JAYABRABU RAMAKRISHNAN | Clustering | Best Researcher Award

Dr. JAYABRABU RAMAKRISHNAN | Clustering | Best Researcher Award

Associate Professor at Clustering,  JAZAN UNIVERSITY , Saudi Arabia

Dr. Jayabrabu Ramakrishnan is an accomplished academic professional with a strong background in information technology, cybersecurity, and related fields. Currently serving as an Associate Professor at Jazan University, Saudi Arabia, since 2014, he holds a Ph.D. in Computer Science from Bharathiar University, India. Dr. Ramakrishnan has received recognition for his research, including the Scientific Research Cash Award from Jazan University. He is also actively involved in industry collaborations, aiming to bridge the gap between academia and industry. Dr. Ramakrishnan’s expertise and dedication to his field make him a valuable asset to the academic community.

Professional Profiles:

Academic and Professional Positions:

Dr. Jayabrabu Ramakrishnan has a rich academic and professional background, currently serving as an Associate Professor in the Department of Information Technology and Security at the College of Computer Science and Information Technology, Jazan University, Saudi Arabia, since January 2024. Prior to this, he held the position of Assistant Professor in the same department from September 2014 to December 2023. Dr. Ramakrishnan’s academic journey began as an Assistant Professor at Karunya University, Coimbatore, India, from June 2008 to July 2008, followed by his role as an Associate Professor in the Department of Computer Applications at Dr. NGP Institute of Technology, Coimbatore, India, from August 2008 to October 2014. Before joining academia, he served as a Lecturer in the Department of Computer Applications at Rajiv Gandhi College of Engineering and Technology, Pondicherry, India, from September 2004 to June 2008.

Education:

Dr. Jayabrabu Ramakrishnan has pursued a diverse educational journey, culminating in a Ph.D. in Computer Science from Bharathiar University, Coimbatore, India, which he completed in 2013. Prior to this, he obtained an M.Phil. in Computer Science from Annamalai University, India, in 2007. Dr. Ramakrishnan’s academic pursuits began with a Master of Computer Applications (MCA) from Pondicherry University, India, in 2004, following his Bachelor of Science degree from Madras University, India, in 2000. Recently, in 2023, he further enhanced his expertise by completing a Postgraduate Program in Artificial Intelligence and Machine Learning (PGP-AIML) from The University of Texas, Austin.

Teaching:

Dr. Jayabrabu Ramakrishnan has a strong background in teaching, with extensive experience in delivering high-quality education in the field of information technology and security. He has taught a variety of courses at both undergraduate and graduate levels, including subjects such as data mining, artificial intelligence, machine learning, and cybersecurity. Dr. Ramakrishnan is known for his innovative teaching methods and his ability to engage students in the learning process. He is committed to providing students with a solid foundation in theoretical concepts while also imparting practical skills that are relevant to the industry. Dr. Ramakrishnan’s passion for teaching and his dedication to student success make him a highly respected educator in his field.

Awards and Achievements:

Dr. Jayabrabu Ramakrishnan has been recognized for his exceptional contributions in research, receiving the Scientific Research Cash Award from Jazan University for the years 2019, 2020, and 2021. He established the International Certification Academy within the College of Computer Science and Technology at Jazan University and was honored with the Best Techno Faculty Award in 2014. Dr. Ramakrishnan has signed memorandums of understanding with numerous industries to strengthen industry-institute relationships. He has coordinated conferences and served as a chairperson at various national and international events. Additionally, Dr. Ramakrishnan is a Certified Cisco Networking Associate (CCNA) Instructor Trainer and serves as a reviewer for several international journals and conferences.

Research Experience:

Dr. Jayabrabu Ramakrishnan has a wealth of research experience in the field of information technology and security. His research interests span a wide range of topics, including data mining, artificial intelligence, machine learning, and cybersecurity. Dr. Ramakrishnan has published extensively in peer-reviewed journals and conferences, contributing to the advancement of knowledge in his field. He has also been actively involved in supervising research projects and mentoring students, fostering a culture of research excellence. His research experience reflects his commitment to academic and scholarly pursuits, making him a valuable asset to the research community.

