Yijun Xiao | Computer Science | Best Researcher Award

Mr. Yijun Xiao | Computer Science | Best Researcher Award

China University of Petroleum (East China), China 

Yijun Xiao is a highly motivated and innovative Ph.D. candidate at the China University of Petroleum (East China), known for his groundbreaking research at the intersection of computer science and molecular biology. His academic journey reflects a trajectory of excellence, transitioning from a master’s degree at Dalian University of Technology to advanced doctoral research focused on DNA computing and molecular neural networks. His recent work on programmable DNA-based molecular biocomputing circuits, published in Advanced Science, highlights his dedication to solving complex computational problems using biological substrates. Xiao’s research contributions are recognized internationally, with several publications in SCI-indexed journals and presentations at prestigious conferences like the IEEE Smart World Congress and the International Conference on Industrial Artificial Intelligence. He is not only a productive researcher but also a contributor to academic discourse through editorial roles in high-impact journals. With four patents and six journal articles to his name, his academic footprint is notable for a researcher at this stage. Xiao exemplifies the profile of a next-generation scientist poised to lead in the development of unconventional and bio-inspired computing technologies, making significant strides in non-silicon computing solutions with real-world applications in life sciences and bioinformatics.

Professional Profile

Education

Yijun Xiao earned his Master’s degree in Computer Science and Technology from Dalian University of Technology in 2023. This educational foundation equipped him with in-depth knowledge in algorithm design, artificial intelligence, and computational modeling. Currently, he is pursuing a Ph.D. at the China University of Petroleum (East China), where he focuses on interdisciplinary research involving computer science, molecular biology, and systems engineering. His doctoral work is centered around DNA computing, biochemical reaction networks, and the development of molecular controllers capable of solving high-level computational problems. The transition from a traditional computing background to a molecular computing framework reflects his adaptability and willingness to explore unconventional approaches to computing. His academic journey demonstrates a clear progression in specialization, from general computer science toward highly niche domains such as biochemical neural networks. Xiao’s education not only highlights strong academic performance but also his ability to integrate knowledge from multiple domains—a critical asset in research-intensive environments. With training grounded in both theoretical foundations and experimental research, Xiao is academically equipped to lead cutting-edge work in computational biology, unconventional computing, and interdisciplinary problem-solving.

Professional Experience

Although still in the early stages of his academic career, Yijun Xiao has demonstrated extensive professional engagement through his research and publication work. As a doctoral candidate, his primary professional responsibility involves conducting high-level scientific research that bridges computer science with biochemistry and molecular biology. He has played a lead role in designing and modeling programmable DNA-based biocomputing circuits that solve partial differential equations—an ambitious and novel application of bio-computation. His involvement in multiple international conferences, such as the IEEE Smart World Congress and the International Conference on Industrial Artificial Intelligence, reflects both his presentation skills and his readiness to contribute to global academic discourse. In addition to his research roles, he has participated in editorial duties for major journals like Advanced Science, IEEE Transactions on Nanobioscience, and IEEE Access, suggesting peer recognition of his scientific rigor and subject matter expertise. Furthermore, Xiao has authored and co-authored six SCI-indexed journal articles and has filed four patents, demonstrating both scholarly and applied research contributions. His professional experience, although rooted in academia, already exhibits a maturity and productivity that align with established researchers, signaling his readiness for broader leadership roles in future academic or research-intensive industry positions.

Research Interest

Yijun Xiao’s primary research interests lie in the domains of DNA computing, biochemical reaction networks, molecular controllers, and unconventional computing systems. His work focuses on leveraging the intrinsic parallelism of molecular systems to address computational problems that are traditionally solved using electronic and silicon-based technologies. One of his central interests involves the design and implementation of programmable DNA-based circuits capable of solving partial differential equations—a feat that merges molecular biology with complex mathematical modeling. He is particularly fascinated by the prospect of developing non-silicon-based computational architectures that mimic biological systems. This interest extends to synthetic biology, where his research could pave the way for bio-hybrid computing devices that function in tandem with natural biological processes. Xiao’s interdisciplinary curiosity drives him to explore how biomolecular substrates can be used not only for information storage and processing but also for autonomous control within chemical environments. His long-term goal is to create biocompatible computing systems that can be embedded in real-life biological contexts such as smart therapeutics, biosensing, and environmental diagnostics. The novelty and real-world applicability of his interests set him apart as a visionary in the rapidly evolving field of molecular and bio-inspired computing.

Research Skills

Yijun Xiao possesses an exceptional range of research skills that complement his interdisciplinary focus. His technical skills span computational modeling, algorithmic development, and system simulations, particularly within the context of DNA computing and biochemical reaction networks. He is adept at designing molecular circuits that perform logical and mathematical operations at the nanoscale. His experimental skills include working with DNA strands, implementing synthetic biochemical networks, and testing molecular controllers in simulated environments. Xiao is also proficient in data analysis, statistical modeling, and simulation tools, all of which are critical for validating theoretical models in biochemical systems. In addition to laboratory and computational capabilities, he demonstrates strong academic writing and peer-review skills, evidenced by his publications in high-impact journals and editorial responsibilities. He also exhibits strong collaborative skills, as seen in his partnerships with researchers from institutions like Dalian University. These collaborations have enabled him to broaden his methodological toolkit and approach problems from diverse scientific perspectives. His fluency in interdisciplinary communication allows him to translate complex concepts across domains, a rare and valuable skill in modern scientific research. Overall, Xiao’s research skills reflect a harmonious blend of theory, experimentation, and communication.

Awards and Honors

Although specific awards and honors have not been listed in the current nomination, Yijun Xiao’s publication record and involvement in high-impact journals suggest implicit recognition of his work. His article in Advanced Science—a prestigious international journal—indicates that his research meets the highest standards of innovation and scholarly contribution. Furthermore, the fact that he serves in editorial capacities for journals such as IEEE Transactions on Nanobioscience and IEEE Access is a significant mark of honor, especially for a Ph.D. candidate. These roles are typically reserved for researchers with demonstrated subject-matter expertise and strong academic judgment. Xiao has also been selected to present at esteemed international conferences like the IEEE Smart World Congress and the International Conference on Industrial Artificial Intelligence, which reflects peer recognition of the novelty and relevance of his work. His patent filings further emphasize the originality of his ideas and their potential for real-world application. While not formal awards, these accomplishments reflect an ongoing stream of recognition from the global academic and research community. As his career progresses, he is poised to receive formal accolades and fellowships that match the significance of his contributions.

Conclusion

Yijun Xiao represents the ideal profile of a next-generation researcher whose work is at the forefront of interdisciplinary science. His commitment to advancing DNA computing and molecular neural networks is both ambitious and impactful, addressing fundamental challenges in computational complexity using innovative biological models. Despite being in the early phase of his academic career, his productivity, publication quality, and international engagement far exceed typical expectations for a doctoral candidate. His research not only contributes theoretical value but also opens doors to practical applications in non-silicon-based computing and synthetic biology. With four patents and six SCI-indexed journal publications, he has already laid a strong foundation for an influential academic and research career. His future potential is further enhanced by his editorial experience, collaborative nature, and ability to lead projects that intersect multiple disciplines. Moving forward, expanding his work into industrial partnerships and broader scientific collaborations will further solidify his standing. Overall, Yijun Xiao is not only suitable for the Best Researcher Award but is a compelling candidate who exemplifies excellence, innovation, and future leadership in cutting-edge research domains.

Publications Top Notes

  1. Title: Programmable DNA‐Based Molecular Neural Network Biocomputing Circuits for Solving Partial Differential Equations
    Authors: Yijun Xiao, Alfonso Rodríguez‐Patón, Jianmin Wang, Pan Zheng, Tongmao Ma, Tao Song
    Year: 2025
    Journal: Advanced Science
  2. Title: Cascade PID Control Systems Based on DNA Strand Displacement With Application in Polarization of Tumor-Associated Macrophages
    Authors: Hui Xue, Hui Lv, Yijun Xiao, Xing’An Wang
    Year: 2023
    Journal: IEEE Access
  3. Title: Implementation of an Ultrasensitive Biomolecular Controller for Enzymatic Reaction Processes With Delay Using DNA Strand Displacement
    Authors: Yijun Xiao, Hui Lv, Xing’An Wang
    Year: 2023
    Journal: IEEE Transactions on NanoBioscience
  4. Title: Performance Verification of Smith Predictor Control Using IMC Scheme via Chemical Reaction Networks and DNA Strand Displacement Reaction
    Authors: Jingwang Yao, Hui Lv, Yijun Xiao
    Year: 2023
    Conference: 2023 IEEE Smart World Congress (SWC)
  5. Title: Synthetic Biology and Control Theory: Designing Synthetic Biomolecular Controllers by Exploiting Dynamic Covalent Modification Cycle with Positive Autoregulation Properties
    Authors: Yijun Xiao, Hui Lv, Xing’an Wang
    Year: 2023
    Journal: Applied Sciences
  6. Title: Implementing a modified Smith predictor using chemical reaction networks and its application to protein translation
    Authors: Yijun Xiao, Hui Lv, Xing’an Wang
    Year: 2022
    Conference: 2022 4th International Conference on Industrial Artificial Intelligence (IAI)

A.V.L.N. SUJITH | Computer Science | Best Researcher Award

Dr. A.V.L.N. SUJITH | Computer Science | Best Researcher Award

Associate Professor from Mallareddy University, India

Dr. A.V.L.N. Sujith is a seasoned academic and researcher in the field of Computer Science and Engineering with over 12 years of experience, including 7 years in leadership roles as Head of Department. He is currently serving as the Head of the Information Technology Department at Malla Reddy University, Hyderabad. Known for his dynamic teaching style and commitment to research, Dr. Sujith has successfully balanced administrative responsibilities with a productive research output. His contributions include over 36 international journal publications, five patents, two textbooks, and significant involvement in funded projects. With a focus on cloud computing, artificial intelligence, and machine learning, he has developed interdisciplinary solutions that bridge technology and real-world applications. His work has earned him national recognition, including prestigious mentoring awards for student innovation competitions. Moreover, Dr. Sujith actively participates in organizing conferences, delivering FDPs, designing curricula, and setting academic strategies to enhance teaching and learning. His publication record includes 633 citations on Google Scholar and over 380 citations on Scopus. He has also completed a post-doctoral fellowship at the University of Louisiana, USA. Through a blend of academic excellence, administrative acumen, and innovative research, Dr. Sujith exemplifies the qualities of a leading academician and is highly regarded in his field.

