Igor Sitnik | Computer Science | Best Researcher Award

Prof. Igor Sitnik | Computer Science | Best Researcher Award

Leading Researcher from Joint Institute for Nuclear Research, Russia

Igor M. Sitnik is a distinguished physicist known for his pioneering contributions to nuclear and particle physics. With a research career spanning over five decades, he has played a central role in the analysis and interpretation of complex experimental data, particularly in the fields of light nuclei reactions and polarization phenomena. Sitnik has been instrumental in leading experimental collaborations at premier research institutions such as the Joint Institute for Nuclear Research (JINR) in Dubna and Jefferson Lab (JLab) in the United States. His career is marked by scientific rigor, collaborative leadership, and a commitment to advancing knowledge in subatomic physics. Having received multiple first-class JINR awards, he is recognized by his peers for excellence and innovation in experimental physics. His work has not only contributed valuable insights into nuclear structures and reaction mechanisms but also to the development of computational tools that enhance data interpretation in high-energy physics. With several highly cited publications, including one with over 900 citations, Sitnik remains a respected authority in his domain. His contributions continue to influence experimental design, data processing, and the theoretical understanding of fundamental particles, making him a deserving candidate for top honors in scientific achievement.

Professional Profile

Education

Igor M. Sitnik graduated from the Physics Department of Moscow State University in 1964, a renowned institution known for its rigorous training in fundamental and applied sciences. His education at one of the most prestigious universities in Russia provided him with a strong foundation in theoretical and experimental physics. During his formative academic years, he cultivated a deep interest in nuclear and subatomic physics, which would later define the focus of his professional career. His undergraduate studies were rooted in classical mechanics, quantum theory, electrodynamics, and statistical mechanics—courses that equipped him with analytical tools necessary for advanced research. His time at Moscow State University also introduced him to early computational methods and data analysis techniques, which he later expanded upon through decades of research. While no specific postgraduate degrees are mentioned, Sitnik’s career trajectory suggests extensive post-degree specialization and hands-on training in experimental nuclear physics and detector technology. His continuous professional development through participation in international collaborations and technical projects reflects a lifetime commitment to learning and scientific inquiry. The academic rigor and mentorship he received during his education played a significant role in shaping his methodical approach to research and long-term contributions to physics.

Professional Experience

Igor M. Sitnik has had a long and impactful career as a researcher, leader, and innovator in the field of nuclear and particle physics. Since the 1970s, he has been responsible for off-line analysis in his group at the Joint Institute for Nuclear Research (JINR) in Dubna. In the 1970s and 1980s, he led groundbreaking studies on the breakup reactions of light nuclei on various targets, a body of work that earned him the prestigious 1st JINR Prize in 1989. Moving into the 1990s, Sitnik shifted his focus to polarization phenomena, for which he also received the 1st JINR Prize in 1997. During this period, he served as co-spokesman for Proposal LNS 249 at Saturne-2 (JINR), underscoring his leadership role in international experimental collaborations. In the late 1990s, he became the spokesman for the “ALPHA” spectrometer project in Dubna. Most recently, he has been actively involved in studying the proton electric-to-magnetic form factor ratio (Gep/Gmp) at Jefferson Lab in the USA, with portions of this research conducted in Dubna, culminating in the 1st JINR Prize in 2020. His professional journey reflects a consistent dedication to experimental excellence, leadership in high-profile projects, and innovation in nuclear science.

Research Interests

Igor M. Sitnik’s research interests are centered around nuclear and particle physics, with a specific focus on reaction dynamics, polarization effects, and form factor studies. In the early stages of his career, he was deeply involved in investigating the breakup reactions of light nuclei, exploring how nuclear interactions change with varying target materials. This line of inquiry provided insights into nuclear structure and reaction mechanisms. In the subsequent decades, he expanded his interests to include polarization phenomena, examining spin-dependent interactions and their implications in nuclear scattering processes. These studies have practical applications in understanding fundamental nuclear forces and contribute to precision modeling in theoretical physics. More recently, Sitnik has engaged in form factor measurements at Jefferson Lab (JLab), particularly the ratio of electric to magnetic form factors of the proton (Gep/Gmp). This research is essential for understanding the internal structure of protons and has implications for quantum chromodynamics. Additionally, Sitnik has demonstrated a strong interest in data analysis methodologies, developing a minimization program in the 2010s for handling complex, multi-variable datasets. His ability to integrate experimental design with computational analysis defines his holistic and innovative approach to research in modern nuclear physics.

Research Skills

Igor M. Sitnik possesses a robust set of research skills that span experimental design, data analysis, computational modeling, and scientific communication. His early work in nuclear reaction dynamics required meticulous experimental planning, including the selection of beam-target configurations and detector setups. Sitnik’s responsibility for off-line analysis within his group highlights his proficiency in processing and interpreting large volumes of experimental data—skills that are essential in high-energy and nuclear physics research. He has demonstrated expertise in statistical analysis and error minimization, evident from the development of a custom minimization program for multi-set tasks. This computational tool showcases his aptitude for programming and algorithmic optimization, allowing for efficient parameter fitting in complex physical models. In collaborative settings, Sitnik has frequently held leadership roles, which underline his ability to manage interdisciplinary teams and guide long-term research projects. His high citation counts indicate a strong capability in publishing impactful findings and presenting them to the scientific community. Whether through experimental rigour, theoretical insight, or data processing innovation, Sitnik’s research skills reflect a well-rounded and highly competent physicist who has contributed significantly to advancing experimental techniques and analytical methodologies in his field.

Awards and Honors

Over the course of his esteemed career, Igor M. Sitnik has been the recipient of several top-tier scientific honors, most notably the 1st JINR Prize, which he has been awarded three times. The first was in 1989 for his extensive work on the breakup reactions of light nuclei, a cornerstone study in nuclear reaction physics. His second 1st JINR Prize was awarded in 1997 for his pivotal research on polarization phenomena in nuclear interactions. This body of work marked an important advancement in understanding spin-dependent processes. The third award came in 2020, recognizing his significant contributions to the study of the Gep/Gmp ratio—a key metric in probing the internal structure of the proton—conducted in part at Jefferson Lab (JLab) and partially in Dubna. These repeated honors from a leading international research institution testify to the lasting impact and high quality of Sitnik’s research. In addition to formal awards, his publication record includes several high-impact papers, one of which has been cited over 900 times, indicating broad recognition by the global physics community. His accolades place him among the most respected experimental nuclear physicists in the post-Soviet scientific world.