Publications:

  1. A comprehensive and systematic review of the network virtualization techniques in the IoT
    J Ramakrishnan, MS Shabbir, NM Kassim, PT Nguyen, D Mavaluru
    International Journal of Communication Systems 33 (7), e4331
    Year: 2020
    Citations: 61
  2. A new efficient design for random access memory based on quantum dot cellular automata nanotechnology
    A Mubarakali, J Ramakrishnan, D Mavaluru, A Elsir, O Elsier, K Wakil
    Nano Communication Networks 21, 100252
    Year: 2019
    Citations: 45
  3. Fog-based delay-sensitive data transmission algorithm for data forwarding and storage in cloud environment for multimedia applications
    A Mubarakali, AD Durai, M Alshehri, O AlFarraj, J Ramakrishnan, …
    Big Data 11 (2), 128-136
    Year: 2023
    Citations: 23
  4. Brain–computer interface for amyotrophic lateral sclerosis patients using deep learning network
    J Ramakrishnan, D Mavaluru, RS Sakthivel, AS Alqahtani, A Mubarakali, …
    Neural Computing and Applications, 1-15
    Year: 2020
    Citations: 21
  5. An enhanced network intrusion detection system for malicious crawler detection and security event correlations in ubiquitous banking infrastructure
    S Eswaran, V Rani, D Daniel, J Ramakrishnan, S Selvakumar
    International Journal of Pervasive Computing and Communications 18 (1), 59-78
    Year: 2021
    Citations: 10
  6. A framework for fraud detection system in automated data mining using intelligent agent for better decision making process
    R Jayabrabu, V Saravanan, JJ Tamilselvi
    2014 International Conference on Green Computing Communication and …
    Year: 2014
    Citations: 9
  7. Investigation of hybrid spectrum slicing-wavelength division multiplexing (SS-WDM) in transparent medium for mode division multiplexing applications
    AS Alqahtani, UA Kumar, J Ramakrishnan, P Parthasarathy, A Mubarakali, …
    Optical and Quantum Electronics 55 (3), 243
    Year: 2023
    Citations: 8
  8. A framework: Cluster detection and multidimensional visualization of automated data mining using intelligent agents
    R Jayabrabu, V Saravanan, K Vivekanandan
    arXiv preprint arXiv:1202.1945
    Year: 2012
    Citations: 8

 

Assoc Prof Dr. Mário Franco | Entrepreneurship | Best Researcher Award

Assoc Prof Dr. Mário Franco | Entrepreneurship | Best Researcher Award

PhD in Management at Entrepreneurship, University of Beira Interior, Portugal

👨‍🎓He remarkable academic journey, extensive research contributions, and dedication to the field of psychology are truly commendable. Your wealth of knowledge and diverse skill set reflect a deep commitment to understanding and addressing critical issues such as bullying, inclusion, and socialization.

🔬 He successful completion of a PhD in Psychology, along with the numerous advanced courses and workshops, showcases your continuous pursuit of excellence and expertise in your field.

🏆 The awards and recognitions, including the First Place in the Poster Award at the University of Stavanger, underscore the impact of your research and the high regard it holds in the academic community.

Professional Profiles:

Academic Qualification:

Aggregation in Management from the University of Beira Interior, unanimously approved on May 3, 2016. Ph.D. in Management from the University of Beira Interior, awarded on April 15, 2002. Thesis Title: “Cooperation Process in Portuguese Companies: Training, Implementation, and Development.” Supervisors: Professor José Maria Veciana (Autonomous University of Barcelona) and Professor Ana Maria Ussman (UBI). Master’s in Management from the University of Beira Interior, with a final grade of 16 out of 20, completed on May 27, 1996. Dissertation Title: “Cooperation Between Companies as a Means of Resizing and Strengthening the Competitiveness of Portuguese SMEs.” Supervisor: Professor Ana Maria Ussman (UBI).

Research Unit:

Integrated Researcher at the Center for Advanced Training Studies in Management and Economics, University of Beira Interior (CEFAGE-UBI) Campus, a center funded by the Foundation for Science and Technology (FCT), since January 2015 – Rated VERY GOOD (until December 31, 2019). Associate Researcher at the Center for Entrepreneurship and Innovation (CIE), University of Applied Sciences Jena, Germany, a center funded by the Bundesland Thüringen (Federal State of Thuringia) and the Bundesministerium für Wirtschaft und Energie (Federal Ministry for Economic Affairs and Energy), since January 2012.