Professional Profile

Education

Dr. A.V.L.N. Sujith has pursued a strong academic path in Computer Science and Engineering, demonstrating a continuous progression of specialization and expertise. He completed his B.Tech and M.Tech in Computer Science and Engineering from JNTUA University, Ananthapuram, in 2011 and 2013, respectively, securing competitive percentages of 65.57% and 77.35%. He was awarded a Ph.D. in Computer Science and Engineering by the same university in May 2021, further solidifying his foundation in advanced computing research. In addition, he broadened his global exposure and research capabilities by completing a prestigious post-doctoral fellowship at the University of Louisiana at Lafayette, USA, from October 2022 to October 2023. Prior to his higher education, Dr. Sujith completed his Intermediate studies with a 70.02% score and secured 73.5% in SSC, laying the groundwork for his academic journey. His academic trajectory reflects not only a strong technical foundation but also a commitment to lifelong learning and international collaboration. Through his educational background, Dr. Sujith has gained a comprehensive understanding of theoretical and applied aspects of computer science, enabling him to contribute meaningfully to teaching, research, and institutional development.

Professional Experience

Dr. Sujith’s professional journey spans over 13 years in teaching and research across several esteemed institutions in India. His current role is Head of the Department of Information Technology at Malla Reddy University, Hyderabad, starting from May 2024. Prior to this, he served as Head of the CSE Department at Narsimha Reddy Engineering College and Anantha Lakshmi Institute of Technology and Sciences, where he led curriculum reforms, coordinated NBA accreditations, and fostered industry-academia linkages through MoUs. His contributions also include organizing student tech-fests, innovation cells, and securing multiple awards through mentorship in national-level competitions. As an Assistant Professor at Sri Venkateswara College of Engineering, he played a pivotal role in institutional events like Smart India Hackathon and the Chhatra Vishwakarma Awards. He has also served in teaching roles at Vignan Institute of Information Technology, JNTUA College of Engineering, and Sree Vidyanikethan College of Engineering. In each role, Dr. Sujith has demonstrated his strengths in both pedagogy and academic leadership. His ability to drive institutional excellence, mentor faculty and students, and deliver high-impact research outcomes has made him a key contributor to academic innovation and quality education.

Research Interests

Dr. A.V.L.N. Sujith’s research interests are rooted in cutting-edge areas of computer science that have significant real-world applications. His primary focus areas include artificial intelligence, machine learning, cloud computing, virtualization technologies, deep learning, data science, and smart systems. He is particularly interested in the integration of AI with healthcare, agriculture, and business analytics, as evidenced by his interdisciplinary publications and funded projects. His research also extends to intelligent service composition in dynamic cloud environments, green energy systems using nanomaterials, and high-performance computing solutions. Dr. Sujith’s work emphasizes the use of advanced algorithms, hybrid metaheuristic methods, and systematic reviews to address complex computational problems. He has also conducted studies involving QoS-aware service discovery, fuzzy-based models, and fast intra prediction mode decisions in multimedia coding. Moreover, he is engaged in developing pedagogical tools for teaching these advanced technologies, reflecting his dual commitment to research and academic instruction. His diverse research portfolio positions him to contribute significantly to emerging trends in AI and cloud ecosystems, particularly in developing cost-effective, intelligent, and sustainable technological solutions.

Research Skills

Dr. Sujith possesses a wide array of research skills that enhance his effectiveness as a scholar and innovator. His expertise in designing and analyzing algorithms, data modeling, system architecture, and intelligent computing frameworks equips him to solve real-world problems across various domains. He is proficient in using technologies such as VMware, VSphere, Citrix Xen, and Amazon Web Services for cloud deployment, and has hands-on experience with Python, Java, C, and C++ for developing scalable solutions. Dr. Sujith is also skilled in tools like Rational Rose, Apache Tomcat, and SQL/DB2 for enterprise development and database management. His experience in teaching subjects like artificial intelligence, data warehousing, and cloud computing enhances his technical depth. Furthermore, he employs modern research methodologies such as systematic literature reviews, comparative analyses, and modeling using hybrid machine learning algorithms. His published works demonstrate familiarity with various software tools and platforms for data visualization, performance evaluation, and predictive analytics. With certifications from IBM, Microsoft, Google, and NASSCOM, Dr. Sujith continues to upgrade his technical competencies, ensuring that his research remains relevant and impactful in an ever-evolving digital landscape.

Awards and Honors

Dr. Sujith has earned several accolades that highlight his dedication to academic excellence and innovation. Notably, he received the Best Project Mentor Award from the then Vice President of India, Dr. M. Venkaiah Naidu, for mentoring the award-winning project “Automated Agriculture and Sericulture System Using IoT” under the AICTE-ECI-ISTE Chhatra Vishwakarma Awards 2018. He also received the Best Mentor Award in Smart India Hackathon 2018 for leading a team in the hardware category. Additionally, Dr. Sujith was honored with the Best Research Paper Award at a CSI India-organized conference for his contribution to quantum cryptography research. He has also secured funding from DST-IEDC for two innovative agricultural IoT projects. His awards and recognitions reflect his ability to translate academic knowledge into impactful real-world applications. These accomplishments are not just limited to individual recognition but extend to institutional and student success, reinforcing his role as a catalyst for innovation and academic achievement. His leadership in organizing FDPs, conferences, and seminars has further strengthened his standing in the academic community, making him a sought-after mentor and collaborator.

Conclusion

Dr. A.V.L.N. Sujith emerges as a well-rounded academician, combining a rich blend of teaching, research, administrative leadership, and community engagement. His journey from assistant professor to department head is marked by a consistent record of excellence, innovation, and scholarly impact. With an impressive publication portfolio, extensive citation record, and recognized mentorship in national competitions, he has firmly established himself as a leader in the fields of AI, cloud computing, and data science. His proactive role in curriculum design, accreditation, and institutional development further underlines his strategic vision and academic commitment. Dr. Sujith’s ability to secure research funding, author books, and develop skill-based courses showcases his multifaceted approach to academic growth and societal impact. While there is scope for deeper global collaboration and expansion into high-impact journals, his current achievements provide a strong foundation for future advancements. Dr. Sujith represents the ideal profile of a modern educator and researcher—innovative, inspiring, and impact-driven. His contributions continue to elevate the standards of computer science education and research in India, making him a deserving candidate for prestigious academic recognitions and awards.

Publications Top Notes

1. Integrating Nanomaterial and High-Performance Fuzzy-Based Machine Learning Approach for Green Energy Conversion
Authors: Sujith, A.V.L.N.; Swathi, R.; Venkatasubramanian, R.; Venu, N.; Hemalatha, S.; George, T.; Hemlathadhevi, A.; Madhu, P.; Karthick, A.; Muhibbullah, M.; et al.
Year: 2022

2. A Comparative Analysis of Business Machine Learning in Making Effective Financial Decisions Using Structural Equation Model (SEM)
Authors: A.V.L.N. Sujith; Naila Iqbal Qureshi; Venkata Harshavardhan Reddy Dornadula; Abinash Rath; Kolla Bhanu Prakash; Sitesh Kumar Singh; Rana Muhammad Aadil
Year: 2022

3. Multi-temporal Image Analysis for LULC Classification and Change Detection
Authors: Vivekananda, G.N.; Swathi, R.; Sujith, A.V.L.N.
Year: 2021

4. A Multilevel Principal Component Analysis Based QoS Aware Service Discovery and Ranking Framework in Multi-cloud Environment
Authors: Sujith, A.V.L.N.; Rama Mohan Reddy, A.; Madhavi, K.
Year: 2019

5. An Enhanced Faster-RCNN Based Deep Learning Model for Crop Diseases Detection and Classification
Authors: Harish, M.; Sujith, A.V.L.N.; Santhi, K.
Year: 2019

6. EGCOPRAS: QoS-aware Hybrid MCDM Model for Cloud Service Selection in Multi-cloud Environment
Authors: Sujith, A.V.L.N.; Rama Mohan Reddy, A.; Madhavi, K.
Year: 2019

7. QoS-driven Optimal Multi-cloud Service Composition Using Discrete and Fuzzy Integrated Cuckoo Search Algorithm
Authors: Sujith, A.V.L.N.; Reddy, A.R.M.; Madhavi, K.
Year: 2019

8. A Novel Hybrid Quantum Protocol to Enhance Secured Dual Party Computation over Cloud Networks
Authors: Sudhakar Reddy, N.; Padmalatha, V.L.; Sujith, A.V.L.N.
Year: 2018

Mahesh Muthulakshmi. R | Computer Science | Excellence in Research Award

Dr. Mahesh Muthulakshmi. R | Computer Science | Excellence in Research Award

Associate Professor from Saveetha School of Engineering, SIMATS, India

R. Mahesh Muthulakshmi is a proactive and goal-oriented academic professional with over 12 years of rich experience in the field of Computer Science and Engineering. He has consistently demonstrated exceptional time management, problem-solving skills, and a capacity for rapid learning and adaptability. His expertise lies in data security, cloud computing, artificial intelligence, and machine learning, with a particular focus on developing robust security solutions for cloud-based environments. He has published several high-quality research papers in SCI and Scopus-indexed journals and has actively contributed to international and national conferences. In addition to his research, he has played a significant role in organizing technical events, workshops, and international conferences, enhancing his leadership and collaborative abilities. His dedication to continuous learning is reflected in his regular participation in Faculty Development Programs (FDPs) and workshops, further sharpening his technical competencies. Known for his sense of responsibility and reliability, he is committed to contributing positively to his academic community and research field. His profile is characterized by a solid balance of teaching, research, and active engagement in professional bodies, showcasing his well-rounded commitment to academia and research excellence.