Conclusion

Igor M. Sitnik stands out as an exemplary researcher in the field of nuclear and particle physics. His decades-long contributions span pioneering experimental work, leadership in major international collaborations, and the development of advanced data analysis tools. With a career marked by three prestigious 1st JINR Prizes, he has consistently demonstrated a high level of scientific excellence and innovation. His impactful research on nuclear reactions, polarization phenomena, and proton structure has significantly advanced our understanding of subatomic processes. Sitnik’s ability to bridge theoretical insight with practical implementation through software development for data analysis highlights his multidimensional expertise. His research has not only yielded highly cited publications but has also contributed to shaping experimental protocols and analytical methods in modern physics. Though there are opportunities for enhanced mentorship and broader dissemination of his recent work, Sitnik’s legacy is firmly established. He continues to be a vital figure in the scientific community, with a body of work that exemplifies dedication, intellectual rigor, and collaborative spirit. These achievements make him a worthy and compelling candidate for the Best Researcher Award and solidify his position as a leader in advancing the frontiers of nuclear science.

Publications Top Notes

1. The Final Version of the 5D Histogram Package NORA

  • Author: I.M. Sitnik

  • Journal: Computer Physics Communications

  • Year: 2024

2. Debugging the FUMILIM Minimization Package

  • Authors: I.M. Sitnik, I.I. Alexeev, D.V. Nevsky

  • Journal: Computer Physics Communications

  • Year: 2024

  • Citations: 2

3. 5D Histogram Package NORA

  • Author: I.M. Sitnik

  • Journal: Computer Physics Communications

  • Year: 2023

4. Charge Exchange dp→(pp)n Reaction Study at 1.75 A GeV/c by the STRELA Spectrometer

  • Authors: S.N. Basilev, Y.P. Bushuev, S.A. Dolgiy, I.V. Slepnev, J. Urbán

  • Journal: European Physical Journal A

  • Year: 2021

  • Citations: 2

5. The Final Version of the FUMILIM Minimization Package

  • Authors: I.M. Sitnik, I.I. Alexeev, O.V. Selugin

  • Journal: Computer Physics Communications

  • Year: 2020

  • Citations: 9

6. Results of Measurements of the Analyzing Powers for Polarized Neutrons on C, CH₂ and Cu Targets for Momenta Between 3 and 4.2 GeV/c

  • Authors: I.M. Sitnik, S.N. Basilev, Y.P. Bushuev, J. Urbán, J. Mušinský

  • Type: Conference Paper

7. Measurement of Neutron and Proton Analyzing Powers on C, CH, CH₂ and Cu Targets in the Momentum Region 3–4.2 GeV/c

  • Authors: S.N. Basilev, Y.P. Bushuev, O.P. Gavrìshchuk, J. Urbán, J. Mušinský

  • Journal: European Physical Journal A

  • Year: 2020

  • Citations: 5

8. Technical Supplement to “Polarization Transfer Observables in Elastic Electron-Proton Scattering at Q² = 2.5, 5.2, 6.8 and 8.5 GeV²”

  • Authors: A.J.R. Puckett, E.J. Brash, M.K. Jones, B.B. Wojtsekhowski, S.A. Wood

  • Journal: Nuclear Instruments and Methods in Physics Research Section A

  • Year: 2018

 

 

Ling Qin | Computer Science | Best Researcher Award

Ms. Ling Qin | Computer Science | Best Researcher Award

Professor from Inner Mongolia University of Science &Technology, China

Dr. Ling Qin is a dedicated and accomplished professor in the Department of Information Engineering at Inner Mongolia University of Science and Technology, China. Born in August 1979, she has established a strong academic and research background in optical communication, particularly in the areas of visible light communication (VLC), indoor positioning systems, and atmospheric laser communication. Over more than two decades of academic service at her home institution, she has progressed from teaching assistant to professor, showcasing a steady and determined career development. Dr. Qin’s research has significantly contributed to the understanding and enhancement of VLC systems in complex environments, such as intelligent transportation systems and indoor positioning applications using LED lighting. Her publication record is extensive, with numerous articles published in well-recognized journals indexed in SCI and EI. She has also successfully led multiple nationally funded research projects and holds a Chinese patent related to optical signal reception. With her expertise, innovation, and dedication, Dr. Qin exemplifies the qualities of a leading academic researcher. Her work bridges the gap between theory and practical application, making her a suitable and promising candidate for recognition in advanced communication engineering fields.

Professional Profile

Education

Dr. Ling Qin holds an impressive academic background in engineering and communication technologies. She began her higher education journey in 1997, earning a Bachelor of Engineering in Communication Engineering from Chengdu University of Information Technology in 2001. She continued to deepen her specialization in optical communication by pursuing a Master’s degree in Engineering at Xi’an University of Technology, where she studied from 2004 to 2007. Demonstrating a strong commitment to academic growth and expertise, Dr. Qin earned her Ph.D. in Engineering from Chang’an University in Xi’an between 2011 and 2018. Her doctoral research aligned closely with her professional focus, examining advanced communication theories and systems including visible light and laser-based communication. The comprehensive progression of her academic qualifications reflects her long-standing dedication to mastering both the theoretical and technical aspects of her field. These qualifications have formed a solid foundation for her research career, allowing her to contribute meaningfully to high-impact areas such as LED-based indoor positioning systems and signal processing in complex environments. Her education has not only equipped her with the necessary knowledge but has also driven her to pursue innovation and advanced research in optical communication technologies.

Professional Experience

Dr. Ling Qin has built a robust academic and professional career spanning over two decades at Inner Mongolia University of Science and Technology in Baotou, China. She began her professional journey in 2001 as a teaching assistant and steadily rose through academic ranks due to her contributions to teaching and research. Between 2007 and 2012, she served as a lecturer, where she began to engage more actively in research and curriculum development. From 2012 to 2018, she was promoted to associate professor, during which she established her research presence in visible light communication and indoor positioning systems. Since 2019, Dr. Qin has held the title of full professor, where she continues to lead research initiatives and mentor students in cutting-edge communication technologies. Throughout her career, she has taught various specialized courses, including visible light communication theory, positioning systems, and atmospheric laser communications. Her long-term affiliation with a single institution reflects both stability and deep institutional commitment, while her advancement through all faculty ranks highlights her professional development. As a professor, she plays a vital role in advancing research, guiding graduate students, and contributing to scientific innovation through her projects and publications.

