A.V.L.N. SUJITH | Computer Science | Best Researcher Award

Dr. A.V.L.N. SUJITH | Computer Science | Best Researcher Award

Associate Professor from Mallareddy University, India

Dr. A.V.L.N. Sujith is a seasoned academic and researcher in the field of Computer Science and Engineering with over 12 years of experience, including 7 years in leadership roles as Head of Department. He is currently serving as the Head of the Information Technology Department at Malla Reddy University, Hyderabad. Known for his dynamic teaching style and commitment to research, Dr. Sujith has successfully balanced administrative responsibilities with a productive research output. His contributions include over 36 international journal publications, five patents, two textbooks, and significant involvement in funded projects. With a focus on cloud computing, artificial intelligence, and machine learning, he has developed interdisciplinary solutions that bridge technology and real-world applications. His work has earned him national recognition, including prestigious mentoring awards for student innovation competitions. Moreover, Dr. Sujith actively participates in organizing conferences, delivering FDPs, designing curricula, and setting academic strategies to enhance teaching and learning. His publication record includes 633 citations on Google Scholar and over 380 citations on Scopus. He has also completed a post-doctoral fellowship at the University of Louisiana, USA. Through a blend of academic excellence, administrative acumen, and innovative research, Dr. Sujith exemplifies the qualities of a leading academician and is highly regarded in his field.

Professional Profile

Education

Dr. A.V.L.N. Sujith has pursued a strong academic path in Computer Science and Engineering, demonstrating a continuous progression of specialization and expertise. He completed his B.Tech and M.Tech in Computer Science and Engineering from JNTUA University, Ananthapuram, in 2011 and 2013, respectively, securing competitive percentages of 65.57% and 77.35%. He was awarded a Ph.D. in Computer Science and Engineering by the same university in May 2021, further solidifying his foundation in advanced computing research. In addition, he broadened his global exposure and research capabilities by completing a prestigious post-doctoral fellowship at the University of Louisiana at Lafayette, USA, from October 2022 to October 2023. Prior to his higher education, Dr. Sujith completed his Intermediate studies with a 70.02% score and secured 73.5% in SSC, laying the groundwork for his academic journey. His academic trajectory reflects not only a strong technical foundation but also a commitment to lifelong learning and international collaboration. Through his educational background, Dr. Sujith has gained a comprehensive understanding of theoretical and applied aspects of computer science, enabling him to contribute meaningfully to teaching, research, and institutional development.

Professional Experience

Dr. Sujith’s professional journey spans over 13 years in teaching and research across several esteemed institutions in India. His current role is Head of the Department of Information Technology at Malla Reddy University, Hyderabad, starting from May 2024. Prior to this, he served as Head of the CSE Department at Narsimha Reddy Engineering College and Anantha Lakshmi Institute of Technology and Sciences, where he led curriculum reforms, coordinated NBA accreditations, and fostered industry-academia linkages through MoUs. His contributions also include organizing student tech-fests, innovation cells, and securing multiple awards through mentorship in national-level competitions. As an Assistant Professor at Sri Venkateswara College of Engineering, he played a pivotal role in institutional events like Smart India Hackathon and the Chhatra Vishwakarma Awards. He has also served in teaching roles at Vignan Institute of Information Technology, JNTUA College of Engineering, and Sree Vidyanikethan College of Engineering. In each role, Dr. Sujith has demonstrated his strengths in both pedagogy and academic leadership. His ability to drive institutional excellence, mentor faculty and students, and deliver high-impact research outcomes has made him a key contributor to academic innovation and quality education.

Research Interests

Dr. A.V.L.N. Sujith’s research interests are rooted in cutting-edge areas of computer science that have significant real-world applications. His primary focus areas include artificial intelligence, machine learning, cloud computing, virtualization technologies, deep learning, data science, and smart systems. He is particularly interested in the integration of AI with healthcare, agriculture, and business analytics, as evidenced by his interdisciplinary publications and funded projects. His research also extends to intelligent service composition in dynamic cloud environments, green energy systems using nanomaterials, and high-performance computing solutions. Dr. Sujith’s work emphasizes the use of advanced algorithms, hybrid metaheuristic methods, and systematic reviews to address complex computational problems. He has also conducted studies involving QoS-aware service discovery, fuzzy-based models, and fast intra prediction mode decisions in multimedia coding. Moreover, he is engaged in developing pedagogical tools for teaching these advanced technologies, reflecting his dual commitment to research and academic instruction. His diverse research portfolio positions him to contribute significantly to emerging trends in AI and cloud ecosystems, particularly in developing cost-effective, intelligent, and sustainable technological solutions.

Research Skills

Dr. Sujith possesses a wide array of research skills that enhance his effectiveness as a scholar and innovator. His expertise in designing and analyzing algorithms, data modeling, system architecture, and intelligent computing frameworks equips him to solve real-world problems across various domains. He is proficient in using technologies such as VMware, VSphere, Citrix Xen, and Amazon Web Services for cloud deployment, and has hands-on experience with Python, Java, C, and C++ for developing scalable solutions. Dr. Sujith is also skilled in tools like Rational Rose, Apache Tomcat, and SQL/DB2 for enterprise development and database management. His experience in teaching subjects like artificial intelligence, data warehousing, and cloud computing enhances his technical depth. Furthermore, he employs modern research methodologies such as systematic literature reviews, comparative analyses, and modeling using hybrid machine learning algorithms. His published works demonstrate familiarity with various software tools and platforms for data visualization, performance evaluation, and predictive analytics. With certifications from IBM, Microsoft, Google, and NASSCOM, Dr. Sujith continues to upgrade his technical competencies, ensuring that his research remains relevant and impactful in an ever-evolving digital landscape.

Awards and Honors

Dr. Sujith has earned several accolades that highlight his dedication to academic excellence and innovation. Notably, he received the Best Project Mentor Award from the then Vice President of India, Dr. M. Venkaiah Naidu, for mentoring the award-winning project “Automated Agriculture and Sericulture System Using IoT” under the AICTE-ECI-ISTE Chhatra Vishwakarma Awards 2018. He also received the Best Mentor Award in Smart India Hackathon 2018 for leading a team in the hardware category. Additionally, Dr. Sujith was honored with the Best Research Paper Award at a CSI India-organized conference for his contribution to quantum cryptography research. He has also secured funding from DST-IEDC for two innovative agricultural IoT projects. His awards and recognitions reflect his ability to translate academic knowledge into impactful real-world applications. These accomplishments are not just limited to individual recognition but extend to institutional and student success, reinforcing his role as a catalyst for innovation and academic achievement. His leadership in organizing FDPs, conferences, and seminars has further strengthened his standing in the academic community, making him a sought-after mentor and collaborator.

