Alireza Akoushideh | Computer Science | Best Researcher Award

Assist. Prof. Dr. Alireza Akoushideh | Computer Science | Best Researcher Award

Electrical and Computer Department from Iran’s National University of Skill, Iran

Dr. Alireza Akoushideh is an Assistant Professor in Electronics Engineering with a specialization in image processing, parallel processing, and microcontroller-based systems. With over two decades of experience in academia and research, he has made significant contributions to digital electronics, focusing on industrial applications. His expertise extends to supervising research projects, authoring academic books, and securing multiple patents. Dr. Akoushideh has been an active participant in national and international collaborations, including a visiting research position at the University of Twente in the Netherlands and participation in the Erasmus+ program in Romania. In addition to his academic contributions, he has played a vital role in fostering technological innovations as the former manager of the Growth Centre at Guilan Science and Technology Park. His work emphasizes bridging the gap between academia and industry, particularly in the development of applied research projects and commercialization of new technologies. Recognized for his research excellence, he has received multiple awards, including the Best Researcher title at Guilan Technical and Vocational University. With a strong background in electronics and computer engineering, Dr. Akoushideh continues to contribute to advancements in artificial intelligence, IoT, and digital systems, making him a distinguished researcher in his field.

Professional Profile

Education

Dr. Akoushideh has a strong academic foundation in electrical and electronics engineering. He earned his Ph.D. in Electrical Engineering with a specialization in Electronics from Shahid Beheshti University, where his research focused on developing noise-resistant feature extraction operators for texture classification. His doctoral work contributed significantly to the fields of image processing and pattern recognition. Prior to that, he completed his Master’s degree at Amirkabir University of Technology (Tehran Polytechnic), specializing in electronics. His master’s thesis revolved around designing a pacemaker system based on the detection of cardiac arrests, demonstrating his early interest in biomedical applications of electronics. Dr. Akoushideh obtained his Bachelor’s degree from the University of Guilan, where he specialized in electronics engineering. His undergraduate research involved the development of a computer-based microcontroller trainer, highlighting his inclination towards microcontroller-based system design. Throughout his academic journey, he has consistently focused on applying electronics engineering principles to real-world challenges, which is evident in his later research projects and technological innovations. His education, spanning three prestigious Iranian institutions, has provided him with the necessary expertise to excel in both theoretical and applied aspects of electronics, further enriching his contributions to academia, research, and industry.

Professional Experience

Dr. Akoushideh has had an extensive career in academia, research, and industry. He is currently an Assistant Professor at the Technical and Vocational University in Iran, where he teaches courses in image processing, computer architecture, microcontrollers, and digital systems. His role extends beyond teaching, as he actively supervises undergraduate and graduate research projects, guiding students in developing innovative solutions for industrial and technological challenges. He has also served as a visiting researcher at the University of Twente in the Netherlands, where he collaborated on biometrics and pattern recognition research. Additionally, he participated in the Erasmus+ program at Pitesti University in Romania, contributing to international discussions on vocational education and training. Dr. Akoushideh has held managerial roles, including serving as the Growth Centre Manager at Guilan Science and Technology Park, where he played a key role in supporting technology startups and commercializing academic research. His industry experience includes co-founding Rayaneh Gostar Moein Co., where he worked on network design, industrial automation, and electronic content production. His diverse professional background reflects his ability to integrate academic research with industrial applications, making significant contributions to both education and technology-driven initiatives.

Research Interests

Dr. Akoushideh’s research interests lie in the intersection of digital electronics, image processing, artificial intelligence, and microcontroller-based systems. His work primarily focuses on developing advanced image processing techniques for applications such as biometrics, video surveillance, and medical diagnostics. He has also contributed to research in pattern recognition, deep learning, and IoT-based automation systems. His interest in parallel processing has led him to explore hardware acceleration techniques for computationally intensive tasks, improving the efficiency of embedded systems. In addition to theoretical advancements, Dr. Akoushideh is deeply involved in applied research, particularly in developing smart electronic devices and automation systems for industrial and consumer applications. His projects include intelligent power management systems, real-time video analytics, and embedded system design for IoT applications. He is also keen on integrating artificial intelligence into embedded systems, exploring new methods for enhancing efficiency and performance in real-time processing environments. With a strong background in both academic and practical research, his work contributes to the advancement of smart technologies, automation, and digital signal processing, positioning him as a leading researcher in electronics and computer engineering.

Research Skills

Dr. Akoushideh possesses a diverse range of research skills spanning hardware and software domains. He has expertise in digital image processing, machine learning, and deep learning techniques, applying them to areas such as biometrics, video analysis, and industrial automation. His programming proficiency includes MATLAB, Python, C++, and hardware description languages like VHDL, allowing him to develop and implement complex algorithms for embedded systems. His hands-on experience with microcontrollers such as AVR, ARM, and PIC enables him to design and prototype advanced electronic devices. Additionally, he is skilled in PCB design using Altium Designer and FPGA-based system development using Xilinx ISE and Synopsys tools. His research capabilities extend to IoT and smart systems, where he has worked on projects involving sensor networks, remote monitoring, and intelligent control systems. Dr. Akoushideh is also experienced in conducting experimental research, statistical data analysis, and scientific writing, which are essential for publishing in high-impact journals. His interdisciplinary approach, combining hardware and software expertise, makes him highly proficient in designing, developing, and optimizing electronic and computational systems for various applications.

Awards and Honors

Dr. Akoushideh has been recognized multiple times for his contributions to research and technology. He was awarded the Best Researcher title at Guilan Technical and Vocational University in 2022 and previously in 2018 and 2019. In 2021, he received the first award at the Technical and Vocational University of Iran, a national-level recognition of his excellence in research and academia. He was also acknowledged by the Guilan Science and Technology Park for his contributions as an innovator and technologist, winning awards such as “Encouraging Thinkers, Technologists, and Innovators” in 2019. Additionally, he won a provincial award in the Young Idea Supporters category the same year. His entrepreneurial spirit was recognized in 2007 when he was named the Best Entrepreneur in Information Technology by the Ministry of Labor and Social Affairs. His academic achievements include ranking second in his graduating class in electronic engineering at Guilan University in 1997. These awards highlight his dedication to advancing research, education, and innovation, further solidifying his reputation as a leading researcher in his field.

Conclusion

Dr. Alireza Akoushideh is a distinguished researcher with extensive expertise in electronics engineering, particularly in image processing, embedded systems, and IoT applications. His academic journey, spanning Iran’s top universities, has provided him with a strong foundation in both theoretical and applied research. His professional experience as a university professor, visiting researcher, and technology leader has allowed him to make significant contributions to academia and industry. With numerous research projects, patents, and international collaborations, he has established himself as a key figure in his field. His research interests in artificial intelligence, parallel processing, and industrial automation align with current technological advancements, making his work highly relevant. His technical skills in programming, hardware design, and system optimization further enhance his ability to develop innovative solutions. Recognized with multiple awards for research excellence, teaching, and entrepreneurship, he has consistently demonstrated his commitment to knowledge creation and dissemination. Dr. Akoushideh’s career reflects a balance between academic research and practical applications, positioning him as a thought leader in digital electronics and embedded systems. His contributions continue to drive technological innovation, benefiting both academia and industry.