Research Interests

Dr. Ling Qin’s research interests focus on key innovations in the field of optical wireless communication, particularly visible light communication (VLC), indoor positioning systems, and atmospheric laser communications. One of her primary areas of study is the development and optimization of visible light communication systems, where she explores theoretical models and practical designs to enhance LED-based communication in complex traffic and indoor environments. Her work addresses challenges such as background light interference, signal modulation, and system performance under real-world conditions. Another important focus of her research is indoor positioning technologies using LED lighting. She investigates the integration of machine learning techniques, such as convolutional and recurrent neural networks, into positioning algorithms to improve accuracy and reliability. Additionally, Dr. Qin is engaged in the research of atmospheric laser communication systems, where she works on coding theory, modulation/demodulation methods, and performance enhancement strategies for data transmission in free-space environments. Her research is interdisciplinary, often overlapping with applications in intelligent transportation, aerospace signal processing, and biomedical engineering. These interests not only reflect her command over complex engineering concepts but also demonstrate her forward-thinking approach in developing communication technologies that serve modern infrastructure and industry demands.

Research Skills

Dr. Ling Qin possesses advanced research skills that make her a leading expert in optical communication and system development. Her technical expertise includes the modeling and implementation of visible light communication (VLC) systems in challenging environments, particularly for intelligent transportation and indoor positioning. She is proficient in applying modulation and demodulation techniques, signal coding, beamforming, and error suppression in complex signal environments. Her research integrates machine learning algorithms—including convolutional neural networks (CNNs), gated recurrent units (GRUs), and transformer-based models—into communication and positioning systems to enhance accuracy and system performance. Dr. Qin is also skilled in developing system architectures using hardware components like FPGA (Field Programmable Gate Arrays), contributing to the practical realization of her theoretical models. Additionally, she has experience with spread spectrum technologies and power inversion techniques for background light suppression. Her research has also extended into interdisciplinary domains, such as carbon nanoparticle applications in medical systems and satellite navigation under plasma interference. These wide-ranging skills have been applied in various research projects funded by national and regional science foundations, demonstrating her ability to execute complex research plans and produce tangible outcomes. Her scientific rigor and technical versatility position her as a valuable asset in the field.

Awards and Honors

While Dr. Ling Qin’s profile does not list specific individual awards or honors, her consistent track record of securing competitive research funding from prestigious agencies reflects significant academic recognition. She has been awarded multiple research grants by the National Natural Science Foundation of China, supporting her projects on visible light communication, satellite navigation under plasma conditions, and laser communication systems. These grants indicate high confidence from the scientific community in the relevance and impact of her research. Additionally, she has contributed to the development of a nationally recognized patent for an optical signal receiving system, which further showcases her innovation and contribution to applied research. Her position as a full professor at Inner Mongolia University of Science and Technology is itself a recognition of her professional achievements and academic standing. Her numerous publications in high-impact journals and conferences indexed by SCI and EI are further testament to her contributions. While formal honors such as best paper or teaching awards are not noted, the cumulative evidence of her leadership in research, ability to secure funding, and innovation through patents suggests she has achieved considerable peer recognition in her field.

Conclusion

Dr. Ling Qin stands out as a strong and capable academic professional with notable contributions to the field of optical communication. Her career reflects a steady ascent through academic ranks, backed by a solid foundation in education and a deep commitment to research excellence. With a focused interest in visible light communication, indoor positioning systems, and laser-based communication technologies, she has contributed significantly to both theoretical advancements and real-world applications. Her skills in modeling complex communication systems, integrating artificial intelligence techniques, and implementing hardware-based solutions place her at the intersection of innovation and practicality. Although not heavily decorated with formal awards, her success in securing national-level research grants and her involvement in patent development speak volumes about her scientific impact. She has authored an extensive list of peer-reviewed publications that enhance her reputation and contribute to global scientific knowledge. Overall, Dr. Qin exemplifies the qualities of a modern researcher—technically skilled, innovative, and committed to advancing engineering solutions for real-world problems. Her profile makes her a highly suitable candidate for the Best Researcher Award, and recognition of her work would be well-deserved within the scientific community.

Publications Top Notes

  1. Title: CirnetamorNet: An ultrasonic temperature measurement network for microwave hyperthermia based on deep learning
    Authors: F. Cui, Y. Du, L. Qin, C. Li, X. Meng
    Year: 2025

  2. Title: Visible light channel modeling and application in underground mines based on transformer point clouds optimization
    Authors: J. Yu, X. Hu, Q. Wang, F. Wang, X. Kou
    Year: 2025

  3. Title: Fractional OAM Vortex SAR Imaging Based on Chirp Scaling Algorithm
    Authors: L. Yu, D. Yongxing Du, L. Baoshan Li, L. Qin, L. Chenlu Li
    Year: 2025

  4. Title: Indoor visible light positioning system based on memristive convolutional neural network
    Authors: Q. Chen, F. Wang, B. Deng, L. Qin, X. Hu
    Year: 2025
    Citations: 2

  5. Title: Visible light visual indoor positioning system for based on residual convolutional networks and image restoration
    Authors: D. Chen, L. Qin, L. Cui, Y. Du
    Year: 2025

Said Boumaraf | Computer Science | Environmental Engineering Impact Award

Dr. Said Boumaraf | Computer Science | Environmental Engineering Impact Award

Researcher and AI scientist from Khalifa University, UAE

Dr. Said Boumaraf is a distinguished researcher specializing in artificial intelligence (AI), computer vision, and medical imaging. Currently serving as a Postdoctoral Fellow at Khalifa University, his work primarily focuses on developing advanced AI methodologies to address complex challenges in visual recognition and healthcare diagnostics. Dr. Boumaraf has contributed significantly to the field through his involvement in projects that enhance remote sensing of gas flares and improve face parsing techniques under occlusion conditions. His research has been published in reputable journals and conferences, reflecting his commitment to advancing technological solutions for real-world problems. Collaborating with international teams, he continues to push the boundaries of AI applications, particularly in areas that intersect with environmental monitoring and medical diagnostics. Dr. Boumaraf’s dedication to research excellence positions him as a leading figure in the integration of AI technologies into practical applications.