Professional Profile

Education

R. Mahesh Muthulakshmi has pursued a strong academic path in the domain of Computer Science and Engineering. He is currently undertaking his doctoral studies (Ph.D.) in Computer Science Engineering at Saveetha School of Engineering, SIMATS University, Chennai, with an expected completion in April 2025. His Ph.D. research focuses on advanced security models and encryption algorithms for industrial and cloud-based applications, indicating his dedication to solving critical challenges in modern computing environments. He holds a Master of Engineering (M.E.) in Computer Science Engineering from VLB Janakiammal College of Engineering and Technology, Coimbatore, affiliated with Anna University, which he completed in May 2009 with first-class honors. His undergraduate journey began with a Bachelor of Engineering (B.E.) in Computer Science Engineering from Kamaraj College of Engineering & Technology, Virudhunagar, also under Anna University, Chennai, which he successfully completed in May 2007 with first-class distinction. His academic trajectory reflects both depth and continuity in his specialized area, forming a strong foundation for his research pursuits. Throughout his education, Mahesh has been focused on practical and innovative problem-solving, which is now evident in his research and professional activities.

Professional Experience

R. Mahesh Muthulakshmi possesses over 12 years of comprehensive teaching and research experience, demonstrating versatility and leadership across reputable academic institutions. He began his career as an Assistant Professor in the Department of Computer Science and Engineering at Nehru College of Engineering and Research Center, Kerala, where he served from January 2009 to June 2010. His teaching career progressed to Sri Raaja Raajan College of Engineering and Technology, Karaikudi, where he worked as an Assistant Professor from June 2010 to December 2010. The most significant phase of his professional journey was at Indira Gandhi College of Engineering and Technology for Women, Chengalpattu, where he contributed as an Assistant Professor from May 2011 to November 2021. During this tenure, he not only imparted technical knowledge but also mentored students, organized conferences, and contributed to the academic community’s growth. His experience spans curriculum development, student counseling, technical event management, and hands-on research, highlighting his ability to balance academic responsibilities with impactful research work. Throughout his career, Mahesh has been recognized for his reliability, adaptability, and passion for delivering quality education while contributing actively to advancing knowledge in his field.

Research Interest

R. Mahesh Muthulakshmi’s research interests are centered around data security, cloud computing, artificial intelligence, machine learning, and optimization algorithms. His primary focus lies in developing secure and efficient encryption models that protect sensitive data in cloud environments, which is crucial in the era of digital transformation. His work addresses emerging threats such as Distributed Denial-of-Service (DDoS) attacks and data breaches, aiming to create robust systems that can withstand security vulnerabilities. Mahesh is also deeply interested in integrating machine learning and AI-based techniques to enhance cybersecurity frameworks and improve the performance of encryption protocols. His research spans topics such as dual generative hyperbolic graph adversarial networks, particle swarm optimization, and cloud data security using advanced cryptographic methods. Additionally, he explores the applications of neural networks for securing data storage and transfer, contributing to the broader field of secure cloud architecture. His dedication to researching the intersection of AI, cloud computing, and data security showcases his commitment to providing cutting-edge solutions to real-world industrial and technological challenges, positioning him as an emerging leader in the cybersecurity and cloud computing domains.

Research Skills

R. Mahesh Muthulakshmi has developed strong and diverse research skills throughout his academic and professional journey, particularly in the areas of data security management, encryption algorithms, and cloud computing systems. He is proficient in designing and implementing advanced cryptographic techniques to secure data in both public and private cloud environments. His research acumen extends to developing machine learning models and integrating artificial intelligence into security protocols to detect and prevent cyber threats such as DDoS attacks. Mahesh has also demonstrated the ability to use optimization algorithms like particle swarm optimization to enhance system performance and security robustness. His practical research skills include data analysis, cloud-based system architecture design, and coding across multiple programming languages, making him technically versatile. Additionally, Mahesh is adept at preparing high-quality research papers, presenting at international conferences, and collaborating with multidisciplinary teams to achieve research objectives. His involvement in workshops and faculty development programs further illustrates his continuous upskilling in emerging technologies such as blockchain, IoT, and generative AI. These research capabilities collectively showcase his ability to contribute meaningful innovations to the fields of cloud computing, data security, and artificial intelligence.

Awards and Honors

R. Mahesh Muthulakshmi has received several awards and recognitions that reflect his excellence in academic and research contributions. Notably, he was honored with the Excellence Award in 2024 by Educators Empowering India, which is a significant acknowledgment of his dedication and impactful work in the educational sector. He also received the Best Poster Award at the Star Submit organized by SIMATS School of Engineering in 2024, further validating his research proficiency and presentation skills. His active participation in numerous national and international Faculty Development Programs (FDPs), workshops, and seminars underscores his commitment to continuous learning and academic excellence. Mahesh’s accolades are complemented by his leadership roles in organizing key events such as the International Conference on Computational Intelligence, Fog Computing, and Cybernetics Systems (ICCIFS-2024) and the International Conference on Communication Engineering and Technology (2018). Additionally, his memberships in prestigious organizations like the International Association of Engineers (IAENG) and the International Association of Computer Science and Information Technology (IACSIT) reflect his strong integration within the global academic and professional community. These honors collectively demonstrate his sustained contributions and dedication to research and education.

Conclusion

R. Mahesh Muthulakshmi exemplifies the qualities of a dedicated researcher and academic professional, with his career reflecting a perfect blend of teaching excellence, innovative research, and active participation in scholarly activities. His focus on data security and cloud computing addresses some of the most pressing technological challenges of the modern era, and his research outputs in SCI and Scopus-indexed journals reinforce the quality and relevance of his work. His proactive approach in participating in faculty development programs, organizing international conferences, and collaborating with peers shows his commitment to continuous growth and academic leadership. Furthermore, his recognition through various awards and active memberships in professional bodies positions him as a respected figure in his field. While expanding international collaborations and increasing his publication footprint in top-tier journals could further elevate his profile, his current contributions already mark him as a valuable asset to the research community. Overall, Mahesh stands out as a deserving candidate for prestigious recognitions such as the Best Researcher Award, with strong potential to continue making meaningful advancements in computer science and engineering.

Publications Top Notes

1. A Robust Approach to Cloud Data Security Using an Amalgamation of AES and Code-Based Cryptography

  • Authors: R.M. Muthulakshmi, T.P. Anithaashri

  • Year: 2024

  • Citations: 2

2. Novel Weight-Improved Particle Swarm Optimization to Enhance Data Security in Cloud

  • Authors: M.M. R

  • Year: 2023

  • Citations: 2

3. An Optimized Dual Generative Hyperbolic Graph Adversarial Network With Multi‐Factor Random Permutation Pseudo Algorithm Based Encryption for Secured Industrial Healthcare Data

  • Authors: R.M. Muthulakshmi, T.P. Anithaashri

  • Year: 2025

4. Enhancing Data Security in Cloud Using Artificial Neural Network with Backward Propagation

  • Authors: R.M. Muthulakshmi, T.P. Anithaashri, C. Nataraj, V.S.N. Talasila

  • Year: 2024

5. Data Security in Cloud Computing Using Maritime Search and Rescue Algorithm

  • Authors: A. Mahesh Muthulakshmi

  • Year: 2024

6. Enhancing the Detection of DDoS Attacks in Cloud Using Linear Discriminant Algorithm

  • Authors: M.M. R, A. T.P.

  • Year: 2023

7. The Security in Online Data Sharing on the Public Server Using Secure Key-Aggregate Cryptosystems with Broadcast Aggregate Keys

  • Authors: R.M. Muthulakshmi

  • Year: 2018

8. Data Access Control in Public Cloud Storage System Using “CP-ABE” Technique

  • Authors: S.K. R. Mahesh Muthulakshmi, Karthiga E., Ramani K.

  • Year: 2018

9. The Darwinism of Big Data Security Through Hadoop Augmentation Security Model

  • Authors: R. Mahesh Muthulakshmi, M.S.M. Sivam, D. Anitha

  • Year: 2016

Shivam Kumar | Computer Science | Best Researcher Award

Mr. Shivam Kumar | Computer Science | Best Researcher Award

Techno International New Town, India

Shivam Kumar is an ambitious and driven undergraduate student specializing in Artificial Intelligence and Machine Learning. Currently pursuing his B.Tech at Techno International New Town under MAKAUT, West Bengal, he maintains a strong academic record with a CGPA of 8.39 as of the 7th semester. Shivam is passionate about applying his analytical and technical skills toward solving real-world problems, particularly in the healthcare and computer vision domains. He has demonstrated a proactive approach to research by publishing papers in both journals and conferences, reflecting his commitment to academic growth and knowledge dissemination. Shivam’s project portfolio showcases his ability to develop end-to-end machine learning pipelines and apply classical algorithms in programming languages such as C++ and Python. In addition to his technical expertise, he has proven teamwork and problem-solving capabilities through active participation in events like the Smart India Hackathon, where his team achieved third place. His goal is to build a career in an innovative and growth-oriented organization, where continuous learning and impactful contributions are valued.

