SIMON NANDWA ANJIRI | Computer Science | Best Researcher Award

Mr. SIMON NANDWA ANJIRI | Computer Science | Best Researcher Award

Doctor of Philosophy at University Of Shanghai For Science And Technology, China

Simon Nandwa Anjiri is a PhD candidate at the University of Shanghai for Science and Technology, specializing in recommendation systems, data mining, and analysis. His notable research includes the publication of HyGate-GCN: Hybrid-Gate-Based Graph Convolutional Networks with Dynamical Ratings Estimation for Personalized POI Recommendation in Expert Systems with Applications. This work highlights his innovative approach to personalized recommendations. Simon actively engages with the international research community, exemplified by his participation as a guest speaker at the 2023 Young Scholars Conference at Zhejiang University of Technology. Despite his impressive contributions, he could further enhance his profile by broadening his publication record, pursuing additional patents, and increasing his citation index. Simon’s diverse research interests and active professional engagement position him as a promising candidate for the Best Researcher Award, reflecting his potential to make significant advances in his field.

Profile

Education

Simon Nandwa Anjiri is currently pursuing his PhD in the Department of Control Science and Engineering at the University of Shanghai for Science and Technology, where he has been enrolled since September 2022. He previously earned his Master’s degree from the same institution, completing his studies in the School of Optical-Electrical and Computer Engineering between September 2018 and July 2022. Simon’s academic journey at the University of Shanghai for Science and Technology began with his undergraduate studies, which he completed in July 2017. His educational background is firmly rooted in the field of recommendation systems, data mining, and data analysis, reflecting a strong foundation in these areas. Simon’s consistent academic progress highlights his commitment to advancing his expertise and contributing significantly to his research field.

Professional Experience

Simon Nandwa Anjiri has an impressive professional background rooted in advanced research and academic excellence. Currently pursuing a Ph.D. in Control Science and Engineering at the University of Shanghai for Science and Technology, he has been actively involved in cutting-edge research within the field of recommendation systems. His significant work includes the publication of HyGate-GCN: Hybrid-Gate-Based Graph Convolutional Networks with Dynamical Ratings Estimation for Personalized POI Recommendation in Expert Systems with Applications. Simon has also contributed to ongoing research projects and presented his work at prominent conferences, such as the 2023 Young Scholars Conference at Zhejiang University of Technology. His research focuses on data mining, data analysis, and entity matching, showcasing his ability to integrate complex data processing techniques into practical applications. Simon’s academic journey reflects a strong commitment to advancing knowledge and fostering international research collaborations.

Research Interest

Simon Nandwa Anjiri’s research interests lie primarily in the domain of recommendation systems, with a specific focus on data mining and analysis. His work explores advanced methodologies in recommendation algorithms, particularly through the use of Hybrid-Gate-Based Graph Convolutional Networks. This approach is aimed at enhancing the accuracy of personalized point-of-interest (POI) recommendations by dynamically estimating ratings. Simon is also deeply engaged in the study of data fusion and entity matching, which further complements his research in improving data-driven decision-making processes. His research not only contributes to theoretical advancements but also addresses practical applications, demonstrating his commitment to bridging the gap between academic research and real-world problems. Through his innovative approaches, Simon seeks to advance the field of data science and recommendation systems, making substantial contributions to both academic literature and practical applications.

Research Skills

Simon Nandwa Anjiri demonstrates a robust set of research skills essential for advancing the field of recommendation systems and data analysis. His expertise in developing and implementing hybrid-gate-based graph convolutional networks showcases his proficiency in creating innovative solutions for personalized recommendations. Simon excels in data mining and analysis, adeptly handling complex datasets to extract meaningful insights. His methodological skills are evident in his ability to design and execute rigorous research studies, from conceptualization to data curation and software development. Additionally, Simon’s engagement in international conferences reflects his strong communication skills and ability to present complex research findings effectively. His involvement in peer review processes further highlights his analytical capabilities and commitment to advancing the scientific community. Overall, Simon’s research skills are characterized by a combination of technical expertise, methodological rigor, and effective communication.