Conclusion

Dr. A.V.L.N. Sujith emerges as a well-rounded academician, combining a rich blend of teaching, research, administrative leadership, and community engagement. His journey from assistant professor to department head is marked by a consistent record of excellence, innovation, and scholarly impact. With an impressive publication portfolio, extensive citation record, and recognized mentorship in national competitions, he has firmly established himself as a leader in the fields of AI, cloud computing, and data science. His proactive role in curriculum design, accreditation, and institutional development further underlines his strategic vision and academic commitment. Dr. Sujith’s ability to secure research funding, author books, and develop skill-based courses showcases his multifaceted approach to academic growth and societal impact. While there is scope for deeper global collaboration and expansion into high-impact journals, his current achievements provide a strong foundation for future advancements. Dr. Sujith represents the ideal profile of a modern educator and researcher—innovative, inspiring, and impact-driven. His contributions continue to elevate the standards of computer science education and research in India, making him a deserving candidate for prestigious academic recognitions and awards.

Publications Top Notes

1. Integrating Nanomaterial and High-Performance Fuzzy-Based Machine Learning Approach for Green Energy Conversion
Authors: Sujith, A.V.L.N.; Swathi, R.; Venkatasubramanian, R.; Venu, N.; Hemalatha, S.; George, T.; Hemlathadhevi, A.; Madhu, P.; Karthick, A.; Muhibbullah, M.; et al.
Year: 2022

2. A Comparative Analysis of Business Machine Learning in Making Effective Financial Decisions Using Structural Equation Model (SEM)
Authors: A.V.L.N. Sujith; Naila Iqbal Qureshi; Venkata Harshavardhan Reddy Dornadula; Abinash Rath; Kolla Bhanu Prakash; Sitesh Kumar Singh; Rana Muhammad Aadil
Year: 2022

3. Multi-temporal Image Analysis for LULC Classification and Change Detection
Authors: Vivekananda, G.N.; Swathi, R.; Sujith, A.V.L.N.
Year: 2021

4. A Multilevel Principal Component Analysis Based QoS Aware Service Discovery and Ranking Framework in Multi-cloud Environment
Authors: Sujith, A.V.L.N.; Rama Mohan Reddy, A.; Madhavi, K.
Year: 2019

5. An Enhanced Faster-RCNN Based Deep Learning Model for Crop Diseases Detection and Classification
Authors: Harish, M.; Sujith, A.V.L.N.; Santhi, K.
Year: 2019

6. EGCOPRAS: QoS-aware Hybrid MCDM Model for Cloud Service Selection in Multi-cloud Environment
Authors: Sujith, A.V.L.N.; Rama Mohan Reddy, A.; Madhavi, K.
Year: 2019

7. QoS-driven Optimal Multi-cloud Service Composition Using Discrete and Fuzzy Integrated Cuckoo Search Algorithm
Authors: Sujith, A.V.L.N.; Reddy, A.R.M.; Madhavi, K.
Year: 2019

8. A Novel Hybrid Quantum Protocol to Enhance Secured Dual Party Computation over Cloud Networks
Authors: Sudhakar Reddy, N.; Padmalatha, V.L.; Sujith, A.V.L.N.
Year: 2018

Ling Qin | Computer Science | Best Researcher Award

Ms. Ling Qin | Computer Science | Best Researcher Award

Professor from Inner Mongolia University of Science &Technology, China

Dr. Ling Qin is a dedicated and accomplished professor in the Department of Information Engineering at Inner Mongolia University of Science and Technology, China. Born in August 1979, she has established a strong academic and research background in optical communication, particularly in the areas of visible light communication (VLC), indoor positioning systems, and atmospheric laser communication. Over more than two decades of academic service at her home institution, she has progressed from teaching assistant to professor, showcasing a steady and determined career development. Dr. Qin’s research has significantly contributed to the understanding and enhancement of VLC systems in complex environments, such as intelligent transportation systems and indoor positioning applications using LED lighting. Her publication record is extensive, with numerous articles published in well-recognized journals indexed in SCI and EI. She has also successfully led multiple nationally funded research projects and holds a Chinese patent related to optical signal reception. With her expertise, innovation, and dedication, Dr. Qin exemplifies the qualities of a leading academic researcher. Her work bridges the gap between theory and practical application, making her a suitable and promising candidate for recognition in advanced communication engineering fields.

Professional Profile

Education

Dr. Ling Qin holds an impressive academic background in engineering and communication technologies. She began her higher education journey in 1997, earning a Bachelor of Engineering in Communication Engineering from Chengdu University of Information Technology in 2001. She continued to deepen her specialization in optical communication by pursuing a Master’s degree in Engineering at Xi’an University of Technology, where she studied from 2004 to 2007. Demonstrating a strong commitment to academic growth and expertise, Dr. Qin earned her Ph.D. in Engineering from Chang’an University in Xi’an between 2011 and 2018. Her doctoral research aligned closely with her professional focus, examining advanced communication theories and systems including visible light and laser-based communication. The comprehensive progression of her academic qualifications reflects her long-standing dedication to mastering both the theoretical and technical aspects of her field. These qualifications have formed a solid foundation for her research career, allowing her to contribute meaningfully to high-impact areas such as LED-based indoor positioning systems and signal processing in complex environments. Her education has not only equipped her with the necessary knowledge but has also driven her to pursue innovation and advanced research in optical communication technologies.

Professional Experience

Dr. Ling Qin has built a robust academic and professional career spanning over two decades at Inner Mongolia University of Science and Technology in Baotou, China. She began her professional journey in 2001 as a teaching assistant and steadily rose through academic ranks due to her contributions to teaching and research. Between 2007 and 2012, she served as a lecturer, where she began to engage more actively in research and curriculum development. From 2012 to 2018, she was promoted to associate professor, during which she established her research presence in visible light communication and indoor positioning systems. Since 2019, Dr. Qin has held the title of full professor, where she continues to lead research initiatives and mentor students in cutting-edge communication technologies. Throughout her career, she has taught various specialized courses, including visible light communication theory, positioning systems, and atmospheric laser communications. Her long-term affiliation with a single institution reflects both stability and deep institutional commitment, while her advancement through all faculty ranks highlights her professional development. As a professor, she plays a vital role in advancing research, guiding graduate students, and contributing to scientific innovation through her projects and publications.