Professional Profile

Education

Shivam Kumar is currently enrolled in a Bachelor of Technology program with a specialization in Artificial Intelligence and Machine Learning at Techno International New Town, affiliated with MAKAUT, West Bengal. Expected to graduate in July 2025, he has maintained a commendable CGPA of 8.39 through rigorous coursework that includes data structures, algorithms, DBMS, computer networks, operating systems, and software engineering. Prior to his undergraduate studies, Shivam completed his higher secondary education (AISSCE) from Jasidih Public School, Jharkhand, with an aggregate score of 72.2%. His foundational schooling was completed at G.D. D.A.V Public School, Jharkhand, where he scored 86.33% in the Class X AISSE examination. This strong academic background has equipped Shivam with solid theoretical knowledge and practical skills that complement his technical and research pursuits in the field of AI and machine learning.

Professional Experience

While still a student, Shivam Kumar has demonstrated practical experience through project-based engagements and active participation in competitive technical events. He has developed a comprehensive machine learning project focused on heart disease prediction, which involved data preprocessing, feature analysis, and model optimization using Python and ML libraries. This hands-on experience reflects his ability to handle complex datasets and apply algorithms to meaningful real-world problems. Additionally, Shivam built a command-line Sudoku solver in C++, demonstrating proficiency in algorithm design, object-oriented programming, and error handling. Beyond projects, Shivam contributed as a team member in the Smart India Hackathon at the college level, where his team secured third place by innovating and presenting effective solutions. Though he has not yet held formal industry positions, these experiences reflect strong foundations in problem-solving, programming, and collaborative development, preparing him well for professional roles in AI, software development, and data science.

Research Interest

Shivam Kumar’s research interests are primarily centered around machine learning applications in healthcare and computer vision. He is particularly passionate about using predictive analytics and ensemble learning techniques to address critical health issues, as reflected in his work on heart disease prediction. His research also extends to image classification, demonstrated by his exploration of fish species identification using convolutional neural networks (CNN) and logistic regression on underwater imagery. These interests align with contemporary challenges in AI, including data imputation, feature selection, and the development of robust models for diverse datasets. Shivam’s focus on applying both classical algorithms and deep learning methods shows his eagerness to understand and contribute to various facets of AI research. His projects and publications suggest a commitment to exploring how AI can be leveraged to improve diagnostic accuracy and environmental monitoring, which could potentially impact medical and ecological fields positively.

Research Skills

Shivam Kumar possesses a strong skill set in programming languages such as C++, Python, and working knowledge of SQL and MySQL for database management. He is proficient in using libraries and tools like Scikit-Learn, NumPy, Pandas, and Matplotlib to build, visualize, and optimize machine learning models. His skills extend to software development environments such as VS Code, Git/GitHub for version control, and operating systems including Unix and Linux. Shivam demonstrates competence in machine learning pipelines involving data preprocessing, handling missing data via imputation techniques, feature selection, and hyperparameter tuning. His command over algorithms, data structures, and object-oriented programming supports his ability to design efficient and maintainable code. Furthermore, Shivam is skilled in conducting exploratory data analysis and deploying classification models, making him well-equipped for research and development roles that require both programming expertise and analytical thinking.

Awards and Honors

Shivam Kumar has achieved notable recognition for his research and technical prowess during his academic journey. He has published a journal paper titled “Empirical Analysis of Machine Learning and Stacking Ensemble Methods for Heart Disease Detection,” showcasing his ability to contribute to peer-reviewed scientific literature. Additionally, he has presented a conference paper on “Fish Classification Using CNN and Logistic Regression from Underwater Images,” which highlights his engagement with computer vision applications. Shivam’s competitive spirit and problem-solving skills earned his team third place in the Smart India Hackathon at the college level, a prestigious nationwide innovation competition that attracts participants from across India. These achievements reflect his dedication to excellence in both academic research and practical innovation. Shivam’s growing list of publications and accolades positions him as a promising young researcher ready to make significant contributions in AI and machine learning.

Conclusion

Shivam Kumar is a highly promising young researcher and technologist with a solid academic foundation and practical research experience in AI and machine learning. His demonstrated ability to conduct meaningful projects, publish research papers, and contribute to team-based competitions underscores his dedication and potential for future success. With strong programming skills, a deep interest in healthcare and computer vision applications, and an eagerness to learn and innovate, Shivam is well-prepared to pursue advanced research or professional roles in cutting-edge technology domains. Continued engagement with collaborative research, expanding publication venues, and gaining industry experience will further enhance his profile. Overall, Shivam’s blend of technical knowledge, research aptitude, and proactive learning attitude makes him an excellent candidate for recognition as a Best Researcher in the student category.

Publications Top Notes

  1. Empirical Analysis of Machine Learning and Stacking Ensemble Methods for Heart Disease Detection

    • Authors: Bikash Sadhukhan, Pratick Gupta, Atulya Narayan, Akshay Kumar Mourya, Shivam Kumar

    • Year: 2025

  2. Fish Classification Using CNN and Logistic Regression from Underwater Images

    • Authors: Shivam Kumar, Pratick Gupta, Pratima Sarkar, Bijoyeta Roy

    • Year: 2023

 

Igor Sitnik | Computer Science | Best Researcher Award

Prof. Igor Sitnik | Computer Science | Best Researcher Award

Leading Researcher from Joint Institute for Nuclear Research, Russia

Igor M. Sitnik is a distinguished physicist known for his pioneering contributions to nuclear and particle physics. With a research career spanning over five decades, he has played a central role in the analysis and interpretation of complex experimental data, particularly in the fields of light nuclei reactions and polarization phenomena. Sitnik has been instrumental in leading experimental collaborations at premier research institutions such as the Joint Institute for Nuclear Research (JINR) in Dubna and Jefferson Lab (JLab) in the United States. His career is marked by scientific rigor, collaborative leadership, and a commitment to advancing knowledge in subatomic physics. Having received multiple first-class JINR awards, he is recognized by his peers for excellence and innovation in experimental physics. His work has not only contributed valuable insights into nuclear structures and reaction mechanisms but also to the development of computational tools that enhance data interpretation in high-energy physics. With several highly cited publications, including one with over 900 citations, Sitnik remains a respected authority in his domain. His contributions continue to influence experimental design, data processing, and the theoretical understanding of fundamental particles, making him a deserving candidate for top honors in scientific achievement.

Professional Profile

Education

Igor M. Sitnik graduated from the Physics Department of Moscow State University in 1964, a renowned institution known for its rigorous training in fundamental and applied sciences. His education at one of the most prestigious universities in Russia provided him with a strong foundation in theoretical and experimental physics. During his formative academic years, he cultivated a deep interest in nuclear and subatomic physics, which would later define the focus of his professional career. His undergraduate studies were rooted in classical mechanics, quantum theory, electrodynamics, and statistical mechanics—courses that equipped him with analytical tools necessary for advanced research. His time at Moscow State University also introduced him to early computational methods and data analysis techniques, which he later expanded upon through decades of research. While no specific postgraduate degrees are mentioned, Sitnik’s career trajectory suggests extensive post-degree specialization and hands-on training in experimental nuclear physics and detector technology. His continuous professional development through participation in international collaborations and technical projects reflects a lifetime commitment to learning and scientific inquiry. The academic rigor and mentorship he received during his education played a significant role in shaping his methodical approach to research and long-term contributions to physics.

Professional Experience

Igor M. Sitnik has had a long and impactful career as a researcher, leader, and innovator in the field of nuclear and particle physics. Since the 1970s, he has been responsible for off-line analysis in his group at the Joint Institute for Nuclear Research (JINR) in Dubna. In the 1970s and 1980s, he led groundbreaking studies on the breakup reactions of light nuclei on various targets, a body of work that earned him the prestigious 1st JINR Prize in 1989. Moving into the 1990s, Sitnik shifted his focus to polarization phenomena, for which he also received the 1st JINR Prize in 1997. During this period, he served as co-spokesman for Proposal LNS 249 at Saturne-2 (JINR), underscoring his leadership role in international experimental collaborations. In the late 1990s, he became the spokesman for the “ALPHA” spectrometer project in Dubna. Most recently, he has been actively involved in studying the proton electric-to-magnetic form factor ratio (Gep/Gmp) at Jefferson Lab in the USA, with portions of this research conducted in Dubna, culminating in the 1st JINR Prize in 2020. His professional journey reflects a consistent dedication to experimental excellence, leadership in high-profile projects, and innovation in nuclear science.

Research Interests

Igor M. Sitnik’s research interests are centered around nuclear and particle physics, with a specific focus on reaction dynamics, polarization effects, and form factor studies. In the early stages of his career, he was deeply involved in investigating the breakup reactions of light nuclei, exploring how nuclear interactions change with varying target materials. This line of inquiry provided insights into nuclear structure and reaction mechanisms. In the subsequent decades, he expanded his interests to include polarization phenomena, examining spin-dependent interactions and their implications in nuclear scattering processes. These studies have practical applications in understanding fundamental nuclear forces and contribute to precision modeling in theoretical physics. More recently, Sitnik has engaged in form factor measurements at Jefferson Lab (JLab), particularly the ratio of electric to magnetic form factors of the proton (Gep/Gmp). This research is essential for understanding the internal structure of protons and has implications for quantum chromodynamics. Additionally, Sitnik has demonstrated a strong interest in data analysis methodologies, developing a minimization program in the 2010s for handling complex, multi-variable datasets. His ability to integrate experimental design with computational analysis defines his holistic and innovative approach to research in modern nuclear physics.