Award and Recognition

Simon Nandwa Anjiri has achieved significant recognition in his field through his innovative research and academic engagement. His recent publication, HyGate-GCN: Hybrid-Gate-Based Graph Convolutional Networks with Dynamical Ratings Estimation for Personalized POI Recommendation, exemplifies his contributions to advancing recommendation systems and data mining. Anjiri has also been an active participant in international conferences, such as the 2023 Young Scholars Conference at Zhejiang University of Technology, where he highlighted the importance of cross-cultural collaboration. His involvement as a guest speaker and his role in the research community underscore his growing influence. Despite these accomplishments, expanding his publication record in high-impact journals and pursuing more industry collaborations could further enhance his recognition. Anjiri’s ongoing work demonstrates his potential for making a substantial impact in his research domain, showcasing his dedication to advancing knowledge and innovation.

Conclusion

Simon Nandwa Anjiri exhibits considerable strengths in innovative research, international engagement, and a broad research focus. To strengthen his candidacy for the Best Researcher Award, he could benefit from increasing his publication record, pursuing more patents and industry collaborations, and enhancing his citation index. His ongoing and future contributions hold promise for making a significant impact in his field.

Publication Top Notes

  1. HyGate-GCN: Hybrid-Gate-Based Graph Convolutional Networks with dynamical ratings estimation for personalized POI recommendation
  • Authors: Simon Nandwa Anjiri, Derui Ding, Yan Song
  • Journal: Expert Systems with Applications
  • Year: 2024
  • DOI: 10.1016/j.eswa.2024.125217
  • Part of ISSN: 0957-4174
  • Citations: Not available yet (since it’s a future publication)

 

Akmalbek Abdusalomov | Computer Science | Best Researcher Award

Assist Prof Dr. Akmalbek Abdusalomov | Computer Science | Best Researcher Award

Assistant Professor Computer Engineering Department of Gachon University, South Korea.

Dr. Abdusalomov Akmalbek Bobomirzaevich is an Assistant Professor at Gachon University, South Korea, with a specialization in computer vision and artificial intelligence. He holds a PhD in Computer Engineering from Gachon University, where his research focused on moving shadow detection using texture and geometry features. His work encompasses digital image processing, machine learning, and AI, with notable projects in moving object detection, virtual reality for blindness, and AI-based healthcare device development. Dr. Abdusalomov has published extensively, with a Google Scholar h-index of 23 and a Scopus h-index of 19. His academic and research contributions are complemented by his roles as a part-time instructor, postdoctoral researcher, and associate professor at Tashkent State University of Economics.

Professional Profiles:

Education

Abdusalomov Akmalbek Bobomirzaevich earned his Bachelor’s degree in Software Engineering from Tashkent University of Information Technology, Uzbekistan, with a GPA of 93%. His thesis focused on developing an online chemist application for Android. He then pursued a Master’s degree in IT Convergence Engineering at Gachon University, South Korea, achieving a GPA of 4.28 out of 4.50. His master’s thesis, under the guidance of Taeg Keun Whangbo, was on improving foreground recognition methods using shadow removal techniques. Continuing at Gachon University, Akmalbek completed his PhD in Computer Engineering, with a GPA of 4.17 out of 4.50. His doctoral research, also supervised by Taeg Keun Whangbo, explored moving shadow detection using texture and geometry features for indoor environments.

Professional Experience

Abdusalomov Akmalbek Bobomirzaevich has accumulated extensive experience in academia and industry. He began his career as an intern at Bulungur College of National Handicraft in 2013, followed by a role as an Assistant Engineer at Tashkent Electronic Research Center, where he handled billing systems and customer support. In 2015, he worked as an Administrator at Ipak Yuli Bank, focusing on network configuration and troubleshooting. From 2015 to 2017, he served as a Research Assistant at Gachon University’s Content Technologies Laboratory, where he managed lab devices and collaborated on projects. He then taught IT subjects as a Full-Time Instructor at Tashkent University of Information Technology. Akmalbek returned to Gachon University as a Researcher, later becoming a Postdoctoral Researcher in AI Engineering. Since 2022, he has been an Assistant Professor at Gachon University, focusing on deep learning and image processing, and an Associate Professor at Tashkent State University of Economics.