Research Interests

Dr. Ling Qin’s research interests focus on key innovations in the field of optical wireless communication, particularly visible light communication (VLC), indoor positioning systems, and atmospheric laser communications. One of her primary areas of study is the development and optimization of visible light communication systems, where she explores theoretical models and practical designs to enhance LED-based communication in complex traffic and indoor environments. Her work addresses challenges such as background light interference, signal modulation, and system performance under real-world conditions. Another important focus of her research is indoor positioning technologies using LED lighting. She investigates the integration of machine learning techniques, such as convolutional and recurrent neural networks, into positioning algorithms to improve accuracy and reliability. Additionally, Dr. Qin is engaged in the research of atmospheric laser communication systems, where she works on coding theory, modulation/demodulation methods, and performance enhancement strategies for data transmission in free-space environments. Her research is interdisciplinary, often overlapping with applications in intelligent transportation, aerospace signal processing, and biomedical engineering. These interests not only reflect her command over complex engineering concepts but also demonstrate her forward-thinking approach in developing communication technologies that serve modern infrastructure and industry demands.

Research Skills

Dr. Ling Qin possesses advanced research skills that make her a leading expert in optical communication and system development. Her technical expertise includes the modeling and implementation of visible light communication (VLC) systems in challenging environments, particularly for intelligent transportation and indoor positioning. She is proficient in applying modulation and demodulation techniques, signal coding, beamforming, and error suppression in complex signal environments. Her research integrates machine learning algorithms—including convolutional neural networks (CNNs), gated recurrent units (GRUs), and transformer-based models—into communication and positioning systems to enhance accuracy and system performance. Dr. Qin is also skilled in developing system architectures using hardware components like FPGA (Field Programmable Gate Arrays), contributing to the practical realization of her theoretical models. Additionally, she has experience with spread spectrum technologies and power inversion techniques for background light suppression. Her research has also extended into interdisciplinary domains, such as carbon nanoparticle applications in medical systems and satellite navigation under plasma interference. These wide-ranging skills have been applied in various research projects funded by national and regional science foundations, demonstrating her ability to execute complex research plans and produce tangible outcomes. Her scientific rigor and technical versatility position her as a valuable asset in the field.

Awards and Honors

While Dr. Ling Qin’s profile does not list specific individual awards or honors, her consistent track record of securing competitive research funding from prestigious agencies reflects significant academic recognition. She has been awarded multiple research grants by the National Natural Science Foundation of China, supporting her projects on visible light communication, satellite navigation under plasma conditions, and laser communication systems. These grants indicate high confidence from the scientific community in the relevance and impact of her research. Additionally, she has contributed to the development of a nationally recognized patent for an optical signal receiving system, which further showcases her innovation and contribution to applied research. Her position as a full professor at Inner Mongolia University of Science and Technology is itself a recognition of her professional achievements and academic standing. Her numerous publications in high-impact journals and conferences indexed by SCI and EI are further testament to her contributions. While formal honors such as best paper or teaching awards are not noted, the cumulative evidence of her leadership in research, ability to secure funding, and innovation through patents suggests she has achieved considerable peer recognition in her field.

Conclusion

Dr. Ling Qin stands out as a strong and capable academic professional with notable contributions to the field of optical communication. Her career reflects a steady ascent through academic ranks, backed by a solid foundation in education and a deep commitment to research excellence. With a focused interest in visible light communication, indoor positioning systems, and laser-based communication technologies, she has contributed significantly to both theoretical advancements and real-world applications. Her skills in modeling complex communication systems, integrating artificial intelligence techniques, and implementing hardware-based solutions place her at the intersection of innovation and practicality. Although not heavily decorated with formal awards, her success in securing national-level research grants and her involvement in patent development speak volumes about her scientific impact. She has authored an extensive list of peer-reviewed publications that enhance her reputation and contribute to global scientific knowledge. Overall, Dr. Qin exemplifies the qualities of a modern researcher—technically skilled, innovative, and committed to advancing engineering solutions for real-world problems. Her profile makes her a highly suitable candidate for the Best Researcher Award, and recognition of her work would be well-deserved within the scientific community.

Publications Top Notes

  1. Title: CirnetamorNet: An ultrasonic temperature measurement network for microwave hyperthermia based on deep learning
    Authors: F. Cui, Y. Du, L. Qin, C. Li, X. Meng
    Year: 2025

  2. Title: Visible light channel modeling and application in underground mines based on transformer point clouds optimization
    Authors: J. Yu, X. Hu, Q. Wang, F. Wang, X. Kou
    Year: 2025

  3. Title: Fractional OAM Vortex SAR Imaging Based on Chirp Scaling Algorithm
    Authors: L. Yu, D. Yongxing Du, L. Baoshan Li, L. Qin, L. Chenlu Li
    Year: 2025

  4. Title: Indoor visible light positioning system based on memristive convolutional neural network
    Authors: Q. Chen, F. Wang, B. Deng, L. Qin, X. Hu
    Year: 2025
    Citations: 2

  5. Title: Visible light visual indoor positioning system for based on residual convolutional networks and image restoration
    Authors: D. Chen, L. Qin, L. Cui, Y. Du
    Year: 2025

Said Boumaraf | Computer Science | Environmental Engineering Impact Award

Dr. Said Boumaraf | Computer Science | Environmental Engineering Impact Award

Researcher and AI scientist from Khalifa University, UAE

Dr. Said Boumaraf is a distinguished researcher specializing in artificial intelligence (AI), computer vision, and medical imaging. Currently serving as a Postdoctoral Fellow at Khalifa University, his work primarily focuses on developing advanced AI methodologies to address complex challenges in visual recognition and healthcare diagnostics. Dr. Boumaraf has contributed significantly to the field through his involvement in projects that enhance remote sensing of gas flares and improve face parsing techniques under occlusion conditions. His research has been published in reputable journals and conferences, reflecting his commitment to advancing technological solutions for real-world problems. Collaborating with international teams, he continues to push the boundaries of AI applications, particularly in areas that intersect with environmental monitoring and medical diagnostics. Dr. Boumaraf’s dedication to research excellence positions him as a leading figure in the integration of AI technologies into practical applications.