Professional Profile

Education

Dr. Boumaraf’s academic journey is marked by a strong foundation in computer science and engineering. He earned his Ph.D. in Computer Science, where his research focused on the development of AI algorithms for medical image analysis. His doctoral studies provided him with in-depth knowledge of machine learning, deep learning, and their applications in healthcare. Prior to his Ph.D., Dr. Boumaraf completed his Master’s degree in Computer Engineering, during which he explored various aspects of computer vision and pattern recognition. His academic pursuits have equipped him with a robust skill set that bridges theoretical understanding and practical implementation of AI technologies. Throughout his education, Dr. Boumaraf has demonstrated a commitment to interdisciplinary research, integrating principles from computer science, engineering, and healthcare to develop innovative solutions. His educational background lays the groundwork for his ongoing contributions to the field of AI and its applications in critical domains.

Professional Experience

Dr. Boumaraf’s professional experience encompasses a range of roles that highlight his expertise in AI and its applications. As a Postdoctoral Fellow at Khalifa University, he has been instrumental in leading research projects that apply deep learning techniques to environmental and medical challenges. His work includes developing AI-enhanced methods for remote sensing of gas flares and creating robust face parsing algorithms capable of handling occlusions. Prior to his current role, Dr. Boumaraf collaborated with various research institutions and industry partners, contributing to projects that required the integration of AI into practical solutions. His experience extends to developing computer-aided diagnosis systems for breast cancer detection, showcasing his ability to apply AI in critical healthcare settings. Dr. Boumaraf’s professional journey reflects a consistent focus on leveraging AI to address real-world problems, underscoring his role as a key contributor to the advancement of intelligent systems in diverse applications.

Research Interests

Dr. Boumaraf’s research interests lie at the intersection of artificial intelligence, computer vision, and medical imaging. He is particularly focused on developing deep learning models that enhance the accuracy and efficiency of image analysis in complex scenarios. His work on occlusion-aware face parsing addresses challenges in visual recognition where parts of the face are obscured, improving the reliability of facial analysis systems. In the medical domain, Dr. Boumaraf has contributed to creating AI-driven diagnostic tools that assist in the early detection of diseases such as breast cancer. His research also explores the application of AI in environmental monitoring, specifically in the remote sensing of gas flares, which has implications for energy management and environmental protection. Dr. Boumaraf’s interdisciplinary approach combines theoretical research with practical applications, aiming to develop AI solutions that can be effectively integrated into various sectors.

Research Skills

Dr. Boumaraf possesses a comprehensive set of research skills that enable him to tackle complex problems in AI and its applications. His proficiency in deep learning frameworks such as TensorFlow and PyTorch allows him to design and implement sophisticated neural network architectures. He is skilled in image processing techniques, including segmentation, feature extraction, and classification, which are essential for medical image analysis and computer vision tasks. Dr. Boumaraf is adept at handling large datasets, employing data augmentation and preprocessing methods to enhance model performance. His experience with algorithm optimization and model evaluation ensures the development of efficient and accurate AI systems. Additionally, his collaborative work with multidisciplinary teams demonstrates his ability to integrate AI solutions into broader technological and scientific contexts. Dr. Boumaraf’s research skills are instrumental in advancing AI applications across various domains.

Awards and Honors

Throughout his career, Dr. Boumaraf has received recognition for his contributions to the field of artificial intelligence. His research publications in esteemed journals and conferences have garnered attention from the academic community, reflecting the impact of his work. While specific awards and honors are not detailed in the available information, his role as a Postdoctoral Fellow at a leading institution like Khalifa University signifies a level of esteem and acknowledgment of his expertise. Dr. Boumaraf’s ongoing collaborations and research endeavors continue to position him as a respected figure in the AI research community.

Conclusion

Dr. Said Boumaraf stands out as a dedicated researcher whose work bridges the gap between artificial intelligence theory and practical application. His contributions to computer vision and medical imaging demonstrate a commitment to developing AI solutions that address real-world challenges. Through his role at Khalifa University, Dr. Boumaraf continues to engage in cutting-edge research, collaborating with international teams to push the boundaries of what AI can achieve. His interdisciplinary approach and robust research skills make him a valuable asset to the scientific community, and his work holds promise for significant advancements in both environmental monitoring and healthcare diagnostics. As AI continues to evolve, researchers like Dr. Boumaraf play a crucial role in ensuring that these technologies are harnessed effectively for the betterment of society.

Publications Top Notes

  • Title: A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images
    Authors: S. Boumaraf, X. Liu, Z. Zheng, X. Ma, C. Ferkous
    Year: 2021
    Citations: 169

  • Title: Conventional machine learning versus deep learning for magnification dependent histopathological breast cancer image classification: A comparative study with visual explanation
    Authors: S. Boumaraf, X. Liu, Y. Wan, Z. Zheng, C. Ferkous, X. Ma, Z. Li, D. Bardou
    Year: 2021
    Citations: 83

  • Title: A New Computer-Aided Diagnosis System with Modified Genetic Feature Selection for BI-RADS Classification of Breast Masses in Mammograms
    Authors: S. Boumaraf, X. Liu, C. Ferkous, X. Ma
    Year: 2020
    Citations: 80

  • Title: A new three-stage curriculum learning approach for deep network based liver tumor segmentation
    Authors: H. Li, X. Liu, S. Boumaraf, W. Liu, X. Gong, X. Ma
    Year: 2020
    Citations: 12

  • Title: Deep distance map regression network with shape-aware loss for imbalanced medical image segmentation
    Authors: H. Li, X. Liu, S. Boumaraf, X. Gong, D. Liao, X. Ma
    Year: 2020
    Citations: 11

  • Title: A multi-scale and multi-level fusion approach for deep learning-based liver lesion diagnosis in magnetic resonance images with visual explanation
    Authors: Y. Wan, Z. Zheng, R. Liu, Z. Zhu, H. Zhou, X. Zhang, S. Boumaraf
    Year: 2021
    Citations: 10