Research Interest

Abdusalomov Akmalbek’s research interests lie in the fields of digital image processing, computer vision, and artificial intelligence. His work primarily focuses on developing advanced techniques in machine and deep learning to enhance object detection and recognition. He has explored moving shadow detection using texture and geometry features for indoor environments, aiming to improve foreground recognition methods. His research also includes contributions to the development of smart technology for enhanced safety and accessibility, such as smart suits and virtual reality games for individuals with visual impairments. Akmalbek is dedicated to advancing the capabilities of AI and computer vision through innovative methodologies and practical applications.

Award and Honors

Abdusalomov Akmalbek has received several prestigious awards acknowledging his outstanding contributions to computer vision and artificial intelligence. He was honored with the Best Paper Award at the International Conference on Computer Vision and Pattern Recognition (CVPR) for his innovative research on moving object detection. Additionally, he earned the Outstanding Researcher Award from Gachon University for his significant advancements in deep learning models and image processing techniques. His work on virtual reality games for the visually impaired and the commercialization of mobile Braille pads garnered him the Innovative Research Award from the Commercialization Research Agency. Furthermore, Akmalbek was recognized with the Excellence in Teaching Award at Tashkent State University of Economics for his impactful instruction in artificial intelligence and related fields.

 Research Skills

Abdusalomov Akmalbek possesses a diverse set of research skills essential for advancing the fields of computer vision and artificial intelligence. He is proficient in digital image processing, machine and deep learning, and artificial intelligence. His expertise includes utilizing Python and C++ for programming, with a strong focus on OpenCV for computer vision tasks. Akmalbek has significant experience in moving object detection and foreground recognition, particularly in indoor environments. He excels in developing and applying deep learning models, including shadow removal techniques and texture and geometry-based feature detection. His skills extend to image stitching, virtual reality development, and medical big data analysis. Additionally, he has contributed to ICT element technology development and AI-based healthcare device development, showcasing his ability to work on complex, cutting-edge research projects.

Publications
  1. “An improvement of the fire detection and classification method using YOLOv3 for surveillance systems”
    • Authors: A Abdusalomov, N Baratov, A Kutlimuratov, TK Whangbo
    • Year: 2021
    • Citations: 87
  2. “Automatic Speaker Recognition Using Mel-Frequency Cepstral Coefficients Through Machine Learning”
    • Authors: U Ayvaz, H Gürüler, F Khan, N Ahmed, T Whangbo, AA Bobomirzaevich
    • Year: 2022
    • Citations: 85
  3. “Automatic fire and smoke detection method for surveillance systems based on dilated CNNs”
    • Authors: Y Valikhujaev, A Abdusalomov, YI Cho
    • Year: 2020
    • Citations: 69
  4. “Brain tumor detection based on deep learning approaches and magnetic resonance imaging”
    • Authors: AB Abdusalomov, M Mukhiddinov, TK Whangbo
    • Year: 2023
    • Citations: 63
  5. “An improved forest fire detection method based on the detectron2 model and a deep learning approach”
    • Authors: AB Abdusalomov, BMDS Islam, R Nasimov, M Mukhiddinov, TK Whangbo
    • Year: 2023
    • Citations: 62
  6. “Automatic fire detection and notification system based on improved YOLOv4 for the blind and visually impaired”
    • Authors: M Mukhiddinov, AB Abdusalomov, J Cho
    • Year: 2022
    • Citations: 56
  7. “LDA-based topic modeling sentiment analysis using topic/document/sentence (TDS) model”
    • Authors: A Farkhod, A Abdusalomov, F Makhmudov, YI Cho
    • Year: 2021
    • Citations: 53
  8. “Improved real-time fire warning system based on advanced technologies for visually impaired people”
    • Authors: AB Abdusalomov, M Mukhiddinov, A Kutlimuratov, TK Whangbo
    • Year: 2022
    • Citations: 52
  9. “Attention 3D U-Net with Multiple Skip Connections for Segmentation of Brain Tumor Images”
    • Authors: J Nodirov, AB Abdusalomov, TK Whangbo
    • Year: 2022
    • Citations: 50