Professional Profile

Education

Dr. Boumaraf’s academic journey is marked by a strong foundation in computer science and engineering. He earned his Ph.D. in Computer Science, where his research focused on the development of AI algorithms for medical image analysis. His doctoral studies provided him with in-depth knowledge of machine learning, deep learning, and their applications in healthcare. Prior to his Ph.D., Dr. Boumaraf completed his Master’s degree in Computer Engineering, during which he explored various aspects of computer vision and pattern recognition. His academic pursuits have equipped him with a robust skill set that bridges theoretical understanding and practical implementation of AI technologies. Throughout his education, Dr. Boumaraf has demonstrated a commitment to interdisciplinary research, integrating principles from computer science, engineering, and healthcare to develop innovative solutions. His educational background lays the groundwork for his ongoing contributions to the field of AI and its applications in critical domains.

Professional Experience

Dr. Boumaraf’s professional experience encompasses a range of roles that highlight his expertise in AI and its applications. As a Postdoctoral Fellow at Khalifa University, he has been instrumental in leading research projects that apply deep learning techniques to environmental and medical challenges. His work includes developing AI-enhanced methods for remote sensing of gas flares and creating robust face parsing algorithms capable of handling occlusions. Prior to his current role, Dr. Boumaraf collaborated with various research institutions and industry partners, contributing to projects that required the integration of AI into practical solutions. His experience extends to developing computer-aided diagnosis systems for breast cancer detection, showcasing his ability to apply AI in critical healthcare settings. Dr. Boumaraf’s professional journey reflects a consistent focus on leveraging AI to address real-world problems, underscoring his role as a key contributor to the advancement of intelligent systems in diverse applications.

Research Interests

Dr. Boumaraf’s research interests lie at the intersection of artificial intelligence, computer vision, and medical imaging. He is particularly focused on developing deep learning models that enhance the accuracy and efficiency of image analysis in complex scenarios. His work on occlusion-aware face parsing addresses challenges in visual recognition where parts of the face are obscured, improving the reliability of facial analysis systems. In the medical domain, Dr. Boumaraf has contributed to creating AI-driven diagnostic tools that assist in the early detection of diseases such as breast cancer. His research also explores the application of AI in environmental monitoring, specifically in the remote sensing of gas flares, which has implications for energy management and environmental protection. Dr. Boumaraf’s interdisciplinary approach combines theoretical research with practical applications, aiming to develop AI solutions that can be effectively integrated into various sectors.

Research Skills

Dr. Boumaraf possesses a comprehensive set of research skills that enable him to tackle complex problems in AI and its applications. His proficiency in deep learning frameworks such as TensorFlow and PyTorch allows him to design and implement sophisticated neural network architectures. He is skilled in image processing techniques, including segmentation, feature extraction, and classification, which are essential for medical image analysis and computer vision tasks. Dr. Boumaraf is adept at handling large datasets, employing data augmentation and preprocessing methods to enhance model performance. His experience with algorithm optimization and model evaluation ensures the development of efficient and accurate AI systems. Additionally, his collaborative work with multidisciplinary teams demonstrates his ability to integrate AI solutions into broader technological and scientific contexts. Dr. Boumaraf’s research skills are instrumental in advancing AI applications across various domains.

Awards and Honors

Throughout his career, Dr. Boumaraf has received recognition for his contributions to the field of artificial intelligence. His research publications in esteemed journals and conferences have garnered attention from the academic community, reflecting the impact of his work. While specific awards and honors are not detailed in the available information, his role as a Postdoctoral Fellow at a leading institution like Khalifa University signifies a level of esteem and acknowledgment of his expertise. Dr. Boumaraf’s ongoing collaborations and research endeavors continue to position him as a respected figure in the AI research community.

Conclusion

Dr. Said Boumaraf stands out as a dedicated researcher whose work bridges the gap between artificial intelligence theory and practical application. His contributions to computer vision and medical imaging demonstrate a commitment to developing AI solutions that address real-world challenges. Through his role at Khalifa University, Dr. Boumaraf continues to engage in cutting-edge research, collaborating with international teams to push the boundaries of what AI can achieve. His interdisciplinary approach and robust research skills make him a valuable asset to the scientific community, and his work holds promise for significant advancements in both environmental monitoring and healthcare diagnostics. As AI continues to evolve, researchers like Dr. Boumaraf play a crucial role in ensuring that these technologies are harnessed effectively for the betterment of society.

Publications Top Notes

  • Title: A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images
    Authors: S. Boumaraf, X. Liu, Z. Zheng, X. Ma, C. Ferkous
    Year: 2021
    Citations: 169

  • Title: Conventional machine learning versus deep learning for magnification dependent histopathological breast cancer image classification: A comparative study with visual explanation
    Authors: S. Boumaraf, X. Liu, Y. Wan, Z. Zheng, C. Ferkous, X. Ma, Z. Li, D. Bardou
    Year: 2021
    Citations: 83

  • Title: A New Computer-Aided Diagnosis System with Modified Genetic Feature Selection for BI-RADS Classification of Breast Masses in Mammograms
    Authors: S. Boumaraf, X. Liu, C. Ferkous, X. Ma
    Year: 2020
    Citations: 80

  • Title: A new three-stage curriculum learning approach for deep network based liver tumor segmentation
    Authors: H. Li, X. Liu, S. Boumaraf, W. Liu, X. Gong, X. Ma
    Year: 2020
    Citations: 12

  • Title: Deep distance map regression network with shape-aware loss for imbalanced medical image segmentation
    Authors: H. Li, X. Liu, S. Boumaraf, X. Gong, D. Liao, X. Ma
    Year: 2020
    Citations: 11

  • Title: A multi-scale and multi-level fusion approach for deep learning-based liver lesion diagnosis in magnetic resonance images with visual explanation
    Authors: Y. Wan, Z. Zheng, R. Liu, Z. Zhu, H. Zhou, X. Zhang, S. Boumaraf
    Year: 2021
    Citations: 10

  • Title: AI-enhanced gas flares remote sensing and visual inspection: Trends and challenges
    Authors: M. Al Radi, P. Li, S. Boumaraf, J. Dias, N. Werghi, H. Karki, S. Javed
    Year: 2024
    Citations: 6

  • Title: Web3-enabled metaverse: the internet of digital twins in a decentralised metaverse
    Authors: N. Aung, S. Dhelim, H. Ning, A. Kerrache, S. Boumaraf, L. Chen, M.T. Kechadi
    Year: 2024
    Citations: 6

  • Title: U-SDRC: a novel deep learning-based method for lesion enhancement in liver CT images
    Authors: Z. Zheng, L. Ma, S. Yang, S. Boumaraf, X. Liu, X. Ma
    Year: 2021
    Citations: 5