Research Skills

Igor M. Sitnik possesses a robust set of research skills that span experimental design, data analysis, computational modeling, and scientific communication. His early work in nuclear reaction dynamics required meticulous experimental planning, including the selection of beam-target configurations and detector setups. Sitnik’s responsibility for off-line analysis within his group highlights his proficiency in processing and interpreting large volumes of experimental data—skills that are essential in high-energy and nuclear physics research. He has demonstrated expertise in statistical analysis and error minimization, evident from the development of a custom minimization program for multi-set tasks. This computational tool showcases his aptitude for programming and algorithmic optimization, allowing for efficient parameter fitting in complex physical models. In collaborative settings, Sitnik has frequently held leadership roles, which underline his ability to manage interdisciplinary teams and guide long-term research projects. His high citation counts indicate a strong capability in publishing impactful findings and presenting them to the scientific community. Whether through experimental rigour, theoretical insight, or data processing innovation, Sitnik’s research skills reflect a well-rounded and highly competent physicist who has contributed significantly to advancing experimental techniques and analytical methodologies in his field.

Awards and Honors

Over the course of his esteemed career, Igor M. Sitnik has been the recipient of several top-tier scientific honors, most notably the 1st JINR Prize, which he has been awarded three times. The first was in 1989 for his extensive work on the breakup reactions of light nuclei, a cornerstone study in nuclear reaction physics. His second 1st JINR Prize was awarded in 1997 for his pivotal research on polarization phenomena in nuclear interactions. This body of work marked an important advancement in understanding spin-dependent processes. The third award came in 2020, recognizing his significant contributions to the study of the Gep/Gmp ratio—a key metric in probing the internal structure of the proton—conducted in part at Jefferson Lab (JLab) and partially in Dubna. These repeated honors from a leading international research institution testify to the lasting impact and high quality of Sitnik’s research. In addition to formal awards, his publication record includes several high-impact papers, one of which has been cited over 900 times, indicating broad recognition by the global physics community. His accolades place him among the most respected experimental nuclear physicists in the post-Soviet scientific world.

Conclusion

Igor M. Sitnik stands out as an exemplary researcher in the field of nuclear and particle physics. His decades-long contributions span pioneering experimental work, leadership in major international collaborations, and the development of advanced data analysis tools. With a career marked by three prestigious 1st JINR Prizes, he has consistently demonstrated a high level of scientific excellence and innovation. His impactful research on nuclear reactions, polarization phenomena, and proton structure has significantly advanced our understanding of subatomic processes. Sitnik’s ability to bridge theoretical insight with practical implementation through software development for data analysis highlights his multidimensional expertise. His research has not only yielded highly cited publications but has also contributed to shaping experimental protocols and analytical methods in modern physics. Though there are opportunities for enhanced mentorship and broader dissemination of his recent work, Sitnik’s legacy is firmly established. He continues to be a vital figure in the scientific community, with a body of work that exemplifies dedication, intellectual rigor, and collaborative spirit. These achievements make him a worthy and compelling candidate for the Best Researcher Award and solidify his position as a leader in advancing the frontiers of nuclear science.

Publications Top Notes

1. The Final Version of the 5D Histogram Package NORA

  • Author: I.M. Sitnik

  • Journal: Computer Physics Communications

  • Year: 2024

2. Debugging the FUMILIM Minimization Package

  • Authors: I.M. Sitnik, I.I. Alexeev, D.V. Nevsky

  • Journal: Computer Physics Communications

  • Year: 2024

  • Citations: 2

3. 5D Histogram Package NORA

  • Author: I.M. Sitnik

  • Journal: Computer Physics Communications

  • Year: 2023

4. Charge Exchange dp→(pp)n Reaction Study at 1.75 A GeV/c by the STRELA Spectrometer

  • Authors: S.N. Basilev, Y.P. Bushuev, S.A. Dolgiy, I.V. Slepnev, J. Urbán

  • Journal: European Physical Journal A

  • Year: 2021

  • Citations: 2

5. The Final Version of the FUMILIM Minimization Package

  • Authors: I.M. Sitnik, I.I. Alexeev, O.V. Selugin

  • Journal: Computer Physics Communications

  • Year: 2020

  • Citations: 9

6. Results of Measurements of the Analyzing Powers for Polarized Neutrons on C, CH₂ and Cu Targets for Momenta Between 3 and 4.2 GeV/c

  • Authors: I.M. Sitnik, S.N. Basilev, Y.P. Bushuev, J. Urbán, J. Mušinský

  • Type: Conference Paper

7. Measurement of Neutron and Proton Analyzing Powers on C, CH, CH₂ and Cu Targets in the Momentum Region 3–4.2 GeV/c

  • Authors: S.N. Basilev, Y.P. Bushuev, O.P. Gavrìshchuk, J. Urbán, J. Mušinský

  • Journal: European Physical Journal A

  • Year: 2020

  • Citations: 5

8. Technical Supplement to “Polarization Transfer Observables in Elastic Electron-Proton Scattering at Q² = 2.5, 5.2, 6.8 and 8.5 GeV²”

  • Authors: A.J.R. Puckett, E.J. Brash, M.K. Jones, B.B. Wojtsekhowski, S.A. Wood

  • Journal: Nuclear Instruments and Methods in Physics Research Section A

  • Year: 2018

 

 

Prasanthi Vallurupalli | Computer Science | Best Innovator Award

Mrs. Prasanthi Vallurupalli | Computer Science | Best Innovator Award

Cybersecurity Software Engineer from J.B.Hunt Transport Inc, United States

Prasanthi Vallurupalli is a distinguished Cybersecurity Software Engineer with 11 years of experience in the IT industry. With a background as a Programmer Analyst and Software Developer, she has developed an extensive understanding of software development, security protocols, and emerging technologies. Throughout her career, Prasanthi has contributed significantly to the field of cybersecurity, AI, and machine learning (AI/ML) through research and practical applications. She is known for her expertise in cybersecurity and her ability to combine technical skills with a strategic vision for innovation. Her work in AI/ML and cybersecurity has been recognized in both industry and academia, making her a thought leader in the space. Her contributions extend beyond research, as she has published multiple papers and authored a nationally recognized book on cybersecurity, which demonstrates her leadership and commitment to advancing knowledge in the field. Recognized with numerous prestigious awards and editorial memberships, Prasanthi continues to drive industry transformation with a focus on innovation and technological advancements. Her deep expertise, combined with a passion for improving security technologies, positions her as a deserving candidate for recognition in the tech industry.

Professional Profile

Education

Prasanthi Vallurupalli holds a strong educational foundation in computer science and cybersecurity, which has been pivotal in her professional achievements. She earned a Bachelor’s degree in Computer Science, where she first developed a keen interest in software development and security technologies. Building upon this foundation, she pursued advanced studies in cybersecurity and AI/ML, further deepening her expertise. Throughout her academic journey, Prasanthi consistently excelled in both theoretical knowledge and practical applications, making her well-equipped to tackle the complexities of modern cybersecurity challenges. Her commitment to learning and growth has been a driving force in her career, allowing her to stay at the forefront of technological advancements. She has also participated in various professional development programs and workshops, which have kept her skills up to date with the latest trends in software security, machine learning, and AI. This ongoing pursuit of knowledge has not only enhanced her technical abilities but has also allowed her to contribute meaningfully to research in the field of cybersecurity. Prasanthi’s academic accomplishments have laid a solid foundation for her to thrive as a recognized expert in cybersecurity and AI/ML, shaping her career trajectory as a leading figure in the industry.

Professional Experience 

With 11 years of professional experience in the IT industry, Prasanthi Vallurupalli has held key roles as a Cybersecurity Software Engineer, Programmer Analyst, and Software Developer. In her career, she has successfully navigated a range of responsibilities, from coding and software design to ensuring the security and integrity of complex systems. Her expertise spans software development, cybersecurity practices, and the application of emerging technologies, particularly in AI/ML. Prasanthi’s work in developing secure software solutions and protecting against cybersecurity threats has made a substantial impact across industries. She has been involved in high-stakes projects where ensuring the confidentiality, integrity, and availability of data was paramount. Her leadership in driving security solutions has led to the implementation of innovative security protocols and AI-driven defense systems. Additionally, Prasanthi has actively collaborated with cross-functional teams, contributing to the development of robust solutions that integrate both technical and strategic elements. As a result of her consistent excellence and innovative approach, she has earned recognition from both her peers and industry leaders. Her professional journey reflects a blend of technical mastery, leadership, and a commitment to advancing the cybersecurity field, setting her apart as a leader in her domain.

Research Interests

Prasanthi Vallurupalli’s primary research interests lie at the intersection of cybersecurity and artificial intelligence/machine learning (AI/ML). She is particularly focused on developing advanced cybersecurity solutions using AI/ML techniques to protect against evolving cyber threats. Her work explores the use of AI in automating threat detection, identifying vulnerabilities, and building more secure systems. She is also interested in creating intelligent systems that can adapt to new types of attacks in real-time, improving the resilience of security systems. Another area of her research focuses on secure software development practices and the integration of AI-driven security mechanisms within software lifecycle management. Her interdisciplinary approach combines her expertise in cybersecurity with the potential of AI/ML to drive innovation and efficiency in the field. Additionally, Prasanthi is keen on studying how machine learning algorithms can predict and mitigate cybersecurity risks, including data breaches, malware attacks, and other vulnerabilities. She aims to contribute to developing more robust, adaptive, and scalable security systems that can stay ahead of cyber adversaries. As she continues to explore these research areas, Prasanthi’s work promises to make a significant impact in the way security systems are developed and deployed in an increasingly complex and dynamic digital landscape.