Award and Recognition:

Listed among the top 2% scientists in the world in the study titled “World’s Top 2% Scientists list” by Stanford University (California, USA) in October 2021. This list is divided into two categories: “Career,” which measures impact over the academic career, analyzing global data since the mid-1990s, and “Research Impact” in the years 2020, 2021, 2022, and 2023. Recognized as a Top Peer Reviewer in the Global Peer Review Awards 2019 for being in the top 1% of reviewers in Cross-Field on Publons global reviewer database.

Publications:

What is important to know about mumpreneurship? A bibliometric analysis

Bibliometric approach to inclusive entrepreneurship: what has been written in scientific academia?

The soft skills bases in digital academic entrepreneurship in relation to digital transformation

The importance of intellectual capital in networks formed by start-ups

The Role of Networks in the Internationalization Process of Small- and Medium-sized Enterprises in the Wine-producing Sector

What exists in academia on work stress in accounting professionals: a bibliometric analysis

The presence of women in family SMEs’ succession process: a conceptual framework guided by gender perspective

University-firm cooperation: how do small and medium-sized enterprises become involved with the university?

International universities-firms cooperation as a mechanism for environmental sustainability: a case study of EdgeWise

Dr. Sajal Halder | Personalized Recommendation | Best Research Award

Dr. Sajal Halder | Personalized Recommendation | Best Research Award

Research Fellow at Personalized Recommendation, Charles Sturt University, Australia

👨‍🎓He remarkable academic journey, extensive research contributions, and dedication to the field of psychology are truly commendable. Your wealth of knowledge and diverse skill set reflect a deep commitment to understanding and addressing critical issues such as bullying, inclusion, and socialization.

🔬 He successful completion of a PhD in Psychology, along with the numerous advanced courses and workshops, showcases your continuous pursuit of excellence and expertise in your field.

🏆 The awards and recognitions, including the First Place in the Poster Award at the University of Stavanger, underscore the impact of your research and the high regard it holds in the academic community.

Professional Profiles:

Education:

Dr. Sajal Halder is a dedicated scholar with a strong academic background and a proven track record of research excellence. He earned his Doctor of Philosophy (PhD) in December 2022 from the School of Computing Technologies at the Royal Melbourne Institute of Technology (RMIT) University in Melbourne, Victoria, Australia. His doctoral thesis focused on “Itinerary Recommendation based on Deep Learning” and was supervised by A/Prof Jeffrey Chan and Prof. Xiuzhen Zhang. Prior to his doctoral studies, Dr. Halder completed his Master of Engineering in Computer Engineering at Kyung Hee University, South Korea, graduating in August 2013 with an outstanding CGPA of 4.23/4.30 (equivalent to 95.25%). His master’s thesis, supervised by Prof. Young-Koo Lee, delved into “Supergraph-based Periodic Behaviors Mining in Dynamic Social Networks,” showcasing his expertise in advanced computational techniques. Dr. Halder’s academic journey began with a Bachelor of Science in Computer Science and Engineering from the University of Dhaka, Bangladesh, where he graduated in November 2010 with a commendable CGPA of 3.60/4.00, securing the 5th position out of 59 students. His final project, supervised by Dr. Ashis Kumar Biswas, focused on the “Classification of Multiple Protein Sequences by means of Irredundant Patterns,” demonstrating his early interest in computational biology. Throughout his academic career, Dr. Halder has consistently excelled, as evidenced by his exemplary performance in his Higher Secondary School Certificate (H.S.C) and Secondary School Certificate (S.S.C), where he achieved GPAs of 4.50/5.00 in both, specializing in Science under the Dhaka Board in 2005 and 2003, respectively. His strong foundation in science and technology has laid the groundwork for his successful career in academia and research.