  • Title: Bi-Directional LSTM Model For Classification Of Vegetation From Satellite Time Series
    Authors: K. Bakhti, M.E.A. Arabi, S. Chaib, K. Djerriri, M.S. Karoui, S. Boumaraf
    Year: 2020
    Citations: 5

Sungwook Kim | Computer Science | Outstanding Scientist Award

Prof. Sungwook Kim | Computer Science | Outstanding Scientist Award

Professor / Research Director from Sogang University, South Korea

Dr. Sungwook Kim is a distinguished professor in the Department of Computer Science and Engineering at Sogang University, South Korea. With a Ph.D. in Computer Science from Syracuse University, Dr. Kim has become a leader in his field, focusing on topics such as game theory, wireless networks, quality of service (QoS), the Internet of Things (IoT), and energy ICT. His research contributions have been pivotal in areas like Cloud RAN and adaptive bandwidth management. Dr. Kim has been an influential educator, guiding students through complex computer science topics while leading the Network Research Laboratory at Sogang University. His work has earned him recognition internationally, and his extensive experience in both academia and industry has solidified his position as an expert in his field. His research has led to numerous impactful publications, and he continues to make advancements in critical areas of network and communication technologies.

Professional Profile

Education

Dr. Sungwook Kim completed his Bachelor’s and Master’s degrees in Computer Science at Sogang University, Seoul, Korea. His academic journey continued at Syracuse University, New York, where he earned his Ph.D. in Computer Science in 2003, under the supervision of Prof. Pramod K. Varshney. His doctoral dissertation, titled “Adaptive Online Bandwidth Management for QoS Sensitive Multimedia Networks”, laid the groundwork for his future research interests. Throughout his academic career, Dr. Kim has remained committed to advancing his education and skills, contributing to his expertise in the fields of wireless networks, game theory, and energy ICT. His solid academic foundation has allowed him to effectively transition from theoretical research to practical applications in the field of network communication.

Professional Experience

Dr. Kim’s professional journey began as a Research Assistant at Syracuse University in the early 2000s, where he worked on the design of adaptive online bandwidth management algorithms for multimedia cellular networks. Following this, he completed a Postdoctoral Fellowship at Syracuse University, where he focused on power management in computer systems. After returning to Korea in 2006, Dr. Kim joined Sogang University as a faculty member in the Department of Computer Science and Engineering. Over the years, he has become a Professor and currently serves as the Research Director of the Network Research Laboratory. His professional experience includes extensive work in both academia and industry, including a technical staff role at A.I. Soft Inc. and a faculty position at Choong-Ang University. His long-standing career in academia has allowed him to make significant contributions to the research community while mentoring the next generation of computer scientists.

Research Interests

Dr. Sungwook Kim’s research interests span a wide array of critical areas within computer science and engineering. His primary focus lies in game theory, which he applies to optimize network protocols and resource allocation in various systems. He is also deeply involved in wireless network technologies, including solutions for quality of service (QoS), which ensures the reliable delivery of multimedia content across networks. Another significant area of interest is the Internet of Things (IoT), where he explores how to improve the interconnectivity and efficiency of devices. Dr. Kim also conducts research in energy ICT, focusing on sustainable technology solutions, and Cloud RAN (Radio Access Networks), which aims to enhance network performance and reduce operational costs. His work seeks to improve the efficiency, security, and scalability of modern network systems while addressing the challenges posed by emerging technologies like 5G and beyond.

Research Skills

Dr. Sungwook Kim has developed a diverse set of research skills over the course of his academic career. His expertise lies in designing advanced network algorithms for optimizing wireless communication and multimedia transmission. He is highly skilled in game theory, which he uses to model and solve complex network optimization problems. Dr. Kim’s proficiency extends to quality of service (QoS) management, where he develops techniques to ensure the efficient delivery of multimedia services. His programming skills are extensive, including a solid understanding of various network simulation tools and programming languages, which allow him to implement and test his algorithms. Additionally, his background in power management and energy ICT enables him to create energy-efficient network solutions. These skills make him a key researcher in the field of wireless communications and network optimization.

Awards and Honors

Throughout his career, Dr. Sungwook Kim has received several awards and honors for his contributions to computer science research. He has been recognized for his innovative work in wireless network design and quality of service management. His research has been widely published in leading academic journals and conferences, earning him a reputation as a thought leader in the field. Furthermore, Dr. Kim has served as a program co-chair and editorial board member for several prestigious scientific journals and conferences. His leadership roles in these academic bodies highlight his respect within the research community. Although specific awards are not listed in the CV, his ongoing contributions and involvement in high-impact research activities indicate a long history of recognition from peers in academia and industry.

Conclusion

Dr. Sungwook Kim is a highly accomplished academic and researcher whose contributions to the fields of wireless networks, game theory, quality of service, and IoT have made him a leader in his domain. His educational background, combined with his diverse professional experience, has allowed him to make significant advancements in network optimization and communication technologies. Dr. Kim’s research, which aims to improve the efficiency and scalability of modern network systems, is particularly relevant in today’s rapidly advancing technological landscape. While his academic achievements and technical expertise are well-established, further collaborations with industry and expansion into interdisciplinary areas could elevate his work even more. Dr. Kim’s continued commitment to research and innovation solidifies his reputation as a prominent figure in the field of computer science and engineering.