Research Skills 

Prasanthi Vallurupalli possesses a diverse and advanced set of research skills that are critical to her work in cybersecurity and artificial intelligence. Her proficiency in various programming languages, such as Python, C++, and Java, allows her to develop and implement security solutions using cutting-edge AI/ML algorithms. She is highly skilled in utilizing machine learning frameworks such as TensorFlow, Keras, and PyTorch, which she leverages to build and deploy AI-driven security models. Additionally, Prasanthi is adept at working with large datasets, performing data analysis, and utilizing statistical tools to derive meaningful insights related to cybersecurity threats and vulnerabilities. Her expertise in data mining and predictive modeling further enhances her ability to analyze complex patterns and anticipate potential risks. Prasanthi also excels in software development methodologies, ensuring that her research is not only technically sound but also practically applicable. Her research skills extend to system design, where she has contributed to the development of secure, scalable, and high-performance systems. Furthermore, Prasanthi is experienced in conducting literature reviews, drafting research papers, and presenting findings in academic and industry forums. Her ability to bridge theoretical knowledge with practical applications makes her research highly impactful in advancing the field of cybersecurity.

Awards and Honors

Prasanthi Vallurupalli’s work in cybersecurity and AI/ML has been widely recognized, earning her numerous prestigious awards and honors. She has received accolades for her research contributions, particularly in the areas of cybersecurity defense mechanisms and the integration of artificial intelligence in security systems. Among her significant achievements is her nationally recognized book on cybersecurity, which has garnered attention from both academic and industry circles. Additionally, Prasanthi has been awarded for her research papers, which have been published in respected journals within the cybersecurity and AI/ML domains. Her editorial memberships in prominent journals further underscore her credibility and standing as an expert in the field. Beyond her academic and professional recognitions, Prasanthi has been celebrated for her leadership in advancing the practice of cybersecurity through innovation and thought leadership. These awards and honors are a testament to her consistent excellence and dedication to improving the field of cybersecurity, and they serve as a reflection of the impact she has made on both her peers and the wider tech community. Prasanthi’s ability to inspire and lead in research has earned her a reputation as one of the leading figures in cybersecurity and AI/ML research.

Conclusion

Prasanthi Vallurupalli is an exemplary professional and researcher in the fields of cybersecurity and artificial intelligence. Her extensive experience, strong academic foundation, and groundbreaking research have positioned her as a leading figure in the tech industry. Through her numerous contributions, including publications, a nationally recognized book, and groundbreaking work in AI/ML-driven cybersecurity solutions, Prasanthi has demonstrated a deep commitment to advancing technology and tackling the most pressing challenges in cybersecurity. Her ability to seamlessly blend technical expertise with innovative thinking has allowed her to develop cutting-edge solutions to protect against evolving cyber threats. With over a decade of experience, she has continuously pushed the boundaries of cybersecurity, offering new approaches that improve both the security and functionality of systems. Prasanthi’s work has been acknowledged with prestigious awards and honors, reflecting the significant impact she has made in her field. As a thought leader, she not only contributes to the technical community but also drives industry-wide transformation through her research and leadership. Moving forward, Prasanthi is poised to continue her path of excellence, influencing the future of cybersecurity and AI/ML. Her ability to adapt and innovate ensures she remains a powerful force for positive change in the industry.

Publications Top Notes

  • Designing and Training of Lightweight Neural Networks on Edge Devices Using Early Halting in Knowledge Distillation

    • Authors: Rahul Mishra and Hari Prabhat Gupta

    • Year: 2022 ​

  • REAL-TIME CYBERSECURITY THREAT ASSESSMENT: DYNAMIC RISK SCORING WITH HYBRID DATA SCIENCE MODELS

    • Author: P. Vallurupalli

    • Year: 2022

André Guimarães | Computer Science | Best Researcher Award

Mr. André Guimarães | Computer Science | Best Researcher Award

Researcher at University of Beira Interior, Portugal

André Guimarães is a distinguished mechanical engineer and academic, renowned for his extensive contributions to mechanical engineering, industrial management, and digital transformation. With over a decade of professional experience in the manufacturing industry, he has seamlessly integrated practical expertise with academic pursuits. Currently, as a Ph.D. candidate in Industrial Engineering and Management at the University of Beira Interior, André is delving into advanced research areas, particularly focusing on Industry 4.0 and its implications for modern manufacturing processes. His role as a Guest Lecturer at the Polytechnic Institute of Viseu underscores his commitment to education and knowledge dissemination. André’s scholarly contributions include several scientific publications that explore the intersections of polymeric materials, lean management, and asset management. His active participation in various research projects highlights his dedication to advancing engineering practices and promoting digital transformation within the industry. André’s multifaceted career reflects a harmonious blend of industry experience, academic excellence, and a passion for fostering innovation in engineering.

Professional Profile

Education

André’s academic journey commenced with a Bachelor’s degree in Mechanical Engineering, laying a robust foundation in engineering principles. He further augmented his expertise by obtaining a Master’s degree in Mechanical Engineering and Industrial Management, where he engaged in research focusing on the development of novel adhesive joints utilizing fiber-metal laminates. Demonstrating a commitment to continuous learning, André pursued a postgraduate degree in Industry 4.0 and Digital Transformation from the Instituto Superior de Engenharia do Porto. This advanced training equipped him with contemporary insights into the integration of digital technologies within industrial frameworks. Currently, as a doctoral candidate at the University of Beira Interior, supported by a scholarship from the Foundation for Science and Technology, André is investigating the transformative impacts of digitalization on industrial processes. His diverse educational background reflects a dedication to both theoretical understanding and practical application, positioning him at the forefront of engineering innovation and digital advancement.

Professional Experience

André’s professional trajectory encompasses significant roles in both industry and academia. He dedicated over ten years to the manufacturing sector, notably serving as a Production Manager at IPROM – Indústria de Produtos Metálicos Lda. In this capacity, he honed his skills in production optimization, quality control, and team leadership, directly overseeing manufacturing operations and implementing process improvements. Transitioning to academia, André has been a Guest Lecturer at the Polytechnic Institute of Viseu since 2019, where he imparts knowledge in mechanical engineering and industrial management. His teaching methodology is enriched by his industry experience, providing students with practical perspectives on theoretical concepts. Additionally, André has contributed to various research initiatives, collaborating with institutions such as the University of Beira Interior’s Electromechatronic Systems Research Centre (CISE) and the Research Centre for Digital Services (CISeD) at the Polytechnic Institute of Viseu. His dual engagement in industry and academia underscores a comprehensive understanding of engineering challenges and solutions.

Research Interests

André’s research interests are centered around the integration of advanced technologies within industrial systems. He is particularly focused on Industry 4.0, exploring how digital transformation can enhance manufacturing efficiency and competitiveness. His work delves into the application of lean management principles in conjunction with digital tools to streamline production processes and reduce waste. André is also invested in the study of polymeric materials, investigating their properties and potential applications in modern engineering solutions. Another facet of his research involves asset management, where he examines strategies for optimizing the lifecycle and performance of industrial assets through predictive maintenance and data analytics. By bridging the gap between traditional engineering practices and contemporary technological advancements, André aims to contribute to the development of sustainable and efficient industrial systems.

Research Skills

André possesses a diverse skill set that encompasses both technical and analytical proficiencies. He is adept at conducting comprehensive data analysis, utilizing statistical tools to interpret complex datasets and inform decision-making processes. His expertise in numerical modeling and simulation enables him to predict system behaviors and optimize engineering designs. André is proficient in hydrodynamic modeling, particularly within the context of coastal engineering, allowing for accurate assessments of environmental impacts on engineering projects. His experience in project management is evidenced by his coordination of research initiatives, where he oversees project development, resource allocation, and team collaboration. Additionally, André’s teaching experience has honed his ability to communicate complex concepts effectively, both in written and oral formats, facilitating knowledge transfer and fostering educational growth.

Awards and Honors

Throughout his career, André has been recognized for his academic and professional excellence. He was awarded a doctoral scholarship by the Foundation for Science and Technology, acknowledging his potential to contribute significantly to research in Industrial Engineering and Management. His scholarly work has been featured in reputable journals and conferences, reflecting peer recognition of his contributions to the fields of Industry 4.0, lean management, and polymeric materials. André’s commitment to education and research has also been acknowledged through invitations to present at international conferences, where he has shared his insights on digital transformation and industrial optimization. These accolades underscore his dedication to advancing engineering practices and his impact on both academic and industrial communities.

Conclusion

In summary, André Guimarães exemplifies a professional who seamlessly integrates industry experience with academic prowess. His extensive background in mechanical engineering and industrial management, coupled with a strong focus on digital transformation, positions him as a leader in modern engineering practices. André’s dedication to research is evident through his diverse interests and active participation in projects that bridge the gap between traditional engineering and contemporary technological advancements. His commitment to education, demonstrated by his role as a Guest Lecturer, reflects a passion for fostering the next generation of engineers. As he continues his doctoral research, André is poised to make further significant contributions to the fields of industrial efficiency and digital innovation, driving progress in both academic and practical domains.