Experience:

Sajal Halder is currently serving as a Research Fellow at Charles Sturt University, located in Wagga Wagga, NSW, Australia, a position held since December 2022. In this role, he has been involved in groundbreaking research, notably in the development of a metadata-based model for detecting malicious and benign packages within the NPM repository. The model introduces two sets of features, namely easy to manipulate (ETM) and difficult to manipulate (DTM), with DTM manipulation relying on long-term planning and monotonic properties. The team has verified the effectiveness of their feature selection using four well-known machine learning techniques and one deep learning technique. Additionally, they have analyzed algorithm performance using metadata manipulation and have recommended improved metadata adversarial attack-resistant algorithms. The experimental analysis conducted on their proposed model has shown a significant reduction of 97.56% in False Positive cases and 80.35% in False Negative cases. Notable achievements of Sajal Halder include his work on “Malicious Package Detection using Metadata Information,” currently in submission for presentation at an A* Conference, and “Install Time Malicious Package Detection on NPM Repository,” which is currently in progress.

Skills:

Sajal Halder possesses a diverse skill set, including expertise in Feature Engineering, Data Scraping, Open Source Software, Machine Learning Model development, Deep Learning techniques, Python programming, Report and Article Writing, Data Visualization, and Teamwork. These skills reflect his proficiency in various aspects of data analysis, from extracting and engineering features to building and evaluating machine learning and deep learning models. His ability to work with open-source software and programming languages like Python demonstrates his adaptability and commitment to leveraging cutting-edge tools for effective data analysis. Furthermore, his proficiency in communicating findings through reports and articles highlights his capability to articulate complex technical concepts effectively. Additionally, his skills in data visualization indicate his capability to present data insights in a visually compelling and informative manner, essential for conveying findings to diverse audiences. Finally, his experience in teamwork underscores his ability to collaborate effectively with others, an important asset in any research or professional environment.

Research/Project Experience:

During his tenure as a Supervisor, Sajal Halder has led several impactful projects, including “Design and Implementation of a Basic Framework for Big Data Analytics,” funded by the ICT Ministry, Government of Bangladesh, from July 1, 2017, to May 31, 2018. This project aimed to establish a foundational framework for conducting Big Data Analytics, addressing the burgeoning need for efficient data processing and analysis in contemporary data-driven environments. Additionally, Mr. Halder contributed to the project “Designing an Efficient Technique for Mining Periodic Patterns in Time Series Databases,” funded by the Ministry of Science and Technology, Government of Bangladesh, running from January 1, 2018, to June 30, 2018. This initiative focused on developing innovative methods for extracting meaningful periodic patterns from time series databases, enhancing the efficiency of data mining processes. Furthermore, he participated in the project “Efficient Spatiotemporal Pattern Mining in Time Series Databases,” supported by the Jagannath University Innovation Fund, spanning from December 1, 2017, to May 31, 2018. This project aimed to advance the field of spatiotemporal pattern mining, addressing the complexities of analyzing time series data with spatial and temporal dimensions. Additionally, in a co-supervisory role, Mr. Halder contributed to the project “Efficient Anomaly Detection Technique on Time Series Graph Data,” funded by the Jagannath University Innovation Fund, operating from December 1, 2017, to May 31, 2018. This project focused on developing novel anomaly detection techniques tailored to time series graph data, enhancing the accuracy and efficiency of anomaly detection processes.

Publications:

Predicting students yearly performance using neural network: A case study of BSMRSTU

  • Published in Energy in 2016 with 56 citations.

Movie recommendation system based on movie swarm

  • Published in Energy in 2012 with 35 citations.

Supergraph based periodic pattern mining in dynamic social networks

  • Published in Energy in 2017 with 34 citations.

An efficient hybrid system for anomaly detection in social networks

  • Published in Energy in 2021 with 31 citations.

Exploring significant heart disease factors based on semi supervised learning algorithms

  • Published in Energy in 2018 with 25 citations.

Smart disaster notification system

  • Published in Energy in 2017 with 23 citations.

Transformer-based multi-task learning for queuing time aware next poi recommendation

  • Published in Energy in 2021 with 20 citations.

Smart CDSS: Integration of social media and interaction engine (SMIE) in healthcare for chronic disease patients

  • Published in Energy in 2015 with 20 citations.

Link prediction by correlation on social network

  • Published in Energy in 2017 with 16 citations.