Publications Top Notes

  • Title: Motion-based vehicle speed measurement for intelligent transportation systems
    Authors: A. Tourani, A. Shahbahrami, A. Akoushideh, S. Khazaee, C.Y. Suen
    Year: 2019
    Citations: 33

  • Title: A robust vehicle detection approach based on faster R-CNN algorithm
    Authors: A. Tourani, S. Soroori, A. Shahbahrami, S. Khazaee, A. Akoushideh
    Year: 2019
    Citations: 25

  • Title: Facial expression recognition using a combination of enhanced local binary pattern and pyramid histogram of oriented gradients features extraction
    Authors: M. Sharifnejad, A. Shahbahrami, A. Akoushideh, R.Z. Hassanpour
    Year: 2020
    Citations: 19

  • Title: Iranis: A large-scale dataset of Iranian vehicles license plate characters
    Authors: A. Tourani, S. Soroori, A. Shahbahrami, A. Akoushideh
    Year: 2021
    Citations: 16

  • Title: Iranian license plate recognition using deep learning
    Authors: A.R. Rashtehroudi, A. Shahbahrami, A. Akoushideh
    Year: 2020
    Citations: 15

  • Title: High performance implementation of texture features extraction algorithms using FPGA architecture
    Authors: A.R. Akoushideh, A. Shahbahrami, B.M.N. Maybodi
    Year: 2014
    Citations: 13

  • Title: Copy-move forgery detection using convolutional neural network and K-mean clustering
    Authors: A. Pourkashani, A. Shahbahrami, A. Akoushideh
    Year: 2021
    Citations: 12

  • Title: Accelerating texture features extraction algorithms using FPGA architecture
    Authors: A.R. Akoushideh, A. Shahbahrami
    Year: 2010
    Citations: 12

  • Title: Parallel Implementation of a Video-based Vehicle Speed Measurement System for Municipal Roadways
    Authors: A.J. Afshany, A. Tourani, A. Shahbahrami, S. Khazaee, A. Akoushideh
    Year: 2019
    Citations: 10

  • Title: Challenges of Video-Based Vehicle Detection and Tracking in Intelligent Transportation Systems
    Authors: A. Tourani, A. Shahbahrami, A. Akoushideh
    Year: 2017
    Citations: 9

 

Sandeep Kumar Dasa | Computer Science | Best Innovator Award

Mr. Sandeep Kumar Dasa | Computer Science | Best Innovator Award

Sr Engineer, Enterprise Data Privacy & Data Protection from Raymond James & Associates, United States

Mr. Sandeep Kumar Dasa is an accomplished technology professional with nearly nine years of experience in the IT sector. He specializes in Enterprise Data Privacy, Data Protection, and Artificial Intelligence (AI) and Machine Learning (ML). As a Senior Engineer, he plays a pivotal role in designing and implementing cutting-edge solutions that enhance data security and drive innovation. His expertise extends to thought leadership, with a strong intellectual property portfolio, including two patents. Additionally, he is an author and researcher, having published a book on AI/ML and multiple journal articles on deep learning and neural networks. Mr. Dasa is deeply invested in academic research and industry advancements, with a keen interest in reviewing papers on emerging technologies. His contributions to the field reflect his commitment to innovation and excellence, making him a valuable asset in both industry and academia.

Professional Profile

Education

Mr. Sandeep Kumar Dasa has a strong academic background that forms the foundation of his expertise in AI, ML, and data privacy. He holds a degree in Computer Science or a related field, equipping him with the necessary technical and analytical skills to excel in his profession. His education has provided him with a deep understanding of algorithm development, software engineering, and data security. Additionally, he has pursued continuous learning through certifications and specialized courses in AI, ML, and data privacy to stay at the forefront of technological advancements. His academic journey has been instrumental in shaping his innovative approach to problem-solving and research, further reinforcing his ability to contribute effectively to the field.

Professional Experience

With nearly a decade of experience in the IT industry, Mr. Sandeep Kumar Dasa has established himself as a leading expert in data privacy and AI/ML. As a Senior Engineer, he has been instrumental in designing and deploying enterprise-level solutions that enhance data protection and security. His expertise spans AI-driven automation, compliance frameworks, and advanced encryption techniques. His role involves consulting organizations on integrating AI/ML technologies to optimize efficiency and security. His professional journey includes collaborating with cross-functional teams, leading research-driven projects, and implementing patented innovations. His ability to merge theoretical knowledge with practical applications has enabled him to make a significant impact in the field.

Research Interest

Mr. Sandeep Kumar Dasa is deeply passionate about research in AI, ML, and data privacy. His primary focus lies in developing advanced AI models that enhance data security while ensuring regulatory compliance. He is particularly interested in deep learning, neural networks, and their applications in data protection. His research explores ways to leverage AI for secure data handling, risk mitigation, and automation. Additionally, he is keen on understanding the ethical implications of AI and ensuring responsible AI deployment. His commitment to research is reflected in his publications, patents, and active involvement in scholarly discussions. He seeks to contribute to the field by exploring novel AI-driven solutions for industry challenges.

Research Skills

Mr. Sandeep Kumar Dasa possesses a robust set of research skills that make him an effective innovator and thought leader in AI, ML, and data privacy. His expertise includes AI model development, deep learning, statistical analysis, and algorithm optimization. He is proficient in data protection methodologies, cryptographic techniques, and regulatory compliance standards. His technical skills encompass programming in Python, R, and other AI-focused languages, along with experience in cloud computing and big data analytics. Additionally, his ability to critically analyze emerging trends and apply research methodologies enables him to contribute valuable insights to the industry. His strong research acumen allows him to bridge the gap between theoretical advancements and practical applications.

Awards and Honors

Mr. Sandeep Kumar Dasa’s contributions to AI, ML, and data privacy have earned him notable recognition. He holds two patents that highlight his innovative capabilities in technology development. His book on AI/ML and multiple journal publications have established him as a thought leader in the field. He has been invited to review research papers on emerging technologies, demonstrating his expertise and credibility. Throughout his career, he has received accolades for his impactful work, including industry awards and acknowledgments for excellence in innovation. His dedication to research and technology has positioned him as a respected professional in his domain.

Conclusion

Mr. Sandeep Kumar Dasa is a distinguished professional with a strong background in AI, ML, and data privacy. His extensive experience, combined with his research contributions and innovative mindset, make him a valuable leader in the technology industry. His patents, publications, and professional expertise showcase his commitment to advancing the field. While he has already achieved significant milestones, continued collaboration, real-world implementation of his innovations, and further recognition in the industry could enhance his impact. His passion for research, dedication to knowledge-sharing, and technical proficiency make him a deserving candidate for awards and honors in technology and innovation.

Publications Top Notes

  • Optimizing Object Detection in Dynamic Environments With Low-Visibility Conditions

    • Authors: S. Belidhe, S.K. Dasa, S. Jaini

    • Citations: 3

  • Explainable AI and Deep Neural Networks for Continuous PCI DSS Compliance Monitoring

    • Authors: S.K.D. Sandeep Belidhe, Phani Monogya Katikireddi

    • Year: 2024

  • Proactive Database Health Management with Machine Learning-Based Predictive Maintenance

    • Authors: S.K. Dasa

    • Year: 2023

  • Graph-Based Deep Learning and NLP for Proactive Cybersecurity Risk Analysis

    • Authors: S.K. Dasa

    • Year: 2022

  • Securing Database Integrity: Anomaly Detection in Transactional Data Using Autoencoders

    • Authors: S.K. Dasa

    • Year: 2022

  • Autonomous Robot Control through Adaptive Deep Reinforcement Learning

    • Authors: S.K. Dasa

    • Year: 2022

  • Using Deep Reinforcement Learning to Defend Conversational AI Against Adversarial Threats

    • Authors: S.K.D. Phani Monogya Katikireddi, Sandeep Belidhe

    • Year: 2021

  • Machine Learning Approaches for Optimal Resource Allocation in Kubernetes Environments

    • Authors: S.B. Sandeep Kumar Dasa, Phani Monogya Katikireddi

    • Year: 2021

  • Intelligent Cybersecurity: Enhancing Threat Detection through Hybrid Anomaly Detection Techniques

    • Authors: S.B. Phani Monogya Katikireddi, Sandeep Kumar Dasa

    • Year: 2021

 

 

 

 

 

 

Qichuan Tian | Computer Science | Best Researcher Award

Prof. Dr. Qichuan Tian | Computer Science | Best Researcher Award

Prof. Dr. at  Beijing University of Civil Engineering and Architecture, China

Qichuan Tian, born in 1971, is a distinguished professor and technical expert specializing in artificial intelligence, pattern recognition, and computer vision. He holds a Ph.D. in Engineering from Northwestern Polytechnical University (2006) and currently serves as a professor and master’s supervisor at Beijing University of Civil Engineering and Architecture (BUCEA). As the Director of the Department of Artificial Intelligence at the School of Intelligent Science and Technology, he leads research in biometrics, human-computer interaction, and deep learning. He is a member of multiple prestigious organizations, including the National Information Technology Standardization Technical Committee and the Chinese Society of Biomedical Engineering. His career spans academia and industry, with significant contributions in developing national standards, publishing books, and mentoring graduate students. Tian has also played a key role in over 20 research projects funded by national and provincial foundations, solidifying his reputation as a thought leader in AI and computational sciences.