Publication Top Notes

  • Development of a Polymer Filament Extruder: Recycling 3D Printer Waste

    • Authors: André Guimarães, Samuel Messias, João Lopes, José Salgueiro, Daniel Gaspar
    • Year: 2025
    • Journal: Kexue Tongbao/Chinese Science Bulletin
  • Effects of Lean Tools and Industry 4.0 Technology on Productivity: An Empirical Study

    • Authors: André Guimarães, Eduardo e Oliveira, Marisa Oliveira, Teresa Pereira
    • Year: 2025
    • Journal: Journal of Industrial Information Integration
  • Implementation of Autonomous Mobile Robots in Intralogistics: Simulations in a Case Study

    • Authors: André Guimarães, A. Silva, J. Teixeira, F. Gomes, S. Martins
    • Year: 2025
    • Journal: Kexue Tongbao/Chinese Science Bulletin
  • The Influence of Consumer, Manager, and Investor Mood and Sentiment on Excess Market Returns

    • Authors: Pedro Nogueira Reis, António Pedro Soares Pinto, André Guimarães
    • Year: 2025
    • Journal: Investment Management and Financial Innovations
  • A Hybrid Strategy for Paint Greenhouse Optimization in Aerospace Manufacturing: Lean Principles and Mathematical Modelling

    • Authors: Maria Teresa Pereira, Marisa Pereira, Fernanda Ferreira, Francisco Silva, André Guimarães
    • Year: 2025
    • Conference: FAIM 25 – The 34th International Conference on Flexible Automation and Intelligent Manufacturing
  • Digital Transformation in Costing for Third-Part Logistics: A Case Study

    • Authors: Maria Teresa Pereira, Nuno Gabriel, Marisa Pereira, Filipe Ramos, André Guimarães
    • Year: 2025
    • Conference: DSMIE – 8th International Conference on Design, Simulation, Manufacturing: The Innovation Exchange
  • Effects of Lean Tools and Industry 4.0 Technology on Productivity: An Empirical Study

    • Authors: André Guimarães, Eduardo e Oliveira, Marisa Oliveira, Teresa Pereira
    • Year: 2025
    • Journal: Journal of Industrial Information Integration
    • DOI: 10.1016/j.jii.2025.100787
  • The Influence of Consumer, Manager, and Investor Sentiment on US Stock Market Returns

    • Authors: Pedro Manuel Nogueira Reis, Antonio Pedro Soares Pinto, André Guimarães
    • Year: 2025
    • Journal: Investment Management and Financial Innovations
    • DOI: 10.21511/imfi.22(1).2025.18
  • A Integração da Transformação Digital na Gestão de Ativos nas Empresas Nacionais

    • Authors: Samuel Messias, André Guimarães, Hugo Raposo, Daniel Gaspar
    • Year: 2024
    • Conference: 11.º ENEGI, Encontro Nacional de Engenharia e Gestão Industrial
  • Asset Management and the Digital Transformation of Companies in Portugal: A Thematic Literature Review

    • Authors: Samuel Messias, André Guimarães, Hugo Raposo, Daniel Gaspar
    • Year: 2024
    • Journal: Journal of Management Science and Engineering

 

Dagne Walle | Computer Science | Best Scholar Award

Mr. Dagne Walle | Computer Science | Best Scholar Award

Haramaya at Haramaya university, Ethiopia

Dagne Walle Girmaw is a lecturer, researcher, and programmer at Haramaya University in Ethiopia, with a strong academic background in Information Technology. His expertise lies in applying machine learning and deep learning techniques to solve critical challenges in agriculture. Dagne’s work focuses on developing automated systems to detect crop diseases at an early stage, utilizing advanced AI models to improve food security and agricultural sustainability. His passion for using technology to bridge the gap between agriculture and innovation has led to impactful research that can potentially transform the agricultural landscape in Ethiopia and beyond. Dagne is committed to making a difference by empowering farmers with actionable insights that can enhance crop yields and reduce losses. As an educator, Dagne also plays a pivotal role in nurturing the next generation of IT professionals in Ethiopia, providing them with the necessary tools to apply advanced technologies in real-world scenarios.

Professional Profile

Education:

Dagne Walle Girmaw holds a Master’s degree in Information Technology from the University of Gondar, completed in 2021. He also earned his Bachelor’s degree in Information Technology from Haramaya University in 2017. His academic journey has been focused on acquiring a deep understanding of IT systems, with a particular emphasis on machine learning and deep learning. The combination of his education and technical skills has enabled him to pioneer research in applying these advanced technologies to agricultural challenges. His education from two reputable institutions in Ethiopia has provided him with both theoretical knowledge and practical experience in addressing real-world issues in agriculture, particularly the detection of crop diseases using AI.

Professional Experience:

Since 2018, Dagne has been a lecturer and researcher at Haramaya University, where he imparts knowledge on Information Technology and leads research initiatives focused on AI applications in agriculture. As a lecturer, he has played a key role in shaping the education of students, particularly those interested in IT, by teaching courses and supervising academic projects. His research experience spans over six years, during which he has developed several deep learning-based models for detecting crop diseases such as stem rust in wheat, livestock skin diseases, and common bean leaf diseases. His academic and research endeavors at Haramaya University have allowed him to make meaningful contributions to the field of agricultural technology and provide students with cutting-edge insights into the intersection of IT and agriculture.

Research Interest:

Dagne Walle Girmaw’s research interests are primarily centered around the application of deep learning and machine learning techniques in agriculture. He is particularly focused on developing systems for early disease detection in crops, which can significantly improve agricultural productivity and food security. His research has led to the development of various models, such as those for detecting and classifying diseases in crops like wheat, beans, and peas, using deep convolutional neural networks (CNNs). Additionally, Dagne’s work includes using AI for the detection of counterfeit Ethiopian banknotes. His interest in machine learning-driven solutions highlights his desire to use technology to solve some of the most pressing challenges in the agricultural sector, with the ultimate goal of empowering farmers and enhancing food systems in Ethiopia and other developing countries.

Research Skills:

Dagne possesses strong research skills in machine learning, deep learning, and computer vision, which are central to his work on agricultural disease detection. He is proficient in using deep learning frameworks such as TensorFlow and Keras to develop complex models that can process and analyze agricultural data, including images of crops. His research skills also include data preprocessing, model evaluation, and optimization techniques, all of which are essential for creating accurate and reliable models. Furthermore, Dagne has experience in implementing algorithms for image classification and pattern recognition, which are key components in his work on disease detection. His ability to integrate AI technologies into real-world applications demonstrates a high level of proficiency in his field and a commitment to advancing agricultural technologies through research.

Awards and Honors:

Dagne Walle Girmaw has earned multiple Reviewer Contribution Certificates, recognizing his active participation in the academic and research community. These certificates highlight his role in reviewing academic papers, further cementing his reputation as a respected contributor to the field of Information Technology and machine learning. While specific awards for his research have not been mentioned, his work’s impact on agricultural technology has gained recognition, particularly in Ethiopia, where his research has the potential to improve the lives of farmers and contribute to national food security. His certifications and recognition as a reviewer reflect his dedication to advancing knowledge in both the academic and applied research fields.

Conclusion:

Dagne Walle Girmaw is a promising researcher and academic in the field of Information Technology, with a focus on using AI and deep learning to address challenges in agriculture. His work is particularly impactful in the realm of crop disease detection, where he has developed models that could potentially transform agricultural practices in Ethiopia and beyond. With a strong educational background, extensive professional experience, and a passion for solving agricultural problems through technology, Dagne is well-positioned to make significant contributions to both the academic and practical aspects of agricultural innovation. His research holds the potential to not only advance technology but also improve the livelihoods of farmers, enhance food security, and contribute to sustainable agricultural practices.

Publication Top Notes

  1. Title: Livestock animal skin disease detection and classification using deep learning approaches
    • Authors: Walle Girmaw, D.
    • Journal: Biomedical Signal Processing and Control
    • Year: 2025
    • Volume: 102
    • Article Number: 107334
  2. Title: Deep convolutional neural network model for classifying common bean leaf diseases
    • Authors: Girmaw, D.W., Muluneh, T.W.
    • Journal: Discover Artificial Intelligence
    • Year: 2024
    • Volume: 4(1)
    • Article Number: 96
  3. Title: A novel deep learning model for cabbage leaf disease detection and classification
    • Authors: Girmaw, D.W., Salau, A.O., Mamo, B.S., Molla, T.L.
    • Journal: Discover Applied Sciences
    • Year: 2024
    • Volume: 6(10)
    • Article Number: 521
  4. Title: Field pea leaf disease classification using a deep learning approach
    • Authors: Girmaw, D.W., Muluneh, T.W.
    • Journal: PLoS ONE
    • Year: 2024
    • Volume: 19(7)
    • Article Number: e0307747
  5. Title: Development of a Model for Detection and Grading of Stem Rust in Wheat Using Deep Learning
    • Authors: Nigus, E.A., Taye, G.B., Girmaw, D.W., Salau, A.O.
    • Journal: Multimedia Tools and Applications
    • Year: 2024
    • Volume: 83(16)
    • Pages: 47649–47676
    • Citations: 4

 

 

Piyush Kumar Garg | Computer Science | Best Researcher Award

Mr. Piyush Kumar Garg | Computer Science | Best Researcher Award

PhD of Indian Institute of Technology, Patna, India.

Piyush Kumar Garg is a fifth-year PhD candidate in Computer Science and Engineering at the Indian Institute of Technology Patna, India, under the supervision of Dr. Sourav Kumar Dandapat. He is an active member of the Data Analytics & Network Science (DANeS) Lab, focusing on Disaster Tweet Summarization, Social Network Analysis, and Natural Language Processing. With a Master’s degree in Computer Science and Engineering from the Indian Institute of Technology Dhanbad and a Bachelor’s degree in Information Technology from Maharana Pratap University of Agriculture and Technology, Piyush brings a strong academic background to his research. He is recognized for his motivated and goal-oriented approach, alongside his proficiency in organizing events and his strong problem-solving skills. Piyush has garnered honors for his contributions to research and volunteering initiatives, showcasing his dedication to academia and community service.

Professional Profiles:

Education

Mr. Piyush Kumar Garg has dedicated himself to advancing his expertise in computer science and engineering through rigorous academic pursuits. He commenced his educational journey with a Bachelor of Technology in Information Technology from Maharana Pratap University of Agriculture and Technology College of Technology and Engineering in Udaipur, Rajasthan, India, where he laid the groundwork for his career in technology. Building upon this foundation, he pursued a Master of Technology in Computer Science and Engineering at the esteemed Indian Institute of Technology Dhanbad, Jharkhand, India, further honing his skills and knowledge in the field. Currently, he is engaged in doctoral research at the Indian Institute of Technology Patna, Bihar, India, where he is pursuing a PhD in Computer Science and Engineering. His academic pursuits have equipped him with a comprehensive understanding of computer science principles and methodologies, empowering him to contribute meaningfully to the field. Through his dedication and commitment to learning, Mr. Piyush Kumar Garg continues to excel in his academic endeavors, poised to make significant contributions to the realm of computer science and engineering.