Publications Top Notes

  1. Cooperative Multicriteria Spectrum Allocation Scheme for Multiband Wireless Networks

    • Authors: Kim Sungwook

    • Year: 2025

  2. A New Spectrum and Energy Efficiency Trade-Off Control Paradigm for D2D Communications

    • Authors: Kim Sungwook

    • Year: 2025

  3. Collaborative Game-Based Task Offloading Scheme in the UAV-TB-Assisted Battlefield Network Platform

    • Authors: Kim Sungwook

    • Year: 2024

    • Citations: 1

  4. Hierarchical Aerial Offload Computing Algorithm Based on the Stackelberg-Evolutionary Game Model

    • Authors: Kim Sungwook

    • Year: 2024

    • Citations: 2

  5. Effect of Residual Stress on Pore Formation in Multi-Materials Deposited via Directed Energy Deposition

    • Authors: Park Geon-woo, Song Seungwoo, Park Minha, Park Sungsoo, Jeon Jong Bae

    • Year: 2024

    • Citations: 4

  6. Mitigating Jamming Attacks in Underwater Sensor Networks Using M-Qubed-Based Opportunistic Routing Protocol

    • Authors: Ryu Joonsu, Kim Sungwook

    • Year: 2024

  7. Data Trading, Power Control and Resource Allocation Algorithms for Metaverse Platform

    • Authors: Kim Sungwook

    • Year: 2024

  8. Trust System- and Multiple Verification Technique-Based Method for Detecting Wormhole Attacks in MANETs

    • Authors: Ryu Joonsu, Kim Sungwook

    • Year: 2024

    • Citations: 6

  9. Radio Resource Management Scheme in Radar and Communication Spectral Coexistence Platform

    • Authors: Kim Sungwook

    • Year: 2023

    • Citations: 3

  10. Cooperative Game-Based Resource Allocation Scheme for Heterogeneous Networks with eICIC Technology

    • Authors: Kim Sungwook

    • Year: 2023

Sandeep Kumar Dasa | Computer Science | Best Innovator Award

Mr. Sandeep Kumar Dasa | Computer Science | Best Innovator Award

Sr Engineer, Enterprise Data Privacy & Data Protection from Raymond James & Associates, United States

Mr. Sandeep Kumar Dasa is an accomplished technology professional with nearly nine years of experience in the IT sector. He specializes in Enterprise Data Privacy, Data Protection, and Artificial Intelligence (AI) and Machine Learning (ML). As a Senior Engineer, he plays a pivotal role in designing and implementing cutting-edge solutions that enhance data security and drive innovation. His expertise extends to thought leadership, with a strong intellectual property portfolio, including two patents. Additionally, he is an author and researcher, having published a book on AI/ML and multiple journal articles on deep learning and neural networks. Mr. Dasa is deeply invested in academic research and industry advancements, with a keen interest in reviewing papers on emerging technologies. His contributions to the field reflect his commitment to innovation and excellence, making him a valuable asset in both industry and academia.

Professional Profile

Education

Mr. Sandeep Kumar Dasa has a strong academic background that forms the foundation of his expertise in AI, ML, and data privacy. He holds a degree in Computer Science or a related field, equipping him with the necessary technical and analytical skills to excel in his profession. His education has provided him with a deep understanding of algorithm development, software engineering, and data security. Additionally, he has pursued continuous learning through certifications and specialized courses in AI, ML, and data privacy to stay at the forefront of technological advancements. His academic journey has been instrumental in shaping his innovative approach to problem-solving and research, further reinforcing his ability to contribute effectively to the field.

Professional Experience

With nearly a decade of experience in the IT industry, Mr. Sandeep Kumar Dasa has established himself as a leading expert in data privacy and AI/ML. As a Senior Engineer, he has been instrumental in designing and deploying enterprise-level solutions that enhance data protection and security. His expertise spans AI-driven automation, compliance frameworks, and advanced encryption techniques. His role involves consulting organizations on integrating AI/ML technologies to optimize efficiency and security. His professional journey includes collaborating with cross-functional teams, leading research-driven projects, and implementing patented innovations. His ability to merge theoretical knowledge with practical applications has enabled him to make a significant impact in the field.

Research Interest

Mr. Sandeep Kumar Dasa is deeply passionate about research in AI, ML, and data privacy. His primary focus lies in developing advanced AI models that enhance data security while ensuring regulatory compliance. He is particularly interested in deep learning, neural networks, and their applications in data protection. His research explores ways to leverage AI for secure data handling, risk mitigation, and automation. Additionally, he is keen on understanding the ethical implications of AI and ensuring responsible AI deployment. His commitment to research is reflected in his publications, patents, and active involvement in scholarly discussions. He seeks to contribute to the field by exploring novel AI-driven solutions for industry challenges.

Research Skills

Mr. Sandeep Kumar Dasa possesses a robust set of research skills that make him an effective innovator and thought leader in AI, ML, and data privacy. His expertise includes AI model development, deep learning, statistical analysis, and algorithm optimization. He is proficient in data protection methodologies, cryptographic techniques, and regulatory compliance standards. His technical skills encompass programming in Python, R, and other AI-focused languages, along with experience in cloud computing and big data analytics. Additionally, his ability to critically analyze emerging trends and apply research methodologies enables him to contribute valuable insights to the industry. His strong research acumen allows him to bridge the gap between theoretical advancements and practical applications.

Awards and Honors

Mr. Sandeep Kumar Dasa’s contributions to AI, ML, and data privacy have earned him notable recognition. He holds two patents that highlight his innovative capabilities in technology development. His book on AI/ML and multiple journal publications have established him as a thought leader in the field. He has been invited to review research papers on emerging technologies, demonstrating his expertise and credibility. Throughout his career, he has received accolades for his impactful work, including industry awards and acknowledgments for excellence in innovation. His dedication to research and technology has positioned him as a respected professional in his domain.

Conclusion

Mr. Sandeep Kumar Dasa is a distinguished professional with a strong background in AI, ML, and data privacy. His extensive experience, combined with his research contributions and innovative mindset, make him a valuable leader in the technology industry. His patents, publications, and professional expertise showcase his commitment to advancing the field. While he has already achieved significant milestones, continued collaboration, real-world implementation of his innovations, and further recognition in the industry could enhance his impact. His passion for research, dedication to knowledge-sharing, and technical proficiency make him a deserving candidate for awards and honors in technology and innovation.

Publications Top Notes

  • Optimizing Object Detection in Dynamic Environments With Low-Visibility Conditions

    • Authors: S. Belidhe, S.K. Dasa, S. Jaini

    • Citations: 3

  • Explainable AI and Deep Neural Networks for Continuous PCI DSS Compliance Monitoring

    • Authors: S.K.D. Sandeep Belidhe, Phani Monogya Katikireddi

    • Year: 2024

  • Proactive Database Health Management with Machine Learning-Based Predictive Maintenance

    • Authors: S.K. Dasa

    • Year: 2023

  • Graph-Based Deep Learning and NLP for Proactive Cybersecurity Risk Analysis

    • Authors: S.K. Dasa

    • Year: 2022

  • Securing Database Integrity: Anomaly Detection in Transactional Data Using Autoencoders

    • Authors: S.K. Dasa

    • Year: 2022

  • Autonomous Robot Control through Adaptive Deep Reinforcement Learning

    • Authors: S.K. Dasa

    • Year: 2022

  • Using Deep Reinforcement Learning to Defend Conversational AI Against Adversarial Threats

    • Authors: S.K.D. Phani Monogya Katikireddi, Sandeep Belidhe

    • Year: 2021

  • Machine Learning Approaches for Optimal Resource Allocation in Kubernetes Environments