Professional Profile

Education

Qichuan Tian has an extensive academic background in engineering. He obtained his Bachelor of Engineering (1993) and Master of Engineering (1996) from Taiyuan University of Science and Technology. In 2006, he completed his Doctor of Engineering at Northwestern Polytechnical University, specializing in artificial intelligence and computer vision. His academic training laid a strong foundation for his later contributions to AI, biometrics, and deep learning. His studies focused on integrating computational intelligence into practical applications, a theme that continues to define his research and professional endeavors.

Professional Experience

Tian has a diverse career in academia and research. Since 2012, he has served as the Head of the Department of Artificial Intelligence at BUCEA, where he spearheads innovative AI programs. From 2009 to 2010, he was a Visiting Scholar at Auburn University, USA, gaining international exposure in computer science. Between 2006 and 2008, he conducted postdoctoral research at Tianjin University. Previously, he held various roles at Taiyuan University of Science and Technology (1993–2012), where he advanced from Assistant Professor to Associate Professor and later became the Chief Leader of Circuits and Systems. His leadership has been instrumental in shaping AI research and education in China.

Research Interests

Tian’s research interests focus on artificial intelligence, pattern recognition, image processing, and deep learning. He specializes in biometric recognition, computer vision, and human-computer natural interaction. His work extends to security authentication, big data analysis, and IoT-based embedded systems. Tian has published over 100 journal and conference papers, authored six books, and contributed significantly to national standards in AI applications. His interdisciplinary research bridges theoretical advancements with practical AI implementations, making substantial contributions to the field.

Research Skills

With expertise in artificial intelligence and computer vision, Tian possesses strong research skills in deep learning algorithms, biometric recognition systems, and real-time image processing. He has successfully led projects in autonomous driving, green building AI integration, and complex object detection. His experience includes handling large-scale datasets, implementing machine learning frameworks, and designing AI-driven applications. Additionally, he has obtained over 50 invention patents and software copyrights, showcasing his ability to translate theoretical research into impactful technological innovations.

Awards and Honors

Tian’s contributions to academia and AI research have earned him multiple accolades. In 2024, he was recognized among CNKI’s Highly Cited Scholars (Top 5). He received the First Prize for Teaching Achievements at BUCEA in 2021 and was honored for developing a National First-Class Blended Online and Offline Course in 2020. Additionally, he was awarded the Outstanding Master’s Thesis Advisor Award in 2012. His accolades highlight his commitment to education, research, and AI-driven innovations, reinforcing his influence in the field of intelligent science and technology.

Conclusion

Qichuan Tian is a prominent scholar and AI expert dedicated to advancing artificial intelligence and biometric research. His leadership in academia, combined with his extensive research portfolio, underscores his impact on technological advancements in pattern recognition, computer vision, and human-computer interaction. With a career spanning over two decades, Tian has played a pivotal role in shaping AI education, national standards, and industry collaborations. His legacy continues to influence emerging AI technologies and inspire the next generation of researchers in intelligent computing.

Publications Top Notes

  • Title: An improved framework for breast ultrasound image segmentation with multiple branches depth perception and layer compression residual module

    • Authors: K. Cui, Qichuan Tian, Haoji Wang, Chuan Ma
    • Year: 2025
  • Title: Mobile Robot Path Planning Algorithm Based on NSGA-II

    • Authors: Sitong Liu, Qichuan Tian, Chaolin Tang
    • Year: 2024
    • Citations: 1
  • Title: OcularSeg: Accurate and Efficient Multi-Modal Ocular Segmentation in Non-Constrained Scenarios

    • Authors: Yixin Zhang, Caiyong Wang, Haiqing Li, Qichuan Tian, Guangzhe Zhao
    • Year: 2024
  • Title: Convolutional Neural Network–Bidirectional Gated Recurrent Unit Facial Expression Recognition Method Fused with Attention Mechanism

    • Authors: Chaolin Tang, Dong Zhang, Qichuan Tian
    • Year: 2023
    • Citations: 4

 

 

 

Dagne Walle | Computer Science | Best Scholar Award

Mr. Dagne Walle | Computer Science | Best Scholar Award

Haramaya at Haramaya university, Ethiopia

Dagne Walle Girmaw is a lecturer, researcher, and programmer at Haramaya University in Ethiopia, with a strong academic background in Information Technology. His expertise lies in applying machine learning and deep learning techniques to solve critical challenges in agriculture. Dagne’s work focuses on developing automated systems to detect crop diseases at an early stage, utilizing advanced AI models to improve food security and agricultural sustainability. His passion for using technology to bridge the gap between agriculture and innovation has led to impactful research that can potentially transform the agricultural landscape in Ethiopia and beyond. Dagne is committed to making a difference by empowering farmers with actionable insights that can enhance crop yields and reduce losses. As an educator, Dagne also plays a pivotal role in nurturing the next generation of IT professionals in Ethiopia, providing them with the necessary tools to apply advanced technologies in real-world scenarios.

Professional Profile

Education:

Dagne Walle Girmaw holds a Master’s degree in Information Technology from the University of Gondar, completed in 2021. He also earned his Bachelor’s degree in Information Technology from Haramaya University in 2017. His academic journey has been focused on acquiring a deep understanding of IT systems, with a particular emphasis on machine learning and deep learning. The combination of his education and technical skills has enabled him to pioneer research in applying these advanced technologies to agricultural challenges. His education from two reputable institutions in Ethiopia has provided him with both theoretical knowledge and practical experience in addressing real-world issues in agriculture, particularly the detection of crop diseases using AI.

Professional Experience:

Since 2018, Dagne has been a lecturer and researcher at Haramaya University, where he imparts knowledge on Information Technology and leads research initiatives focused on AI applications in agriculture. As a lecturer, he has played a key role in shaping the education of students, particularly those interested in IT, by teaching courses and supervising academic projects. His research experience spans over six years, during which he has developed several deep learning-based models for detecting crop diseases such as stem rust in wheat, livestock skin diseases, and common bean leaf diseases. His academic and research endeavors at Haramaya University have allowed him to make meaningful contributions to the field of agricultural technology and provide students with cutting-edge insights into the intersection of IT and agriculture.

Research Interest:

Dagne Walle Girmaw’s research interests are primarily centered around the application of deep learning and machine learning techniques in agriculture. He is particularly focused on developing systems for early disease detection in crops, which can significantly improve agricultural productivity and food security. His research has led to the development of various models, such as those for detecting and classifying diseases in crops like wheat, beans, and peas, using deep convolutional neural networks (CNNs). Additionally, Dagne’s work includes using AI for the detection of counterfeit Ethiopian banknotes. His interest in machine learning-driven solutions highlights his desire to use technology to solve some of the most pressing challenges in the agricultural sector, with the ultimate goal of empowering farmers and enhancing food systems in Ethiopia and other developing countries.

Research Skills:

Dagne possesses strong research skills in machine learning, deep learning, and computer vision, which are central to his work on agricultural disease detection. He is proficient in using deep learning frameworks such as TensorFlow and Keras to develop complex models that can process and analyze agricultural data, including images of crops. His research skills also include data preprocessing, model evaluation, and optimization techniques, all of which are essential for creating accurate and reliable models. Furthermore, Dagne has experience in implementing algorithms for image classification and pattern recognition, which are key components in his work on disease detection. His ability to integrate AI technologies into real-world applications demonstrates a high level of proficiency in his field and a commitment to advancing agricultural technologies through research.

Awards and Honors:

Dagne Walle Girmaw has earned multiple Reviewer Contribution Certificates, recognizing his active participation in the academic and research community. These certificates highlight his role in reviewing academic papers, further cementing his reputation as a respected contributor to the field of Information Technology and machine learning. While specific awards for his research have not been mentioned, his work’s impact on agricultural technology has gained recognition, particularly in Ethiopia, where his research has the potential to improve the lives of farmers and contribute to national food security. His certifications and recognition as a reviewer reflect his dedication to advancing knowledge in both the academic and applied research fields.

Conclusion:

Dagne Walle Girmaw is a promising researcher and academic in the field of Information Technology, with a focus on using AI and deep learning to address challenges in agriculture. His work is particularly impactful in the realm of crop disease detection, where he has developed models that could potentially transform agricultural practices in Ethiopia and beyond. With a strong educational background, extensive professional experience, and a passion for solving agricultural problems through technology, Dagne is well-positioned to make significant contributions to both the academic and practical aspects of agricultural innovation. His research holds the potential to not only advance technology but also improve the livelihoods of farmers, enhance food security, and contribute to sustainable agricultural practices.