  • Title: AI-enhanced gas flares remote sensing and visual inspection: Trends and challenges
    Authors: M. Al Radi, P. Li, S. Boumaraf, J. Dias, N. Werghi, H. Karki, S. Javed
    Year: 2024
    Citations: 6

  • Title: Web3-enabled metaverse: the internet of digital twins in a decentralised metaverse
    Authors: N. Aung, S. Dhelim, H. Ning, A. Kerrache, S. Boumaraf, L. Chen, M.T. Kechadi
    Year: 2024
    Citations: 6

  • Title: U-SDRC: a novel deep learning-based method for lesion enhancement in liver CT images
    Authors: Z. Zheng, L. Ma, S. Yang, S. Boumaraf, X. Liu, X. Ma
    Year: 2021
    Citations: 5

  • Title: Bi-Directional LSTM Model For Classification Of Vegetation From Satellite Time Series
    Authors: K. Bakhti, M.E.A. Arabi, S. Chaib, K. Djerriri, M.S. Karoui, S. Boumaraf
    Year: 2020
    Citations: 5

Eric Nizeyimana | Computer Science | Best Researcher Award

Dr. Eric Nizeyimana | Computer Science | Best Researcher Award

Lecturer from University of Rwanda, Rwanda

Dr. Eric Nizeyimana is a Rwandan researcher and academic specializing in Internet of Things (IoT) and embedded systems. He has built a career grounded in advanced technological solutions for environmental and infrastructural challenges, particularly in air pollution monitoring and data-driven IoT applications. His recent work includes developing decentralized, predictive frameworks using blockchain, machine learning, and IoT technologies to track pollution spikes in real time. With extensive research and teaching experience across African and Asian academic institutions, including the University of Rwanda and Seoul National University, he brings a global perspective to technological development. Dr. Nizeyimana is known for integrating practical and scalable systems with academic rigor, earning recognition for his innovative and impactful work. His contributions have been published in several reputable journals, and he continues to influence the next generation of engineers and scientists through both classroom teaching and research mentorship. Fluent in English, French, Kinyarwanda, and Swahili, and having held leadership roles in academic committees and church communities, he blends technical excellence with interpersonal and organizational strengths. As a proactive researcher and educator, Dr. Nizeyimana continues to push the boundaries of IoT systems in addressing societal issues, especially in transportation, environmental sustainability, and smart infrastructure.

Professional Profile

Education

Dr. Eric Nizeyimana has pursued a progressive academic path centered on engineering, mathematical sciences, and emerging technologies. He earned his Ph.D. in Internet of Things (IoT) with a specialization in Embedded Systems from the University of Rwanda – College of Science and Technology (UR-CST), under the African Center of Excellence in Internet of Things (ACEIoT), in collaboration with Seoul National University (SNU), South Korea, from 2020 to 2024. His doctoral research focused on environmental monitoring systems using IoT and edge computing technologies, particularly addressing air pollution monitoring and predictive analytics. Prior to this, he completed a master’s program in Mathematical Sciences at the African Institute for Mathematical Sciences (AIMS-Cameroon) in 2015. His academic foundation was laid through a bachelor’s degree in Computer Engineering from the Kigali Institute of Science and Technology (KIST), which he completed in 2012. This strong foundation in both engineering and mathematics positioned him well for his advanced research in smart systems and applied technologies. His educational journey reflects a consistent focus on interdisciplinary innovation, bridging computational science, real-world data systems, and environmental sustainability. Through scholarships and competitive academic grants, Dr. Nizeyimana has demonstrated academic excellence and international competitiveness.

Professional Experience

Dr. Eric Nizeyimana has accumulated rich professional experience in academia and research-focused technical roles. As of October 2024, he serves as a Lecturer at the University of Rwanda – College of Science and Technology, where he also previously held the role of Assistant Lecturer between August 2015 and May 2017. In this capacity, he has taught diverse subjects, including Embedded Computer Systems, Artificial Intelligence, Java Programming, and Computer Programming. He has also supervised undergraduate and graduate research projects and contributed to proposal writing and curriculum development. From April to October 2023, Dr. Nizeyimana was a researcher at Seoul National University, where he developed IoT-based systems for environmental monitoring, optimized embedded systems, and analyzed complex data. Between 2019 and 2023, he worked as an IT Analyst and Training Officer at the African Institute for Mathematical Science (AIMS), coordinating IT infrastructure, providing technical training, and managing secure digital environments. Earlier, from 2017 to 2018, he held the role of IT Officer and System Administrator at AIMS in both Rwanda and Cameroon. These roles highlight his hybrid expertise in teaching, systems design, network security, and capacity building, establishing him as a technically proficient and educationally driven professional.

Research Interests

Dr. Eric Nizeyimana’s research interests lie at the intersection of the Internet of Things (IoT), embedded systems, edge computing, and environmental monitoring. He focuses on developing intelligent, decentralized systems to address real-world challenges such as air pollution, particularly in urban transportation networks. His work explores the integration of edge devices, machine learning algorithms, and blockchain technologies to design predictive and real-time monitoring solutions. Another key interest involves leveraging IoT infrastructures for smart city applications, including traffic management, public health monitoring, and resource optimization. Dr. Nizeyimana is particularly interested in how embedded systems can be adapted to constrained environments to achieve high accuracy with low power consumption and minimal latency. In addition to technical development, he investigates the ethical and infrastructural implications of deploying such technologies in developing countries. His research also includes data analytics for IoT devices, remote sensing systems, and system interoperability within distributed computing frameworks. Through his multidisciplinary approach, he seeks to expand the boundaries of scalable, secure, and sustainable technology for societal benefit. These interests reflect his commitment to using engineering innovation to improve public services, infrastructure management, and environmental stewardship in both local and global contexts.