Professional Experience

Mr. Piyush Kumar Garg, currently pursuing a PhD in Computer Science and Engineering at the Indian Institute of Technology Patna, has a diverse academic background and rich professional experience. With internships in web development at Vidhya Hitech Software Solution and ongoing research at IIT Patna, he demonstrates versatility and practical expertise. Under the guidance of Dr. Sourav Kumar Dandapat, his research focuses on Disaster Tweet Summarization, Social Network Analysis, and Natural Language Processing, showcasing his commitment to cutting-edge technology and its applications. Beyond academia, Mr. Garg actively engages in volunteer work with Street Cause and NSS, highlighting his dedication to social responsibility. With leadership roles in project management and event organization, coupled with his strong problem-solving skills and motivation to learn, Mr. Piyush Kumar Garg embodies a well-rounded professional poised for impactful contributions in the field of computer science.

Research Interest

Mr. Piyush Kumar Garg’s research interests span several areas within computer science and engineering. His primary focus lies in Disaster Tweet Summarization, aiming to develop efficient algorithms and techniques for extracting key information from tweets during crisis situations. Additionally, he is deeply engaged in Social Network Analysis, exploring patterns and structures within social networks to understand information dissemination and influence dynamics. Natural Language Processing forms another crucial aspect of his research, where he investigates techniques to analyze and understand human language data. Furthermore, his interests extend to Information Retrieval, Crisis Management, and Dialog Systems, reflecting a comprehensive approach to addressing contemporary challenges in technology and society. Through his diverse research interests, Mr. Garg seeks to contribute meaningfully to the advancement of knowledge and the development of practical solutions in these domains.

Award and Honors

Mr. Piyush Kumar Garg has garnered recognition for his academic and extracurricular achievements throughout his career. He has received prestigious awards such as academic scholarships, research grants, and accolades for his contributions to various initiatives. Additionally, his exceptional performance in academic settings has earned him distinctions and honors from esteemed institutions. Notably, his dedication to volunteer work and community service has been acknowledged through commendations and certificates of appreciation. Furthermore, his active involvement in organizing events and leading initiatives within academic and social spheres has been recognized by his peers and mentors. These awards and honors underscore Mr. Garg’s commitment to excellence and his significant impact in both academic and community contexts.

Research Skills

Mr. Piyush Kumar Garg possesses a diverse skill set tailored for advanced research in computer science and engineering. Proficient in various programming languages such as Python, Java, and C++, he demonstrates adeptness in algorithm design and implementation. His expertise extends to natural language processing techniques, data analytics, and network science methodologies. Additionally, he is skilled in utilizing machine learning and deep learning frameworks for complex data analysis tasks. With a strong foundation in statistical analysis and experimental design, Mr. Garg can effectively conduct research experiments and interpret results. Moreover, his ability to collaborate within multidisciplinary teams enhances his research capabilities, fostering innovative solutions to contemporary challenges in disaster tweet summarization, social network analysis, and information retrieval.

Publications

  1. IKDSumm: Incorporating key-phrases into BERT for extractive disaster tweet summarization
    • Journal: Computer Speech & Language
    • Year: 2024-08
    • DOI: 10.1016/j.csl.2024.101649
  2. OntoDSumm: Ontology-Based Tweet Summarization for Disaster Events
    • Journal: IEEE Transactions on Computational Social Systems
    • Year: 2023-04
    • DOI: 10.1109/tcss.2023.3266025
  3. EnDSUM: Entropy and Diversity based Disaster Tweet Summarization
    • Conference: Proceedings of Text2Story — Fifth Workshop on Narrative Extraction From Texts held in conjunction with the 44th European Conference on Information Retrieval (ECIR 2022)
    • Year: 2022-04-10
  4. SB-PSO based Secure Moving Average Time-based Fuzzy Resource Provisioning Approach (SBPSO-MATFRPA) with RSA
    • Journal: International Journal of Computer Applications
    • Year: 2018-04-17
    • DOI: 10.5120/ijca2018916824

 

Wadzani Aduwamai Gadzama | Computer Science | Best Researcher Award

Mr. Wadzani Aduwamai Gadzama | Computer Science | Best Researcher Award

Lecturer at Federal Polytechnic, Mubi, Nigeria.

Wadzani Aduwamai Gadzama is an accomplished academician and ICT professional with a diverse background in computer science. He holds a Master’s degree in Computer Science (Information Security) from Universiti Teknologi, Malaysia, and is currently pursuing a Ph.D. in Computer Science at Kebbi State University of Science & Technology, Aliero. With a Bachelor’s degree in Information and Communication Technology from Federal University of Technology, Yola, he has built a solid foundation in the field. Wadzani’s expertise extends to various technical domains, supported by his extensive training and certifications in areas such as IT assembly, network infrastructure design, and cyber security. As a seasoned lecturer, he has contributed significantly to the academic community, holding positions at Federal Polytechnic, Mubi, Adamawa State, and actively engaging in research and project proposal writing. Wadzani’s dedication to advancing ICT education is further underscored by his co-authorship of two books on software engineering and computer fundamentals, published by Ahmadu Bello University Press.

Professional Profiles:

Education

Mr. Wadzani Aduwamai Gadzama’s educational background includes a Ph.D. in Computer Science (In View) from Kebbi State University of Science & Technology, Aliero, a Master of Computer Science (Information Security) from Universiti Teknologi, Malaysia, and a Bachelor of Technology in Information and Communication Technology (Second Class Upper Division) from Federal University of Technology, Yola.

Professional Experience

Mr. Wadzani Aduwamai Gadzama brings a wealth of experience to the field of academia and technology. Holding the position of Senior Lecturer at the ICT Unit of Federal Polytechnic, Mubi, Adamawa State since 2022, he has demonstrated his commitment to education and technological advancement. Prior to this role, he served as Lecturer I, II, and III at the same institution, contributing significantly to the development of students and programs within the ICT department. With a background in Mass Communication and Computer Science, Mr. Gadzama has a multifaceted skill set that he has applied in various capacities, including as Assistant Lecturer and during his tenure with the National Examination Council (NECO) as part of the National Youth Service Corps (NYSC). His dedication to teaching, coupled with his technical expertise, makes him a valuable asset to any academic or technological environment.

Research Interest

Mr. Wadzani Aduwamai Gadzama’s research interests span across the intersection of technology and education. Specifically, he is keen on exploring innovative approaches to integrating Information and Communication Technology (ICT) into educational systems to enhance learning outcomes. His research focuses on areas such as digital literacy, emerging skills in ICT, and the impact of technology on pedagogy. Additionally, Mr. Gadzama is interested in investigating the role of ICT in addressing educational challenges in remote and underserved communities, particularly in Nigeria. Through his work, he aims to contribute to the advancement of educational technology and its effective implementation to bridge the digital divide and promote inclusive and accessible education for all.

Award and Honors

Mr. Wadzani Aduwamai Gadzama has received recognition for his contributions to the field of Information and Communication Technology (ICT) in education. His dedication and excellence have earned him several awards and honors, acknowledging his commitment to advancing technology-enhanced learning and digital literacy initiatives. These accolades highlight his significant impact on promoting innovative approaches to integrating ICT into educational systems and addressing the digital divide in Nigeria. Through his work, Mr. Gadzama has demonstrated leadership and excellence in leveraging technology to enhance teaching and learning outcomes, making a valuable contribution to the field of educational technology and pedagogy.

Research Skills

Mr. Wadzani Aduwamai Gadzama is a dedicated researcher with a wealth of experience in Information and Communication Technology (ICT). With a background in Computer Science and a Ph.D. in progress, he has honed his research skills to excel in various aspects of academic inquiry. His expertise encompasses data analysis, experimental design, and both qualitative and quantitative research methods. Additionally, Mr. Gadzama is proficient in literature review, research proposal writing, and collaboration with interdisciplinary teams. His commitment to advancing knowledge in ICT is evident through his track record of publications and presentations at conferences. With a keen interest in educational technology and information security, Mr. Gadzama continues to contribute significantly to the field through his research endeavors.

Publications

  1. The use of machine learning and deep learning models in detecting depression on social media: A systematic literature review
    • Authors: Gadzama, W.A., Gabi, D., Argungu, M.S., Suru, H.U.
    • Journal: Personalized Medicine in Psychiatry
    • Year: 2024
    • Volume: 45-46
    • Article ID: 100125
    • Citations: 0
  2. Movement pattern extraction method in oppnet geocast routing
    • Authors: Abali, A.M., Ithnin, N.B., Dawood, M., Gadzama, W.A., Ghaleb, F.A.
    • Conference: Advances in Intelligent Systems and Computing
    • Year: 2020
    • Volume: 1073
    • Pages: 714–723
    • Citations: 0
  3. A survey of geocast routing protocols in opportunistic networks
    • Authors: Abali, A.M., Ithnin, N.B., Ebibio, T.A., Dawood, M., Gadzama, W.A.
    • Conference: Advances in Intelligent Systems and Computing
    • Year: 2020
    • Volume: 1073
    • Pages: 683–694
    • Citations: 4
  4. Evaluation of employees awareness and usage of information security policy in organizations of developing countrties: A study of federal inland revenue service, Nigeria
    • Authors: Gadzama, W.A., Katuka, J.I., Gambo, Y., Abali, A.M., Usman, M.J.
    • Journal: Journal of Theoretical and Applied Information Technology
    • Year: 2014
    • Volume: 67(2)
    • Pages: 443–460
    • Citations: 2