Publication Top Notes

  1. Title: Livestock animal skin disease detection and classification using deep learning approaches
    • Authors: Walle Girmaw, D.
    • Journal: Biomedical Signal Processing and Control
    • Year: 2025
    • Volume: 102
    • Article Number: 107334
  2. Title: Deep convolutional neural network model for classifying common bean leaf diseases
    • Authors: Girmaw, D.W., Muluneh, T.W.
    • Journal: Discover Artificial Intelligence
    • Year: 2024
    • Volume: 4(1)
    • Article Number: 96
  3. Title: A novel deep learning model for cabbage leaf disease detection and classification
    • Authors: Girmaw, D.W., Salau, A.O., Mamo, B.S., Molla, T.L.
    • Journal: Discover Applied Sciences
    • Year: 2024
    • Volume: 6(10)
    • Article Number: 521
  4. Title: Field pea leaf disease classification using a deep learning approach
    • Authors: Girmaw, D.W., Muluneh, T.W.
    • Journal: PLoS ONE
    • Year: 2024
    • Volume: 19(7)
    • Article Number: e0307747
  5. Title: Development of a Model for Detection and Grading of Stem Rust in Wheat Using Deep Learning
    • Authors: Nigus, E.A., Taye, G.B., Girmaw, D.W., Salau, A.O.
    • Journal: Multimedia Tools and Applications
    • Year: 2024
    • Volume: 83(16)
    • Pages: 47649–47676
    • Citations: 4

 

 

Wisal Zafar | Computer Science | Best Researcher Award

Mr. Wisal Zafar | Computer Science | Best Researcher Award

Lecturer at Cecos university of information technology and emerging sciences, Pakistan.

Mr. Wisal Zafar is a dedicated researcher and lecturer with a strong background in software engineering, focusing on artificial intelligence, machine learning, and deep learning applications in healthcare. Born on March 25, 1999, in Peshawar, Pakistan, he has consistently demonstrated a passion for advancing technology’s role in solving real-world problems. He has developed and published research that leverages machine learning for medical diagnoses, including brain tumor analysis and diabetes prediction. As a lecturer and Electronic Data Processing (EDP) Officer at Iqra National University, he is committed to mentoring students and contributing to the field through both teaching and research. His work is distinguished by his continuous learning, keeping pace with emerging trends in AI and big data. Mr. Zafar’s career is marked by his enthusiasm for interdisciplinary research, integrating software engineering with advancements in health and data science. He is eager to expand his research contributions further through collaborations and innovative projects that address global challenges using advanced technologies.

Professional Profile

Education

Wisal Zafar holds an MS in Software Engineering from Iqra National University, Hayatabad Peshawar, completed in July 2024 with a commendable CGPA of 3.62/4.00. His postgraduate studies provided him with in-depth knowledge of advanced topics like artificial intelligence, data analysis, and big data. Prior to this, he earned a BS in Software Engineering from the same institution in October 2020, with a CGPA of 3.47/4.00, building a strong foundation in software development and computer science principles. His academic journey started with an intermediate qualification from Capital Degree College, Peshawar, where he scored 700 out of 1100 marks, and continued with his matriculation from The Jamrud Model High School, achieving 824 out of 1100 marks. His educational background is characterized by consistent academic performance and a focus on both theoretical and practical aspects of software engineering, which has prepared him for his subsequent roles in academia and research.

Professional Experience

Wisal Zafar currently serves as a Lecturer at Iqra National University, Hayatabad, Peshawar, where he has been teaching various software engineering subjects since January 2023. His areas of instruction include Data Science, Artificial Intelligence, Machine Learning, Data Structures, and Algorithms, allowing him to impart advanced knowledge to students and prepare them for careers in technology. Alongside his role as a lecturer, he also holds the position of Electronic Data Processing (EDP) Officer at the same university, a role he has been fulfilling since October 2021. In this capacity, he manages data processing tasks, ensuring the effective handling of academic data and resources. Previously, he gained practical experience as a Junior Web Developer at Pakistan Online Services Software House, where he worked from November 2020 to April 2021, specializing in web development using PHP, Laravel, JavaScript, and other technologies. This diverse experience in academia and industry has equipped Mr. Zafar with the skills to blend theoretical concepts with real-world applications, making him an effective educator and a valuable contributor to research.

Research Interests

Wisal Zafar’s research interests are centered around artificial intelligence (AI), machine learning (ML), deep learning, and their applications in healthcare and data analysis. He is particularly fascinated by the potential of AI and ML in developing advanced diagnostic tools, aiming to improve medical outcomes through data-driven insights. His recent research projects have explored the use of deep learning techniques like YOLOv8s and U-Net for multi-class brain tumor analysis, integrating detection, localization, and segmentation of tumors using MRI data. Additionally, he has delved into predictive models for diabetes diagnosis using various ML algorithms, such as Decision Trees, K-Nearest Neighbors, Random Forest, Logistic Regression, and Support Vector Machines. His interests extend to big data analytics and the role of data science in enhancing information retrieval and management in medical libraries. Through his work, Wisal Zafar seeks to advance the intersection of technology and healthcare, utilizing cutting-edge algorithms and data processing techniques to solve critical challenges and improve human well-being.

Research Skills

Wisal Zafar possesses a diverse skill set in artificial intelligence, machine learning, data analysis, and big data management, making him adept at tackling complex research challenges. He has extensive experience in using programming languages like Python and C++, which he applies to develop machine learning models and algorithms. His technical expertise includes working with deep learning frameworks, as seen in his research on brain tumor analysis using advanced models such as YOLOv8s and U-Net. Additionally, Wisal has proficiency in cloud computing and handling large datasets, which supports his work in big data analytics and the implementation of data-driven decision-making tools. His hands-on experience as a Research Assistant has further refined his skills in conducting surveys, data preprocessing, and statistical analysis. Mr. Zafar is also skilled in web development using frameworks like Laravel and JavaScript, allowing him to create interactive platforms for research applications. His ability to integrate these skills into interdisciplinary projects makes him a capable researcher with a focus on innovation and problem-solving.

Award Recognition

Wisal Zafar’s dedication to research and academic excellence has earned him recognition in the academic community, though he is still working towards broader award recognitions. His recent research publications, including studies on brain tumor analysis and diabetes prediction using machine learning, have been well-received and published in respected journals. These works have contributed significantly to the fields of AI in healthcare and big data analytics, positioning him as a promising researcher. His role as a Lecturer at Iqra National University also reflects the acknowledgment of his expertise, as he is entrusted with educating the next generation of software engineers. Additionally, Wisal has completed several certified courses from platforms like Coursera, receiving certificates in advanced learning algorithms, deep learning, and image processing with Python, which underscore his commitment to continuous learning. While he may not yet have specific awards, his publications, teaching contributions, and commitment to research excellence serve as strong indicators of his potential for future recognition in the field.

Awards and Honors

Wisal Zafar has demonstrated a commitment to continuous professional development through various certifications and achievements, contributing to his expertise in software engineering and AI. He has completed notable courses such as AI for Everyone and Advanced Learning Algorithms through Coursera, which are associated with respected institutions like DeepLearning.AI and Stanford University. These certifications have enhanced his knowledge of machine learning, deep learning, and image processing, enabling him to apply advanced concepts in his research. While he has not yet received specific formal awards, his role as a Lecturer at Iqra National University and his position as an Electronic Data Processing (EDP) Officer are testaments to his skills and recognition within the academic community. His contributions to research, especially in the areas of AI applications in healthcare, have been acknowledged through the publication of his work in peer-reviewed journals. Wisal Zafar’s ongoing pursuit of excellence, both in research and teaching, positions him as a candidate worthy of future awards and honors in the field of software engineering and AI.

Conclusion:

Wisal Zafar has demonstrated considerable research skills and expertise in the field of software engineering, particularly in applying machine learning and AI to medical problems. His academic background, technical skills, and research publications make him a strong contender for the Best Researcher Award. While he could benefit from diversifying his research and increasing his international presence, his current achievements in AI-driven healthcare solutions and data analytics set a solid foundation for this recognition.