Research Skills

Dr. Eric Nizeyimana possesses advanced research skills in embedded systems design, IoT application development, and edge computing architecture. He is proficient in integrating IoT sensors and communication protocols with real-time data processing systems to monitor and analyze environmental data, especially for detecting air pollution peaks. His work involves embedded system programming, circuit design, microcontroller deployment, and the use of platforms such as Arduino and Raspberry Pi. He also has experience in machine learning model development for predictive analytics, including supervised learning techniques applied to transportation and pollution datasets. Dr. Nizeyimana demonstrates expertise in decentralized systems using blockchain for data immutability and enhanced security. Additionally, he has strong skills in scientific writing, proposal development, and collaborative project implementation. His ability to design end-to-end solutions—from hardware development to software implementation and data interpretation—sets him apart in the IoT research space. Furthermore, he is skilled in academic dissemination, having presented at multiple international seminars and conferences. His competence in working across multicultural teams, both locally and internationally, further enhances his collaborative research capabilities. These skills are underpinned by a solid background in programming languages such as Python, Java, and C++, along with system administration and IT infrastructure management.

Awards and Honors

Dr. Eric Nizeyimana has been recognized for his academic excellence and research contributions through various prestigious awards. In 2023, he received the Mobility Research Grant from Rwanda’s National Council of Science and Technology (NCST), which enabled him to conduct critical experimental work at an international research institution. This grant, valued at approximately 8 million Rwandan francs, supported his living and research expenses during a two-month exchange, reflecting the national confidence in his research potential. In 2020, he was awarded a full four-year Ph.D. scholarship through the Partnership for skills in Applied Sciences, Engineering and Technology (PASET), a competitive regional initiative aimed at promoting advanced STEM education in Africa. His leadership and service have also been acknowledged through appointments such as PhD student representative and Master’s student representative, demonstrating trust in his leadership within academic communities. In addition, his consistent presence at international conferences and seminars, along with publications in respected peer-reviewed journals, underscores his active engagement in the global research community. These honors not only validate his academic achievements but also highlight his capability to drive impactful, solution-oriented research with both national and international relevance.

Conclusion

Dr. Eric Nizeyimana embodies the qualities of an outstanding researcher through his technical innovation, academic leadership, and commitment to solving real-world problems using emerging technologies. His focused research in IoT, embedded systems, and air pollution monitoring has generated valuable insights into how smart systems can be leveraged for environmental and urban challenges. His publication record in high-quality journals and active participation in global research exchanges reflect a strong orientation toward scholarly excellence and international collaboration. With a foundation in mathematics and engineering, his interdisciplinary approach allows him to bridge theory and application effectively. His work with institutions like Seoul National University and AIMS demonstrates adaptability, technical depth, and professional maturity. As an educator, he contributes to capacity building through teaching, mentorship, and curriculum development. Recognized with competitive grants and scholarships, he has proven his potential to lead transformative research in both academic and industrial contexts. While there remains room for broader global engagement and interdisciplinary outreach, Dr. Nizeyimana has established himself as a valuable contributor to the research community. His profile makes him a highly suitable candidate for recognition under a Best Researcher Award, affirming both his achievements and future promise.

Publications Top Notes

  1. Prototype of monitoring transportation pollution spikes through the internet of things edge networks

    • Authors: E. Nizeyimana, D. Hanyurwimfura, J. Hwang, J. Nsenga, D. Regassa

    • Year: 2023

    • Citations: 7

    • Journal: Sensors, 23(21), 8941

  1. Integration of Vision IoT, AI-based OCR and Blockchain Ledger for Immutable Tracking of Vehicle’s Departure and Arrival Times

    • Authors: M. Sichinga, J. Nsenga, E. Nizeyimana

    • Year: 2023

    • Citations: Not listed

    • Conference: 2023 8th Int. Conf. on Machine Learning Technologies

  1. Miniaturized Ultrawideband Microstrip Antenna for IoT‐Based Wireless Body Area Network Applications

    • Authors: U. Pandey, P. Singh, R. Singh, N.P. Gupta, S.K. Arora, E. Nizeyimana

    • Year: 2023

    • Citations: 15

    • Journal: Wireless Communications and Mobile Computing, 2023(1), 3950769

  1. IOT‐Based Medical Informatics Farming System with Predictive Data Analytics Using Supervised Machine Learning Algorithms

    • Authors: A. Rokade, M. Singh, S.K. Arora, E. Nizeyimana

    • Year: 2022

    • Citations: 20

    • Journal: Computational and Mathematical Methods in Medicine, 2022(1), 8434966

  1. Design of smart IoT device for monitoring short-term exposure to air pollution peaks

    • Authors: E. Nizeyimana, J. Nsenga, R. Shibasaki, D. Hanyurwimfura, J.S. Hwang

    • Year: 2022

    • Citations: 7

    • Journal: International Journal of Advanced Computer Science and Applications (IJACSA)

  1. Design of a decentralized and predictive real-time framework for air pollution spikes monitoring

    • Authors: E. Nizeyimana, D. Hanyurwimfura, R. Shibasaki, J. Nsenga

    • Year: 2021

    • Citations: 9

    • Conference: 2021 IEEE 6th Int. Conf. on Cloud Computing and Big Data Analysis

  1. Effect of Window Size on PAPR Reduction in 4G LTE Network Using Peak Windowing Algorithm in Presence of Non-linear HPA

    • Authors: M. Fidele, H. Damien, N. Eric

    • Year: 2020

    • Citations: 10

    • Conference: 2020 IEEE 5th Int. Conf. on Signal and Image Processing (ICSIP)

  1. Monitoring system to strive against fall armyworm in crops: case study on maize in Rwanda

    • Authors: D. Hanyurwimfura, E. Nizeyimana, F. Ndikumana, D. Mukanyiligira, …

    • Year: 2018

    • Citations: 7

    • Conference: 2018 IEEE SmartWorld/Ubiquitous Intelligence & Computing

  1. Comparative study on performance of High Performance Computing under OpenMP and MPI on Image Segmentation

    • Authors: E. Hitimana, E. Nizeyimana, G. Bajpai

    • Year: 2016

    • Citations: 1

    • Conference: Third International Conference on Advances in Computing, Communication and Informatics

  1. Development of an encrypted patient database including a doctor user interface

  • Author: E. Nizeyimana

  • Year: 2015

  • Citations: Not listed

  • Institution: African Institute for Mathematical Sciences Tanzania

Qichuan Tian | Computer Science | Best Researcher Award

Prof. Dr. Qichuan Tian | Computer Science | Best Researcher Award

Prof. Dr. at  Beijing University of Civil Engineering and Architecture, China

Qichuan Tian, born in 1971, is a distinguished professor and technical expert specializing in artificial intelligence, pattern recognition, and computer vision. He holds a Ph.D. in Engineering from Northwestern Polytechnical University (2006) and currently serves as a professor and master’s supervisor at Beijing University of Civil Engineering and Architecture (BUCEA). As the Director of the Department of Artificial Intelligence at the School of Intelligent Science and Technology, he leads research in biometrics, human-computer interaction, and deep learning. He is a member of multiple prestigious organizations, including the National Information Technology Standardization Technical Committee and the Chinese Society of Biomedical Engineering. His career spans academia and industry, with significant contributions in developing national standards, publishing books, and mentoring graduate students. Tian has also played a key role in over 20 research projects funded by national and provincial foundations, solidifying his reputation as a thought leader in AI and computational sciences.

