled Machine Learning in Healthcare Applications
    Editors: Mritunjay Rai, Ravindra Kumar Yadav, Neha Goel, and Maheshkumar H. Kolekar

  3. Title: Integrating Artificial Intelligence and Deep Learning in Classification and Taking Care of DFU
    Authors: Kumar, S., Maurya, T., Rai, M., Saxena, A.K., Pandey, J.K.
    Book: Machine Learning-Based Decision Support Systems for Diabetic Foot Ulcer Care
    Editors: Mritunjay Rai, Jay Kumar Pandey, and Abhishek Kumar Saxena

  4. Title: Federated Learning-Based Approach for Crop Recommendation and Market Stability in Agriculture
    Authors: Kumar, S., Maurya, T., Rai, M., Saxena, A.K.
    Book: Federated Learning for Smart Agriculture and Food Quality Enhancement
    Editors: Padmesh Tripathi, Bhanumati Panda, Shanthi Makka, Reeta Mishra, S. Balamurugan, and Sheng-Lung Peng

  5. Title: Artificial Emotional Intelligence for Psychological State and Mental Health Assessment
    Authors: Kumar, S., Maurya, T., Rai, M., Saxena, A.K.
    Book: Artificial Emotional Intelligence: Fundamentals, Challenges and Applications
    Editors: Padmesh Tripathi, Krishna Kumar Paroha, Reeta Mishra, and S. Balamurugan

Dr. Cong Guo | Computer Science | Best Researcher Award

Dr. Cong Guo | Computer Science | Best Researcher Award

Nurse Practitioner at UNC Blue Ridge, United States.

Cong Guo, who earned his master’s degree in 2024 from the School of Computer and Information Engineering at Henan University, is currently pursuing a PhD in Computer Science and Technology at Zhejiang Normal University. His research specializes in machine learning and pattern recognition, fields that are increasingly relevant in today’s data-driven landscape. Guo has made significant contributions to the field, as evidenced by his publications, including a novel feature selection framework for incomplete data and a method for iterative missing value imputation based on feature importance. These works demonstrate his innovative approach to addressing common challenges in data science. While his academic background and publication record are impressive, expanding his publication scope and enhancing networking opportunities could further elevate his research impact. With his solid foundation and commitment to advancing knowledge in machine learning, Cong Guo is a promising candidate for recognition as a leading researcher.

Profile:

Education

Cong Guo received his master’s degree in 2024 from the School of Computer and Information Engineering at Henan University, where he laid a strong foundation in computer science principles and research methodologies. His academic journey has been characterized by a focus on machine learning and pattern recognition, reflecting his passion for harnessing data to solve complex problems. Currently, Cong is pursuing his Ph.D. at the School of Computer Science and Technology at Zhejiang Normal University, further enhancing his expertise in these cutting-edge fields. His educational experiences have equipped him with essential skills in data analysis, algorithm development, and statistical modeling, which are critical for his research. Throughout his studies, Cong has demonstrated a commitment to academic excellence and innovation, making significant strides in understanding and improving feature selection and data imputation techniques. His educational background positions him as a promising researcher in the rapidly evolving landscape of computer science.

Professional Experiences 

Cong Guo has demonstrated significant commitment to his academic and professional development in the field of computer science. He obtained his master’s degree from the School of Computer and Information Engineering at Henan University in 2024, where he developed a solid foundation in computer science principles and applications. Currently, he is pursuing his PhD at the School of Computer Science and Technology at Zhejiang Normal University, focusing on machine learning and pattern recognition. During his studies, Guo has engaged in research projects that involve innovative approaches to data analysis, particularly in handling incomplete datasets and missing value imputation. His publications in reputable journals reflect his dedication to advancing knowledge in his field. Additionally, his collaborative work with fellow researchers highlights his ability to contribute effectively to team-oriented projects, enhancing his experience and understanding of complex computational problems. This combination of academic rigor and research experience positions Guo as a promising researcher in computer science.

Research Interests

Cong Guo’s research interests lie primarily in the fields of machine learning and pattern recognition, where he aims to develop innovative algorithms and frameworks to address real-world challenges in data analysis. His work focuses on enhancing feature selection and imputation techniques, particularly in the context of incomplete datasets, which are common in many applications. By investigating novel approaches to handle missing data, Cong seeks to improve the accuracy and efficiency of machine learning models. Additionally, he is interested in exploring the broader implications of machine learning across various domains, such as healthcare, finance, and environmental science. Cong’s passion for advancing knowledge in these areas drives his commitment to research that not only contributes to theoretical advancements but also has practical applications that can benefit society. Through his ongoing doctoral studies and collaborative projects, he aims to further explore the intersections of machine learning and real-world problem-solving.

Research Skills 

Cong Guo possesses a robust set of research skills that enhance his capabilities in machine learning and pattern recognition. His proficiency in feature selection and data imputation techniques demonstrates a strong analytical mindset, enabling him to address complex challenges in handling incomplete datasets effectively. Guo is adept at employing various machine learning algorithms and tools, which allows him to develop innovative frameworks that optimize data analysis processes. His experience in collaborative research, evidenced by his co-authored publications, showcases his ability to work effectively in teams, share ideas, and contribute to collective goals. Additionally, Guo’s familiarity with statistical methods and computational techniques underpins his research, ensuring that his findings are both rigorous and applicable. His commitment to continuous learning and adaptation to emerging trends in technology further solidifies his expertise, making him a valuable asset in advancing the field of computer science and information engineering.

Award and Recognition 

Cong Guo has distinguished himself in the field of machine learning and pattern recognition, earning recognition for his innovative research contributions. He completed his master’s degree in 2024 at the School of Computer and Information Engineering, Henan University, where he developed a strong foundation in computational methodologies. Currently pursuing his PhD at Zhejiang Normal University, Cong has co-authored impactful publications, including “A novel feature selection framework for incomplete data” and “Iterative missing value imputation based on feature importance,” which have been well-received in reputable journals. His research not only addresses critical challenges in data science but also demonstrates his potential to influence future advancements in the field. Cong’s commitment to academic excellence and his collaborative spirit have garnered him respect among peers and mentors alike, positioning him as a promising candidate for the Best Researcher Award. His ongoing efforts are indicative of a bright future in research and innovation.

Conclusion

Cong Guo exhibits a promising trajectory in research, with a strong academic foundation and relevant publications in machine learning and pattern recognition. His commitment to advancing the field is evident in his current work. By broadening his publication efforts and enhancing his professional network, he can significantly improve his contributions to research. Given his strengths and potential for growth, Cong Guo is a suitable candidate for the Best Researcher Award.

Publication Top Notes
  1. A novel feature selection framework for incomplete data
  2. Iterative missing value imputation based on feature importance
  3. KNCFS: Feature selection for high-dimensional datasets based on improved random multi-subspace learning