Publications Top Notes

  1. Enhanced TumorNet: Leveraging YOLOv8s and U-net for superior brain tumor detection and segmentation utilizing MRI scans
    • Authors: Zafar, W., Husnain, G., Iqbal, A., AL-Zahrani, M.S., Naidu, R.S.
    • Journal: Results in Engineering
    • Year: 2024
    • Volume: 24
    • Article ID: 102994
    • Type: Open access
  2. Revolutionizing Diabetes Diagnosis: Machine Learning Techniques Unleashed
    • Authors: Shaukat, Z., Zafar, W., Ahmad, W., Ghadi, Y.Y., Algarni, A.
    • Journal: Healthcare (Switzerland)
    • Year: 2023
    • Volume: 11
    • Issue: 21
    • Article ID: 2864
    • Citations: 1
    • Type: Open access

 

 

 

 

Abid Iqbal | Artificial Intelligence | Best Researcher Award

Assist Prof Dr. Abid Iqbal | Artificial Intelligence | Best Researcher Award

Assistant Professor at King Faisal University, Saudi Arabia

Dr. Abid Iqbal is an accomplished Assistant Professor at the University of Engineering and Technology Peshawar, specializing in Electrical Engineering and artificial intelligence. He earned his Ph.D. from Griffith University, Australia, where he researched piezoelectric energy harvesters. With a strong academic background, he ranked first in his Master’s program at Ghulam Ishaq Khan Institute, Pakistan. Dr. Iqbal has a diverse professional experience, including roles as an Electrical Design Engineer and Research Assistant. His expertise encompasses developing embedded devices and innovative teaching methodologies, mentoring students, and conducting impactful research. He has successfully secured funding for multiple projects in AI applications for health and agriculture. Dr. Iqbal’s publication record includes numerous papers in reputable journals, reflecting his commitment to advancing knowledge in his field. His technical skills in programming and software further enhance his research capabilities, making him a valuable asset to academia and industry.

Profile

Education

Dr. Abid Iqbal is a highly accomplished academic with a solid educational foundation in electrical and electronics engineering. He earned his Ph.D. from the Queensland Micro- and Nanotechnology Centre at Griffith University, Australia, from April 2013 to February 2017. His doctoral research focused on the design, fabrication, and analysis of aluminum nitride (AlN)/silicon carbide (SiC)-based piezoelectric energy harvesters, contributing significantly to renewable energy technologies. Prior to his Ph.D., Dr. Iqbal completed his Master’s degree in Electronics Engineering at the Ghulam Ishaq Khan Institute in Topi, Swabi, Pakistan, graduating with a remarkable GPA of 3.88/4 and securing the top position in his class. His academic journey began with a Bachelor’s degree in Electrical Engineering from the University of Engineering & Technology in Peshawar, Pakistan, where he was recognized as an outstanding student. Dr. Iqbal’s educational background reflects his dedication and expertise in his field, laying a strong foundation for his professional career.

Professional Experience

Dr. Abid Iqbal is an accomplished electrical engineer currently serving as an Assistant Professor at the University of Engineering and Technology Peshawar since August 2019. In this role, he has been instrumental in teaching undergraduate courses in Electrical Engineering, developing innovative teaching methods, and mentoring students on research projects. Prior to this position, he worked as an Electrical Design Engineer at Alliance Power and Data in Australia, focusing on ERGON and NBN projects. He also contributed to the development of embedded systems for individuals with disabilities while employed as an Electronic Engineer at Community Lifestyle Support. His research experience includes a significant role as a Research Assistant at Griffith University, where he worked on piezoelectric devices for harsh environments and gained expertise in various semiconductor fabrication processes. Additionally, he has served as a lecturer at Comsat Institute of Information Technology and worked as a research associate at the City University of Hong Kong, demonstrating a robust and diverse professional background in academia and industry.

Research Interest

Dr. Abid Iqbal’s research interests lie at the intersection of electrical engineering and artificial intelligence, focusing on the development of innovative technologies that enhance energy efficiency and improve healthcare outcomes. His work includes designing and fabricating advanced piezoelectric energy harvesters using AlN/SiC materials, aimed at harnessing renewable energy sources. Additionally, Dr. Iqbal is deeply involved in projects utilizing artificial intelligence for agricultural applications, such as real-time disease detection in crops, and developing telehealth systems that leverage IoT technology to monitor patient health remotely. He has a keen interest in embedded systems and the design of hardware for assistive technologies, including portable ventilators and muscle sensors for individuals with disabilities. Through his research, Dr. Iqbal aims to contribute to sustainable energy solutions and advancements in healthcare technology, fostering a multidisciplinary approach that integrates engineering principles with artificial intelligence for practical applications.

Research Skills

Dr. Abid Iqbal possesses a robust set of research skills that underscore his expertise in Electrical Engineering and artificial intelligence. His extensive experience in designing and fabricating piezoelectric energy harvesters highlights his proficiency in materials science and device characterization. Dr. Iqbal is adept at using advanced simulation tools such as COMSOL, Ansys, and Coventorware, which facilitate in-depth analysis and optimization of microelectromechanical systems (MEMS). His work on artificial intelligence applications in telehealth and agricultural systems showcases his ability to integrate machine learning techniques with practical engineering solutions. Additionally, Dr. Iqbal has a strong background in programming languages such as Python and MATLAB, enhancing his capability to develop innovative software solutions for complex engineering problems. His involvement in funded projects and numerous publications further illustrates his commitment to advancing research and contributing to knowledge in his field. Overall, Dr. Iqbal’s diverse skills position him as a valuable asset to any research team.

Award and Recognition

Dr. Abid Iqbal is a distinguished electrical engineer and academic known for his significant contributions to the field of electrical and electronics engineering. He has received multiple accolades for his research and academic excellence, including the IGNITE funding for four innovative projects focused on machine learning applications in health and agriculture. Dr. Iqbal was awarded publication scholarships and prestigious Griffith University PhD scholarships, recognizing his outstanding academic performance during his doctoral studies. Additionally, he ranked first among his peers in the Master’s program at Ghulam Ishaq Khan Institute, further demonstrating his commitment to excellence in engineering. His dedication to teaching and mentoring future engineers is evident in his role as an Assistant Professor at the University of Engineering and Technology Peshawar, where he has developed innovative curricula and guided numerous student research projects. Dr. Iqbal’s work has been widely published, contributing significantly to advancements in artificial intelligence, embedded systems, and renewable energy technologies.

Conclusion

Dr. Abid Iqbal is a highly qualified candidate for the Best Researcher Award, demonstrating exceptional expertise in Electrical Engineering and a strong commitment to research and education. His accomplishments in renewable energy research, successful project management, and dedication to mentoring future engineers make him a standout choice. While he has areas for growth, particularly in expanding collaborative networks and enhancing commercialization efforts, his current achievements and potential for future contributions position him as an inspiring figure in his field. This award would not only recognize his past efforts but also encourage his continued pursuit of excellence in research and education.

Publication Top Notes

  1. Enhanced TumorNet: Leveraging YOLOv8s and U-net for superior brain tumor detection and segmentation utilizing MRI scans
    • Authors: Zafar, W., Husnain, G., Iqbal, A., AL-Zahrani, M.S., Naidu, R.S.
    • Year: 2024
    • Journal: Results in Engineering
    • Volume/Page: 24, 102994
  2. Novel dual absorber configuration for eco-friendly perovskite solar cells: design, numerical investigations and performance of ITO-C60-MASnI3-RbGeI3-Cu2O-Au
    • Authors: Hasnain, S.M., Qasim, I., Iqbal, A., Amin Mir, M., Abu-Libdeh, N.
    • Year: 2024
    • Journal: Solar Energy
    • Volume/Page: 278, 112788

 

 

 

Anyiam Kizito | Statistics | Best Researcher Award

Dr. Anyiam Kizito | Statistics | Best Researcher Award

Senior Lecturer at Federal University Of Technology, Owerri, Nigeria.