Professional Profile

Education

Qichuan Tian has an extensive academic background in engineering. He obtained his Bachelor of Engineering (1993) and Master of Engineering (1996) from Taiyuan University of Science and Technology. In 2006, he completed his Doctor of Engineering at Northwestern Polytechnical University, specializing in artificial intelligence and computer vision. His academic training laid a strong foundation for his later contributions to AI, biometrics, and deep learning. His studies focused on integrating computational intelligence into practical applications, a theme that continues to define his research and professional endeavors.

Professional Experience

Tian has a diverse career in academia and research. Since 2012, he has served as the Head of the Department of Artificial Intelligence at BUCEA, where he spearheads innovative AI programs. From 2009 to 2010, he was a Visiting Scholar at Auburn University, USA, gaining international exposure in computer science. Between 2006 and 2008, he conducted postdoctoral research at Tianjin University. Previously, he held various roles at Taiyuan University of Science and Technology (1993–2012), where he advanced from Assistant Professor to Associate Professor and later became the Chief Leader of Circuits and Systems. His leadership has been instrumental in shaping AI research and education in China.

Research Interests

Tian’s research interests focus on artificial intelligence, pattern recognition, image processing, and deep learning. He specializes in biometric recognition, computer vision, and human-computer natural interaction. His work extends to security authentication, big data analysis, and IoT-based embedded systems. Tian has published over 100 journal and conference papers, authored six books, and contributed significantly to national standards in AI applications. His interdisciplinary research bridges theoretical advancements with practical AI implementations, making substantial contributions to the field.

Research Skills

With expertise in artificial intelligence and computer vision, Tian possesses strong research skills in deep learning algorithms, biometric recognition systems, and real-time image processing. He has successfully led projects in autonomous driving, green building AI integration, and complex object detection. His experience includes handling large-scale datasets, implementing machine learning frameworks, and designing AI-driven applications. Additionally, he has obtained over 50 invention patents and software copyrights, showcasing his ability to translate theoretical research into impactful technological innovations.

Awards and Honors

Tian’s contributions to academia and AI research have earned him multiple accolades. In 2024, he was recognized among CNKI’s Highly Cited Scholars (Top 5). He received the First Prize for Teaching Achievements at BUCEA in 2021 and was honored for developing a National First-Class Blended Online and Offline Course in 2020. Additionally, he was awarded the Outstanding Master’s Thesis Advisor Award in 2012. His accolades highlight his commitment to education, research, and AI-driven innovations, reinforcing his influence in the field of intelligent science and technology.

Conclusion

Qichuan Tian is a prominent scholar and AI expert dedicated to advancing artificial intelligence and biometric research. His leadership in academia, combined with his extensive research portfolio, underscores his impact on technological advancements in pattern recognition, computer vision, and human-computer interaction. With a career spanning over two decades, Tian has played a pivotal role in shaping AI education, national standards, and industry collaborations. His legacy continues to influence emerging AI technologies and inspire the next generation of researchers in intelligent computing.

Publications Top Notes

  • Title: An improved framework for breast ultrasound image segmentation with multiple branches depth perception and layer compression residual module

    • Authors: K. Cui, Qichuan Tian, Haoji Wang, Chuan Ma
    • Year: 2025
  • Title: Mobile Robot Path Planning Algorithm Based on NSGA-II

    • Authors: Sitong Liu, Qichuan Tian, Chaolin Tang
    • Year: 2024
    • Citations: 1
  • Title: OcularSeg: Accurate and Efficient Multi-Modal Ocular Segmentation in Non-Constrained Scenarios

    • Authors: Yixin Zhang, Caiyong Wang, Haiqing Li, Qichuan Tian, Guangzhe Zhao
    • Year: 2024
  • Title: Convolutional Neural Network–Bidirectional Gated Recurrent Unit Facial Expression Recognition Method Fused with Attention Mechanism

    • Authors: Chaolin Tang, Dong Zhang, Qichuan Tian
    • Year: 2023
    • Citations: 4

 

 

 

Yongzhi Wang | Information Security | Best Scholar Award

Dr. Yongzhi Wang | Information Security | Best Scholar Award

Assistant Professor of Texas A&M University-Corpus Christi, United States .

Dr. Yongzhi Wang is an accomplished computer scientist and educator with a robust background in cloud computing, cybersecurity, and blockchain technologies. He currently serves as an Assistant Professor at Texas A&M University at Corpus Christi, where he conducts cutting-edge research, teaches computer science courses, and mentors students in academic and research pursuits. Dr. Wang’s academic journey includes significant roles at Park University and Xidian University, where he contributed to research initiatives and academic programs. He holds a Ph.D. and M.S. in Computer Science from Florida International University, with a focus on secure outsourced computing frameworks in cloud environments. Throughout his career, Dr. Wang has received prestigious awards, including the Distinguished Faculty Scholar Award and Best Paper Award, recognizing his exceptional scholarship and research contributions. His research interests encompass cloud computing security, blockchain applications, cybersecurity, and virtualized lab environments for computer education. Dr. Wang’s passion for advancing secure computing technologies and nurturing future computer scientists underscores his leadership and impact in the field of computer science.