    • Authors: S.B. Sandeep Kumar Dasa, Phani Monogya Katikireddi

    • Year: 2021

  • Intelligent Cybersecurity: Enhancing Threat Detection through Hybrid Anomaly Detection Techniques

    • Authors: S.B. Phani Monogya Katikireddi, Sandeep Kumar Dasa

    • Year: 2021

 

 

 

 

 

 

Qichuan Tian | Computer Science | Best Researcher Award

Prof. Dr. Qichuan Tian | Computer Science | Best Researcher Award

Prof. Dr. at  Beijing University of Civil Engineering and Architecture, China

Qichuan Tian, born in 1971, is a distinguished professor and technical expert specializing in artificial intelligence, pattern recognition, and computer vision. He holds a Ph.D. in Engineering from Northwestern Polytechnical University (2006) and currently serves as a professor and master’s supervisor at Beijing University of Civil Engineering and Architecture (BUCEA). As the Director of the Department of Artificial Intelligence at the School of Intelligent Science and Technology, he leads research in biometrics, human-computer interaction, and deep learning. He is a member of multiple prestigious organizations, including the National Information Technology Standardization Technical Committee and the Chinese Society of Biomedical Engineering. His career spans academia and industry, with significant contributions in developing national standards, publishing books, and mentoring graduate students. Tian has also played a key role in over 20 research projects funded by national and provincial foundations, solidifying his reputation as a thought leader in AI and computational sciences.

Professional Profile

Education

Qichuan Tian has an extensive academic background in engineering. He obtained his Bachelor of Engineering (1993) and Master of Engineering (1996) from Taiyuan University of Science and Technology. In 2006, he completed his Doctor of Engineering at Northwestern Polytechnical University, specializing in artificial intelligence and computer vision. His academic training laid a strong foundation for his later contributions to AI, biometrics, and deep learning. His studies focused on integrating computational intelligence into practical applications, a theme that continues to define his research and professional endeavors.

Professional Experience

Tian has a diverse career in academia and research. Since 2012, he has served as the Head of the Department of Artificial Intelligence at BUCEA, where he spearheads innovative AI programs. From 2009 to 2010, he was a Visiting Scholar at Auburn University, USA, gaining international exposure in computer science. Between 2006 and 2008, he conducted postdoctoral research at Tianjin University. Previously, he held various roles at Taiyuan University of Science and Technology (1993–2012), where he advanced from Assistant Professor to Associate Professor and later became the Chief Leader of Circuits and Systems. His leadership has been instrumental in shaping AI research and education in China.

Research Interests

Tian’s research interests focus on artificial intelligence, pattern recognition, image processing, and deep learning. He specializes in biometric recognition, computer vision, and human-computer natural interaction. His work extends to security authentication, big data analysis, and IoT-based embedded systems. Tian has published over 100 journal and conference papers, authored six books, and contributed significantly to national standards in AI applications. His interdisciplinary research bridges theoretical advancements with practical AI implementations, making substantial contributions to the field.

Research Skills

With expertise in artificial intelligence and computer vision, Tian possesses strong research skills in deep learning algorithms, biometric recognition systems, and real-time image processing. He has successfully led projects in autonomous driving, green building AI integration, and complex object detection. His experience includes handling large-scale datasets, implementing machine learning frameworks, and designing AI-driven applications. Additionally, he has obtained over 50 invention patents and software copyrights, showcasing his ability to translate theoretical research into impactful technological innovations.

Awards and Honors

Tian’s contributions to academia and AI research have earned him multiple accolades. In 2024, he was recognized among CNKI’s Highly Cited Scholars (Top 5). He received the First Prize for Teaching Achievements at BUCEA in 2021 and was honored for developing a National First-Class Blended Online and Offline Course in 2020. Additionally, he was awarded the Outstanding Master’s Thesis Advisor Award in 2012. His accolades highlight his commitment to education, research, and AI-driven innovations, reinforcing his influence in the field of intelligent science and technology.

Conclusion

Qichuan Tian is a prominent scholar and AI expert dedicated to advancing artificial intelligence and biometric research. His leadership in academia, combined with his extensive research portfolio, underscores his impact on technological advancements in pattern recognition, computer vision, and human-computer interaction. With a career spanning over two decades, Tian has played a pivotal role in shaping AI education, national standards, and industry collaborations. His legacy continues to influence emerging AI technologies and inspire the next generation of researchers in intelligent computing.

Publications Top Notes

  • Title: An improved framework for breast ultrasound image segmentation with multiple branches depth perception and layer compression residual module

    • Authors: K. Cui, Qichuan Tian, Haoji Wang, Chuan Ma
    • Year: 2025
  • Title: Mobile Robot Path Planning Algorithm Based on NSGA-II

    • Authors: Sitong Liu, Qichuan Tian, Chaolin Tang
    • Year: 2024
    • Citations: 1
  • Title: OcularSeg: Accurate and Efficient Multi-Modal Ocular Segmentation in Non-Constrained Scenarios

    • Authors: Yixin Zhang, Caiyong Wang, Haiqing Li, Qichuan Tian, Guangzhe Zhao
    • Year: 2024
  • Title: Convolutional Neural Network–Bidirectional Gated Recurrent Unit Facial Expression Recognition Method Fused with Attention Mechanism

    • Authors: Chaolin Tang, Dong Zhang, Qichuan Tian
    • Year: 2023
    • Citations: 4

 

 

 

Wisal Zafar | Computer Science | Best Researcher Award

Mr. Wisal Zafar | Computer Science | Best Researcher Award

Lecturer at Cecos university of information technology and emerging sciences, Pakistan.

Mr. Wisal Zafar is a dedicated researcher and lecturer with a strong background in software engineering, focusing on artificial intelligence, machine learning, and deep learning applications in healthcare. Born on March 25, 1999, in Peshawar, Pakistan, he has consistently demonstrated a passion for advancing technology’s role in solving real-world problems. He has developed and published research that leverages machine learning for medical diagnoses, including brain tumor analysis and diabetes prediction. As a lecturer and Electronic Data Processing (EDP) Officer at Iqra National University, he is committed to mentoring students and contributing to the field through both teaching and research. His work is distinguished by his continuous learning, keeping pace with emerging trends in AI and big data. Mr. Zafar’s career is marked by his enthusiasm for interdisciplinary research, integrating software engineering with advancements in health and data science. He is eager to expand his research contributions further through collaborations and innovative projects that address global challenges using advanced technologies.