Kizito Ebere Anyiam is a Senior Lecturer in the Department of Statistics at the Federal University of Technology, Owerri, Nigeria. He holds a PhD in Statistics from Nnamdi Azikiwe University, where his dissertation focused on new generalized exponentiated Weibull families of lifetime distributions. With a strong background in distribution theory, multivariate statistics, and statistical computing, Anyiam has made significant contributions to the field through numerous peer-reviewed publications, including works on statistical modeling and reliability analysis. He has also supervised over 30 undergraduate projects, many of which have been published in reputable journals. Beyond teaching, he has implemented innovative methods to enhance student engagement and practical experience in statistics. His professional affiliations include membership in the Nigerian Statistical Association and the Nigerian Mathematical Society, showcasing his active involvement in the academic community. With proficiency in data analysis software and a commitment to advancing statistical education, Anyiam is a respected figure in his field.

Profile:

Education

Kizito Ebere Anyiam holds a Ph.D. in Statistics from Nnamdi Azikiwe University, Awka, Nigeria, completed in 2023. His dissertation focused on the development of “New generalized Exponentiated Weibull Families of Lifetime Distributions with Unimodal and Bimodal Properties,” showcasing his research expertise in statistical distribution theory. Prior to his doctoral studies, he earned a Master’s degree in Statistics from Imo State University, Owerri, Nigeria, in 2008, which laid a solid foundation for his statistical knowledge and skills. In 2011, he completed a Postgraduate Diploma in Information Technology at the Federal University of Technology, Owerri, further enhancing his technical capabilities in data analysis. His academic journey began with a Bachelor’s degree in Statistics from Abia State University, Uturu, Nigeria, in 1995, where he first developed a passion for the field. This strong educational background equips him with the theoretical and practical skills essential for his current role as a Senior Lecturer and researcher.

Professional Experiences 

Kizito Ebere Anyiam is a Senior Lecturer in the Department of Statistics at the Federal University of Technology, Owerri, where he has been instrumental in enhancing the academic experience since 2009. He has developed and taught courses in Probability and Distribution Theory at both undergraduate and graduate levels, employing innovative teaching methods that actively engage students in fieldwork and industrial experiences. In his role as a project advisor, he has supervised over 30 undergraduate research projects, many of which have been published in peer-reviewed journals, showcasing his commitment to fostering research excellence. Additionally, Anyiam has served as the Undergraduate Industrial Experience Coordinator and Class Adviser, further contributing to the academic and professional development of his students. His earlier teaching experience as a Teaching Assistant at Federal Polytechnic Nekede laid the foundation for his strong educational background, which includes a PhD in Statistics and multiple publications in esteemed journals.

Research Interests

Kizito Ebere Anyiam’s research interests primarily revolve around distribution theory and reliability analysis, where he explores the properties and applications of various statistical distributions. His work includes developing new generalized families of lifetime distributions, particularly focusing on unimodal and bimodal properties. Additionally, he engages in multivariate statistics, investigating the complexities of multiple variables and their interactions. Anyiam is also keen on mathematical statistics and statistical computing, utilizing advanced statistical software to enhance data analysis and simulation techniques. His interest in applied probability further complements his research, allowing him to apply theoretical statistical concepts to real-world scenarios. Through his innovative research, Anyiam aims to contribute to the advancement of statistical methodologies and their practical applications across various fields, including engineering and biomedical sciences. His commitment to statistical education and research fosters a deeper understanding of statistical principles and their relevance in addressing contemporary challenges.

Research Skills 

Kizito Ebere Anyiam possesses a robust skill set in statistical research, encompassing distribution theory, reliability analysis, and multivariate statistics. His proficiency in statistical computing and simulation enables him to effectively analyze complex data sets using software such as R, Stata, and SPSS. Anyiam has demonstrated his expertise through the successful supervision of over 30 undergraduate projects, many of which have been published in peer-reviewed journals. His research focuses on new generalized lifetime distributions and their applications, showcasing his ability to innovate within the field. Moreover, he actively engages in collaborative research efforts, evidenced by his numerous publications in reputable journals. His strong foundation in mathematical statistics allows him to tackle real-world problems through applied probability and statistical modeling. Overall, Anyiam’s research skills, combined with his commitment to teaching and mentoring, position him as a valuable contributor to the field of statistics.

Award and Recognition 

Kizito Ebere Anyiam, a Senior Lecturer in the Department of Statistics at the Federal University of Technology, Owerri, has garnered significant recognition for his contributions to the field of statistics. He earned his PhD in 2023 from Nnamdi Azikiwe University, where his dissertation on generalized exponentiated Weibull families showcased innovative approaches to lifetime distributions. His research interests encompass distribution theory, reliability analysis, and statistical computing, leading to multiple peer-reviewed publications in reputable journals, such as Heliyon and the Journal of Modern and Applied Statistical Methods. Additionally, Anyiam’s commitment to education is evident through his development of innovative teaching methods, supervising over 30 undergraduate projects, many of which have been published. His active involvement in professional organizations, including the Nigeria Statistical Association and the Nigerian Mathematical Society, further emphasizes his dedication to advancing statistical research and education in Nigeria.

Conclusion

Kizito Ebere Anyiam is a strong candidate for the Best Researcher Award due to his impressive academic background, extensive teaching and supervisory experience, and significant contributions to statistical research. His commitment to student engagement and professional development further underscores his suitability for this recognition. By addressing areas for improvement, such as expanding his research scope and increasing his visibility in the academic community, Anyiam can further enhance his impact as a researcher and educator. Awarding him this honor would not only recognize his past achievements but also encourage his continued growth and contributions to the field of statistics.

Publication Top Notes
  1. A novel feature selection framework for incomplete data
  2. Iterative missing value imputation based on feature importance
  3. KNCFS: Feature selection for high-dimensional datasets based on improved random multi-subspace learning

 

 

SAI KRISHNA MANOHAR CHEEMAKURTHI | Computer Science | Best Researcher Award

Mr. Sai Krishna Manohar Cheemakurthi | Computer Science | Best Researcher Award

Sai Krishna Manohar Cheemakurthi, U.S. BANK, United States.

Sai Krishna Manohar Cheemakurthi is a seasoned IT professional with over 8 years of experience specializing in Big Data Analytics, Splunk architecture, and cloud-based solutions. He holds numerous certifications, including Splunk Core Certified Consultant and AWS Solutions Architect. Sai Krishna has expertise in designing and implementing Splunk infrastructure for both on-premises and cloud environments, particularly on AWS and Azure. His strong technical background includes scripting in Python, Shell, and Perl, and experience with Hadoop, RDBMS, and various data warehousing tools. Sai Krishna has led teams in migrating vast amounts of data, optimizing infrastructure costs, and enhancing performance through DevOps practices. His research work has been published in reputed journals, covering topics like data science analytics and secure cloud storage. His leadership roles at major financial institutions demonstrate his ability to drive technical innovation and efficiency in complex, large-scale environments.

Profile:

Education

Sai Krishna Manohar Cheemakurthi has a strong educational background that forms the foundation of his expertise in Information Technology and Big Data Analytics. He holds a Bachelor’s degree in Electronics and Communication Engineering, which equipped him with the fundamental skills in computer systems, software engineering, and electronics. His academic training in engineering has allowed him to develop a solid technical understanding of various programming languages, including Python, C++, and Java. Complementing his formal education, Sai Krishna has pursued multiple industry-recognized certifications such as AWS Certified Solutions Architect, Splunk Core Certified Consultant, and Proofpoint Certified Insider Threat Specialist. These certifications demonstrate his commitment to staying at the forefront of technology trends and expanding his knowledge in cloud computing, cybersecurity, and big data platforms. His blend of formal education and specialized certifications enables him to effectively architect and implement advanced IT solutions for a range of business challenges.

Professional Experiences 

Sai Krishna Manohar Cheemakurthi is an accomplished IT professional with over 8 years of experience in Big Data Analytics, Splunk architecture, and cloud solutions. Currently serving as Vice President – Lead Infrastructure Engineer at U.S. Bank, he leads a team in designing and implementing scalable Splunk infrastructures across global regions, optimizing costs, and automating processes. Previously, he was Vice President – Global Splunk Architect at Brown Brothers Harriman & Co., where he managed a global team and drove automation and cloud security solutions. As a Senior Splunk Architect at First Republic Bank, Sai Krishna successfully migrated large-scale Splunk infrastructures from on-premise to cloud platforms, improving disaster recovery and performance. His extensive experience includes leveraging AWS, Azure, Ansible, and Terraform to streamline operations, implementing DevOps methodologies, and delivering robust business intelligence solutions. Throughout his career, Sai Krishna has demonstrated strong leadership, technical expertise, and a commitment to innovation and optimization.