Professional Profiles:

Education

Dr. Yongzhi Wang has pursued an extensive academic journey, culminating in advanced degrees in computer science from prestigious institutions. He earned his Doctor of Philosophy (Ph.D.) and Master of Science (M.S.) degrees in Computer Science from Florida International University in Miami, Florida, U.S.A., with a focus on secure outsourced computing frameworks in cloud environments. Dr. Wang also holds a Master of Engineering (M.Eng.) in Computer Science from Xidian University in China and a Bachelor of Engineering (B.Eng.) in Computer Science from the same institution. Throughout his academic career, Dr. Wang demonstrated exceptional academic prowess, reflected in his high academic achievements with a GPA of 3.91 for both his Ph.D. and M.S. degrees. His educational background underscores his expertise in computer science, particularly in areas related to cloud computing, cybersecurity, and advanced technologies. Dr. Wang’s academic foundation has positioned him as a leading researcher and educator in the field of computer science.

Professional Experience

Dr. Yongzhi Wang has amassed a wealth of professional experience across academia, research, and industry, reflecting his deep expertise in computer science and related disciplines. He currently serves as an Assistant Professor at Texas A&M University at Corpus Christi, where he conducts cutting-edge research, teaches computer science courses, and mentors students in academic and research endeavors. Prior to this role, Dr. Wang held positions as an Associate Professor and Assistant Professor at Park University, contributing significantly to research initiatives and academic programs. Before his academic appointments, Dr. Wang served as an Assistant Professor at Xidian University in China, where he conducted research, taught courses, and supervised graduate students. His professional journey also includes roles as a Research Assistant and Teaching Assistant at Florida International University and as a Staff Software Engineer at IBM, where he applied his technical expertise in software development and project management. Dr. Wang’s diverse professional background underscores his leadership, dedication, and impact in advancing computer science education, research, and innovation.

Research Interest

Dr. Yongzhi Wang’s research interests span several critical areas in computer science and related disciplines. His primary focus includes cloud computing and security, where he explores secure computing frameworks and protocols to address data privacy and integrity challenges in cloud environments. Dr. Wang is also engaged in research on blockchain technologies, investigating their applications in enhancing security and transparency across various industries. Another significant aspect of Dr. Wang’s research is cybersecurity, encompassing threat detection, risk management, and intrusion detection systems to safeguard critical infrastructures from cyber threats. He also delves into big data and data privacy, developing techniques for preserving data privacy and ensuring the integrity of sensitive information in large-scale data environments. Moreover, Dr. Wang’s interest extends to virtualized lab environments for computer education, aiming to enhance practical learning experiences and accessibility to computing resources. Through his research, Dr. Wang contributes to advancing secure and efficient computing technologies, addressing contemporary challenges in the digital age.

Award and Honors

Dr. Yongzhi Wang’s exemplary contributions to computer science have been recognized through prestigious awards and honors throughout his career. Notably, his research article was acknowledged as a Trending Article in IEEE Transactions on Computers, reflecting the relevance and impact of his work in the field. He was also honored with the Distinguished Faculty Scholar Award at Park University, recognizing his outstanding scholarship and academic contributions. In addition, Dr. Wang received the Best Paper Award at the 2017 International Conference on Networking and Network Applications for his significant research achievements. His excellence in teaching was acknowledged with a second-place finish in the Faculty Teaching Competition at Xidian University. Furthermore, he was awarded the Dissertation Year Fellowship at Florida International University in recognition of his exceptional doctoral research. These accolades highlight Dr. Wang’s dedication to advancing computer science through innovative research, teaching excellence, and scholarly pursuits, solidifying his reputation as a leader in the field.

Research Skills

Dr. Yongzhi Wang’s distinguished career in computer science has been marked by several prestigious awards and honors that underscore his outstanding contributions to the field. Notably, his research article was recognized as a Trending Article in IEEE Transactions on Computers, demonstrating the impact and relevance of his work within the academic community. Additionally, Dr. Wang received the esteemed Distinguished Faculty Scholar Award at Park University, acknowledging his exceptional scholarship and academic leadership. Further highlighting his research excellence, Dr. Wang was honored with the Best Paper Award at the 2017 International Conference on Networking and Network Applications for his significant contributions to the field. His dedication to teaching was also celebrated with a second-place finish in the Faculty Teaching Competition at Xidian University. Moreover, his exceptional doctoral research was recognized with the Dissertation Year Fellowship at Florida International University. These accolades reflect Dr. Wang’s commitment to advancing computer science through innovative research, teaching excellence, and scholarly achievements, positioning him as a distinguished leader in the field.

Publications

  1. Microthings: A generic IoT architecture for flexible data aggregation and scalable service cooperation
    Authors: Y. Shen, T. Zhang, Y. Wang, H. Wang, X. Jiang
    Year: 2017
    Citations: 76
  2. Viaf: Verification-based integrity assurance framework for MapReduce
    Authors: Y. Wang, J. Wei
    Year: 2011
    Citations: 76
  3. Secure -NN Query on Encrypted Cloud Data with Multiple Keys
    Authors: K. Cheng, L. Wang, Y. Shen, H. Wang, Y. Wang, X. Jiang, H. Zhong
    Year: 2017
    Citations: 71
  4. Special issue on security and privacy in network computing
    Authors: H. Wang, Y. Wang, T. Taleb, X. Jiang
    Year: 2020
    Citations: 69
  5. MTMR: Ensuring MapReduce computation integrity with Merkle tree-based verifications
    Authors: Y. Wang, Y. Shen, H. Wang, J. Cao, X. Jiang
    Year: 2016
    Citations: 46
  6. Result integrity check for MapReduce computation on hybrid clouds
    Authors: Y. Wang, J. Wei, M. Srivatsa
    Year: 2013
    Citations: 30
  7. IntegrityMR: Integrity assurance framework for big data analytics and management applications
    Authors: Y. Wang, J. Wei, M. Srivatsa, Y. Duan, W. Du
    Year: 2013
    Citations: 28
  8. CryptSQLite: SQLite with high data security
    Authors: Y. Wang, Y. Shen, C. Su, J. Ma, L. Liu, X. Dong
    Year: 2019
    Citations: 19
  9. Strongly secure and efficient range queries in cloud databases under multiple keys
    Authors: K. Cheng, Y. Shen, Y. Wang, L. Wang, J. Ma, X. Jiang, C. Su
    Year: 2019
    Citations: 18
  10. Trustworthy service composition with secure data transmission in sensor networks
    Authors: T. Zhang, L. Zheng, Y. Wang, Y. Shen, N. Xi, J. Ma, J. Yong
    Year: 2018
    Citations: 15