Professional Profile

Education

Wisal Zafar holds an MS in Software Engineering from Iqra National University, Hayatabad Peshawar, completed in July 2024 with a commendable CGPA of 3.62/4.00. His postgraduate studies provided him with in-depth knowledge of advanced topics like artificial intelligence, data analysis, and big data. Prior to this, he earned a BS in Software Engineering from the same institution in October 2020, with a CGPA of 3.47/4.00, building a strong foundation in software development and computer science principles. His academic journey started with an intermediate qualification from Capital Degree College, Peshawar, where he scored 700 out of 1100 marks, and continued with his matriculation from The Jamrud Model High School, achieving 824 out of 1100 marks. His educational background is characterized by consistent academic performance and a focus on both theoretical and practical aspects of software engineering, which has prepared him for his subsequent roles in academia and research.

Professional Experience

Wisal Zafar currently serves as a Lecturer at Iqra National University, Hayatabad, Peshawar, where he has been teaching various software engineering subjects since January 2023. His areas of instruction include Data Science, Artificial Intelligence, Machine Learning, Data Structures, and Algorithms, allowing him to impart advanced knowledge to students and prepare them for careers in technology. Alongside his role as a lecturer, he also holds the position of Electronic Data Processing (EDP) Officer at the same university, a role he has been fulfilling since October 2021. In this capacity, he manages data processing tasks, ensuring the effective handling of academic data and resources. Previously, he gained practical experience as a Junior Web Developer at Pakistan Online Services Software House, where he worked from November 2020 to April 2021, specializing in web development using PHP, Laravel, JavaScript, and other technologies. This diverse experience in academia and industry has equipped Mr. Zafar with the skills to blend theoretical concepts with real-world applications, making him an effective educator and a valuable contributor to research.

Research Interests

Wisal Zafar’s research interests are centered around artificial intelligence (AI), machine learning (ML), deep learning, and their applications in healthcare and data analysis. He is particularly fascinated by the potential of AI and ML in developing advanced diagnostic tools, aiming to improve medical outcomes through data-driven insights. His recent research projects have explored the use of deep learning techniques like YOLOv8s and U-Net for multi-class brain tumor analysis, integrating detection, localization, and segmentation of tumors using MRI data. Additionally, he has delved into predictive models for diabetes diagnosis using various ML algorithms, such as Decision Trees, K-Nearest Neighbors, Random Forest, Logistic Regression, and Support Vector Machines. His interests extend to big data analytics and the role of data science in enhancing information retrieval and management in medical libraries. Through his work, Wisal Zafar seeks to advance the intersection of technology and healthcare, utilizing cutting-edge algorithms and data processing techniques to solve critical challenges and improve human well-being.

Research Skills

Wisal Zafar possesses a diverse skill set in artificial intelligence, machine learning, data analysis, and big data management, making him adept at tackling complex research challenges. He has extensive experience in using programming languages like Python and C++, which he applies to develop machine learning models and algorithms. His technical expertise includes working with deep learning frameworks, as seen in his research on brain tumor analysis using advanced models such as YOLOv8s and U-Net. Additionally, Wisal has proficiency in cloud computing and handling large datasets, which supports his work in big data analytics and the implementation of data-driven decision-making tools. His hands-on experience as a Research Assistant has further refined his skills in conducting surveys, data preprocessing, and statistical analysis. Mr. Zafar is also skilled in web development using frameworks like Laravel and JavaScript, allowing him to create interactive platforms for research applications. His ability to integrate these skills into interdisciplinary projects makes him a capable researcher with a focus on innovation and problem-solving.

Award Recognition

Wisal Zafar’s dedication to research and academic excellence has earned him recognition in the academic community, though he is still working towards broader award recognitions. His recent research publications, including studies on brain tumor analysis and diabetes prediction using machine learning, have been well-received and published in respected journals. These works have contributed significantly to the fields of AI in healthcare and big data analytics, positioning him as a promising researcher. His role as a Lecturer at Iqra National University also reflects the acknowledgment of his expertise, as he is entrusted with educating the next generation of software engineers. Additionally, Wisal has completed several certified courses from platforms like Coursera, receiving certificates in advanced learning algorithms, deep learning, and image processing with Python, which underscore his commitment to continuous learning. While he may not yet have specific awards, his publications, teaching contributions, and commitment to research excellence serve as strong indicators of his potential for future recognition in the field.

Awards and Honors

Wisal Zafar has demonstrated a commitment to continuous professional development through various certifications and achievements, contributing to his expertise in software engineering and AI. He has completed notable courses such as AI for Everyone and Advanced Learning Algorithms through Coursera, which are associated with respected institutions like DeepLearning.AI and Stanford University. These certifications have enhanced his knowledge of machine learning, deep learning, and image processing, enabling him to apply advanced concepts in his research. While he has not yet received specific formal awards, his role as a Lecturer at Iqra National University and his position as an Electronic Data Processing (EDP) Officer are testaments to his skills and recognition within the academic community. His contributions to research, especially in the areas of AI applications in healthcare, have been acknowledged through the publication of his work in peer-reviewed journals. Wisal Zafar’s ongoing pursuit of excellence, both in research and teaching, positions him as a candidate worthy of future awards and honors in the field of software engineering and AI.

Conclusion:

Wisal Zafar has demonstrated considerable research skills and expertise in the field of software engineering, particularly in applying machine learning and AI to medical problems. His academic background, technical skills, and research publications make him a strong contender for the Best Researcher Award. While he could benefit from diversifying his research and increasing his international presence, his current achievements in AI-driven healthcare solutions and data analytics set a solid foundation for this recognition.

Publications Top Notes

  1. Enhanced TumorNet: Leveraging YOLOv8s and U-net for superior brain tumor detection and segmentation utilizing MRI scans
    • Authors: Zafar, W., Husnain, G., Iqbal, A., AL-Zahrani, M.S., Naidu, R.S.
    • Journal: Results in Engineering
    • Year: 2024
    • Volume: 24
    • Article ID: 102994
    • Type: Open access
  2. Revolutionizing Diabetes Diagnosis: Machine Learning Techniques Unleashed
    • Authors: Shaukat, Z., Zafar, W., Ahmad, W., Ghadi, Y.Y., Algarni, A.
    • Journal: Healthcare (Switzerland)
    • Year: 2023
    • Volume: 11
    • Issue: 21
    • Article ID: 2864
    • Citations: 1
    • Type: Open access