Awards and Honors

Sai Krishna Manohar Cheemakurthi has been recognized for his outstanding contributions in the field of Information Technology, particularly in Big Data Analytics and Splunk Architecture. His technical expertise and leadership have earned him numerous certifications, including Splunk Core Certified Consultant, Splunk Enterprise Certified Architect, and AWS Certified Solutions Architect, showcasing his proficiency in cloud and data platforms. He holds certifications in Sumo Logic, Proofpoint, and IBM’s Big Data Fundamentals, further enhancing his capabilities in cybersecurity and data analysis. His achievements extend to academia, where he has authored multiple research papers published in prestigious journals such as IOSR Journals and Elixir International Journal. These papers focus on cloud computing, wireless sensor networks, and quantum key distribution, demonstrating his innovative approach to solving complex challenges in IT. Sai Krishna’s ability to seamlessly integrate technical expertise with research and practical application has solidified his reputation as a leader in his domain.

Research Interest

Sai Krishna Manohar Cheemakurthi’s research interests focus on leveraging cutting-edge technologies in big data analytics, cloud computing, and cybersecurity to optimize IT infrastructure and improve data-driven decision-making. With a strong foundation in Splunk architecture, he explores advanced methods for data ingestion, transformation, and analysis, aiming to enhance the performance and security of enterprise systems. His work spans cloud migration strategies, particularly from on-premise to cloud environments like AWS, and includes innovative solutions such as quantum key distribution and secure data storage in cloud computing. Sai Krishna is also interested in the development of scalable solutions for monitoring and responding to security incidents in real-time using SIEM technologies. His research extends to cost optimization strategies, automation, and the integration of machine learning in data analytics, reflecting a forward-thinking approach to emerging trends in IT infrastructure and cybersecurity.

Research Skills

Sai Krishna Manohar Cheemakurthi possesses exceptional research skills honed over 8+ years in Information Technology, specializing in Big Data Analytics and Splunk Architecture. He is adept at designing, implementing, and optimizing complex infrastructures, focusing on Splunk and cloud technologies like AWS and Azure. His research interests include secure data management, cloud migration, and cost optimization, reflected in his publications on data analytics, cloud computing, and wireless sensor networks. Sai has a proven ability to conduct deep analysis of vast datasets, using tools like Splunk, Hadoop, and various BI platforms to generate actionable insights. He has demonstrated proficiency in developing proof-of-concept solutions for enhanced infrastructure health and performance. His expertise in scripting languages (Python, Shell, Perl) enables automation and innovative approaches in data ingestion, security monitoring, and system upgrades. Sai’s strong technical acumen, combined with a focus on optimizing IT processes, underscores his impactful contributions to the field.

Publication Top Notes
  • Cloud Observability In Finance: Monitoring Strategies For Enhanced Security
    • Authors: NB Kilaru, SKM Cheemakurthi
    • Year: 2023
    • Journal: NVEO-Natural Volatiles & Essential Oils
    • Volume/Issue/Page: 10(1), 220-226
  • Mitigating Threats in Modern Banking: Threat Modeling and Attack Prevention with AI and Machine Learning
    • Authors: SK Manohar, V Gunnam, NB Kilaru
    • Year: 2022
    • Journal: Turkish Journal of Computer and Mathematics Education (TURCOMAT)
  • Next-gen AI and Deep Learning for Proactive Observability and Incident Management
    • Authors: NBK Sai Krishna Manohar Cheemakurthi, Vinodh Gunnam
    • Year: 2022
    • Journal: Turkish Journal of Computer and Mathematics Education
    • Volume/Issue/Page: 13(3), 1550-1564
  • Scaling DevOps with Infrastructure as Code in Multi-Cloud Environments
    • Authors: NBK Sai Krishna Manohar Cheemakurthi, Vinodh Gunnam
    • Year: 2022
    • Journal: Turkish Journal of Computer and Mathematics Education
    • Volume/Issue/Page: 13(3), 1189-1200
  • Advanced Anomaly Detection In Banking: Detecting Emerging Threats Using SIEM
    • Authors: NBK Sai Krishna Manohar Cheemakurthi, Vinodh Gunnam
    • Year: 2021
    • Journal: International Journal of Computer Science and Mechatronics (IJCSM)
    • Volume/Issue/Page: 7(04), 28-33
  • Analytics of Data Science using Big Data
    • Authors: CSK Manohar
    • Year: 2013
    • Journal: IOSR Journal of Computer Engineering
    • Volume/Issue/Page: 10(2), 19-21
  • AI-Powered Fraud Detection: Harnessing Advanced Machine Learning Algorithms for Robust Financial Security
    • Authors: SKM Cheemakurthi, NB Kilaru, V Gunnam
    • Year: (Not provided)
  • Deep Learning Models For Fraud Detection In Modernized Banking Systems: Cloud Computing Paradigm
    • Authors: Y Vasa, SKM Cheemakurthi, NB Kilaru
    • Year: (Not provided)
  • SOAR Solutions in PCI Compliance: Orchestrating Incident Response for Regulatory Security
    • Authors: NB Kilaru, SKM Cheemakurthi, V Gunnam
    • Year: (Not provided)
  • AI-Driven SOAR in Finance: Revolutionizing Incident Response and PCI Data Security with Cloud Innovations
    • Authors: V Gunnam, SKM Cheemakurthi, NB Kilaru
    • Year: (Not provided)

 

 

Navid Ghaffarzadeh | Engineering | Best Researcher Award

Assoc Prof Dr. Navid Ghaffarzadeh | Engineering | Best Researcher Award

Assoc Prof Dr. Navid Ghaffarzadeh, Imam Khomeini International University, Iran

Assoc Prof Dr. Navid Ghaffarzadeh is an accomplished engineer recognized for his innovative contributions to the field of engineering. With a focus on [specific area of expertise], he has been instrumental in advancing research and development initiatives. His dedication and impactful work earned him the prestigious Best Researcher Award, highlighting his commitment to excellence and collaboration. Navid continues to inspire through his research, aiming to drive advancements that benefit both industry and society.

 

Profile:

Education

Navid Ghaffarzadeh earned his PhD in Electrical Engineering from Iran University of Science and Technology in Tehran, completing his studies from September 2007 to April 2011. Prior to that, he obtained his Master of Science in Electrical Engineering from Amirkabir University of Technology (Tehran Polytechnic) between September 2005 and August 2007. He also holds a Bachelor of Science in Electrical Engineering from Zanjan University, where he studied from September 2001 to June 2005.

Professional Activities

Navid Ghaffarzadeh is actively engaged in the academic community as a reviewer for numerous prestigious journals in the field of electrical engineering. His reviewing contributions span a wide array of publications, including Renewable and Sustainable Energy Reviews, Applied Energy, Journal of Energy Storage, and IEEE Transactions on Power Systems, among others, with impact factors ranging from 1.276 to 16.799. With over 100 reviewed journal papers, Navid plays a vital role in advancing research quality and integrity in the field. His extensive experience demonstrates his commitment to fostering innovation and excellence in engineering research.

Research Interests

Navid Ghaffarzadeh’s research interests encompass a wide range of cutting-edge topics in electrical engineering. He focuses on renewable energy, exploring innovative solutions in battery energy storage systems and electric vehicles. His work in microgrid and smart grid design aims to enhance the efficiency and reliability of power systems. Navid is particularly interested in the application of artificial intelligence in renewable energy systems, as well as power systems protection and transients. Additionally, he investigates intelligent systems and optimization techniques to improve power systems, with a strong emphasis on ensuring power quality.

Honors and Awards: ‌

Navid Ghaffarzadeh has received numerous honors and awards throughout his academic and professional career. In 2012, he was honored with the IET Science, Measurement and Technology Premium Award for his outstanding paper on power quality disturbances, recognized as one of the best published in the journal. He has been named Outstanding Researcher at I.K International University multiple times, in 2013, 2014, 2016, and 2020, and has also received the Outstanding Professor award in 2017, 2019, 2020, 2021, and 2023. Additionally, he was awarded the Best Iranian PhD Dissertation in power system protection, highlighting his significant contributions to the field. Navid achieved top rankings in his studies, finishing first among PhD electrical power engineering students at Iran University of Science and Technology with a GPA of 18.72 out of 20, first among M.Sc. students at Amirkabir University of Technology with a GPA of 19.18 out of 20, and first among B.Sc. students at Zanjan University with a GPA of 18.36 out of 20.

 

Publication Top Note

A. Bamshad, N. Ghaffarzadeh, “A novel smart overcurrent protection scheme for renewables-dominated distribution feeders based on quadratic-level multi-agent system (Q-MAS),” Electrical Engineering, vol. 105, pp. 1497–1539, February 2023.

S. Ansari, N. Ghaffarzadeh, “A Novel Superimposed Component-Based Protection Method for Multi Terminal Transmission Lines Using Phaselet Transform,” IET Generation, Transmission & Distribution, vol. 17, no. 1, pp. 469–485, January 2023.

A. HN. Tajani, A. Bamshad, N. Ghaffarzadeh, “A novel differential protection scheme for AC microgrids based on discrete wavelet transform,” Electric Power Systems Research, vol. 220, pp. 1-12, July 2023.

A. Zarei, N. Ghaffarzadeh, “Optimal Demand Response-based AC OPF Over Smart Grid Platform Considering Solar and Wind Power Plants and ESSs with Short-term Load Forecasts using LSTM,” Journal of Solar Energy Research, vol. 8, no. 2, pp. 1367-1379, April 2023.

M. Dodangeh, N. Ghaffarzadeh, “A New Protection Method for MTDC Solar Microgrids using on-line Phaselet, Mathematical Morphology, and Signal Energy Analysis,” Energy Engineering & Management, vol. 13, no. 1, pp. 40-53, March 2023 (in Persian).

M. Dodangeh, N. Ghaffarzadeh, “An Intelligent Protection Method for Multi-terminal DC Microgrids Using On-line Phaselet, Mathematical Morphology, and Fuzzy Inference Systems,” Energy Engineering & Management, vol. 12, no. 2, pp. 12-25, August 2022 (in Persian).

M. Dodangeh, N. Ghaffarzadeh, “Optimal Location of HTS-FCLs Considering Security, Stability, and Coordination of Overcurrent Relays and Intelligent Selection of Overcurrent Relay Characteristics in DFIG Connected Networks Using Differential Evolution Algorithm,” Energy Engineering & Management, vol. 10, no. 2, pp. 14-25, May 2020 (in Persian).

A. Inanloo Salehi, N. Ghaffarzadeh, “Fault detection and classification of VSC-HVDC transmission lines using a deep intelligent algorithm,” International Journal of Research and Technology in Electricity Industry, vol. 1, no. 2, pp. 161-170, September 2022.

N. Ghaffarzadeh, H. Faramarzi, “Optimal Solar plant placement using holomorphic embedded power flow considering the clustering technique in uncertainty analysis,” Journal of Solar Energy Research, vol. 7, no. 1, pp. 997-1007, Winter 2022.

N. Ghaffarzadeh, A. Bamshad, “A new approach to AC microgrids protection using a bi-level multi-agent system,” International Journal of Research and Technology in Electricity Industry, vol. 1, no. 1, pp. 66-74, March 2022.

Amel SAHLI | Computer Science | Best Researcher Award

MS. Amel SAHLI | Computer Science | Best Researcher Award

École Nationale des Sciences de l’Informatique , Tunisia

Amel Sahli is a dedicated researcher pursuing her PhD in computer science at the École Nationale des Sciences de l’Informatique in Tunisia, focusing on optimizing e-learning processes through AI and key performance indicators. She holds a Master’s degree in information systems and has published significant work on performance measurement in education. Sahli’s diverse professional background includes roles as a contract lecturer and various internships, providing her with practical insights and teaching experience. Her technical skills in programming and web development, coupled with her proficiency in Arabic, French, and English, enhance her ability to engage with the international research community. Amel Sahli’s commitment to advancing educational methodologies through her research makes her a strong candidate for the Best Researcher Award, highlighting her potential to contribute meaningfully to the field of education technology.

 

Profile:

Education

Amel Sahli is currently pursuing her PhD in computer science at the École Nationale des Sciences de l’Informatique (ENSI) in Tunisia. Her doctoral research focuses on developing an integrated approach that leverages artificial intelligence (AI) and key performance indicators (KPIs) to optimize e-learning processes. Prior to her PhD, she earned a Master’s degree in information systems and web technologies, where she studied performance measurement in educational settings. This followed her Bachelor’s degree in computer science, during which she designed and implemented web applications for educational management. Sahli’s academic journey has been marked by consistent excellence, earning distinctions in her studies and developing a strong foundation in both theoretical and practical aspects of computer science. Her educational background not only highlights her technical competencies but also underscores her commitment to advancing the field of education through innovative research.

Professional Experiences

Amel Sahli has gained diverse professional experience that enriches her academic pursuits. She began her career as a bank intern and a counter agent, where she honed her customer service and operational skills. Following these roles, she interned at the Institut Supérieur d’Informatique du Kef, further deepening her understanding of information technology in educational contexts. In 2023, she transitioned into academia as a part-time lecturer, sharing her expertise in computer science with students. Currently, Sahli is engaged in research at the RIADI laboratory at the Université de la Manouba, where she applies her knowledge of artificial intelligence and KPIs to enhance e-learning processes. This combination of practical experience and academic engagement positions her as a well-rounded professional, capable of bridging theory and practice effectively. Sahli’s journey reflects her commitment to continuous learning and development in both research and teaching.

Research Skills

Amel Sahli possesses a robust set of research skills that are essential for her academic pursuits. Her expertise in quantitative and qualitative research methodologies allows her to design comprehensive studies that yield meaningful insights. Proficient in data analysis, Sahli employs statistical tools to interpret complex datasets, ensuring her findings are both reliable and impactful. Additionally, her experience in academic writing and publication equips her to effectively communicate her research outcomes to diverse audiences. Sahli’s ability to critically evaluate existing literature enables her to identify gaps in knowledge, guiding her own research questions. Her strong organizational skills facilitate the management of research projects, from initial conception to final execution. Moreover, her proficiency in various programming languages and web development enhances her capability to create innovative solutions within her research, particularly in optimizing e-learning processes. Overall, Sahli’s comprehensive research skill set positions her as a valuable contributor to the field of computer science and education technology.

Award and Recognition

Amel Sahli has been recognized for her outstanding contributions to the field of computer science and education. Notably, she participated in the “Inspiring Research & Innovation Using IEEE Publications” event, demonstrating her commitment to advancing research practices. Additionally, she attended the “23rd International Conference on Intelligent Systems Design and Applications,” where she engaged with leading experts and shared her insights. Her certifications from prestigious organizations, including Google and Microsoft, further attest to her dedication to continuous learning and professional development. Moreover, Sahli’s article on performance measurement in educational processes has been published in Procedia Computer Science, enhancing her visibility in academic circles. These recognitions not only reflect her hard work and innovation but also position her as a rising star in her field, earning her respect among peers and contributing to her eligibility for the Best Researcher Award.

Conclusion

In conclusion, Amel Sahli exemplifies the qualities sought in a candidate for the Best Researcher Award. Her academic journey, characterized by a robust educational background in computer science and information systems, has equipped her with the necessary tools to conduct meaningful research. Her focus on optimizing e-learning processes through the integration of AI and KPIs showcases her innovative approach to addressing contemporary educational challenges. Furthermore, her contributions to peer-reviewed journals and participation in international conferences illustrate her commitment to advancing knowledge in her field. Sahli’s diverse professional experiences, ranging from teaching to research, highlight her multifaceted skill set and adaptability. With her proficiency in multiple languages and technical expertise, she stands out as a collaborative researcher poised to make a lasting impact in education technology. Thus, Amel Sahli is not only a deserving nominee but also a potential leader in shaping the future of educational practices.

Publication Top Note

  • Conference Paper in Procedia Computer Science
    • Title: Performance Measurement of Reading Teaching-Learning Business Processes: Case of Whole-Word and Syllabic Reading Methods in Primary Schools
    • Authors: Amel Sahli, A. Mejri, A. Louati
    • Year: 2024
    • Citations: 0
  • Conference Paper in Lecture Notes in Networks and Systems
    • Title: Performance Measurement of Reading Teaching-Learning Business Processes: Case of Whole-Word and Syllabic Reading Methods in Primary Schools
    • Authors: Amel Sahli, A. Mejri, A. Louati
    • Year: 2024
    • Citations: 0