Xiaoquan Zhu | Energy Conversion | Best Researcher Award

Dr. Xiaoquan Zhu | Energy Conversion | Best Researcher Award

Lecturer at Nanjing University of Aeronautics and Astronautics, China

Dr. Xiaoquan Zhu is a distinguished researcher and academic in the field of power electronics and energy conversion. Currently serving as a Lecturer at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), China, he has dedicated his career to advancing renewable energy systems, DC/DC converters, and related technologies. With over 27 SCIE-indexed journal publications, 15 patents, and numerous international collaborations, Dr. Zhu’s work has made significant contributions to cutting-edge research in his field. An IEEE Senior Member and active participant in leading professional societies, he has earned recognition for his leadership in both academia and innovation.

Professional Profile

Education

Dr. Zhu’s academic journey began at the China University of Mining and Technology, where he earned his Bachelor’s degree in Information and Control Engineering in 2014. He pursued his Ph.D. in Power Electronics at the South China University of Technology, Guangzhou, completing it in 2019. His doctoral work laid the foundation for his expertise in high-efficiency energy systems and advanced converter designs. This strong educational background has provided Dr. Zhu with the technical knowledge and research acumen to excel in the dynamic fields of renewable energy and power systems.

Professional Experience

Since 2019, Dr. Zhu has been a Lecturer at NUAA, where he has contributed to both teaching and groundbreaking research. He has been the principal investigator for one National Natural Science Foundation of China (NSFC) project, two university research funds, and an open research grant for the State Key Laboratory of HVDC. His role as a senior researcher involves mentoring graduate students, leading innovative projects, and collaborating with global institutions to advance energy conversion technology. Dr. Zhu’s professional trajectory reflects his commitment to research excellence and capacity building.

Research Interests

Dr. Zhu’s research focuses on power electronics, energy conversion, and renewable energy systems. His key interests include developing cost-effective and efficient DC/DC converter topologies, renewable energy integration, and high-performance energy storage systems. He has also worked extensively on modular converters for photovoltaic systems and optimization techniques for energy systems in aerospace and electric vehicles. Dr. Zhu’s innovative approaches to addressing challenges in renewable energy systems underscore his dedication to a sustainable energy future.

Research Skills

Dr. Zhu possesses expertise in designing and modeling power converters, fractional calculus, and control optimization for high-efficiency systems. He is skilled in developing mathematical models, simulation frameworks, and hardware prototypes to validate advanced energy technologies. His experience extends to high-impact publishing, grant acquisition, and project leadership. As a seasoned reviewer for prestigious journals like IEEE Transactions, Dr. Zhu also brings a critical perspective to evaluating technical advancements in his field.

Awards and Honors

Dr. Zhu’s exemplary work has earned him the 2024 Outstanding Young Engineer Award from the Jiangsu Society for Electrical Engineering. He has also been recognized with multiple grants, reflecting his ability to attract funding for innovative projects. As an IEEE Senior Member and a member of several prominent societies, Dr. Zhu has built a reputation for his contributions to power electronics and renewable energy.

Conclusion

Dr. Xiaoquan Zhu stands out as a dedicated researcher with a proven track record of impactful contributions to energy systems. His blend of academic excellence, innovative research, and global collaboration places him among the leading figures in power electronics. With his continued focus on addressing global energy challenges, Dr. Zhu exemplifies the qualities of a Best Researcher Award recipient.

Publication Top Notes

  1. Publication: A Multiport Power Electronic Transformer With MVDC Integration Interface for Multiple DC Units
    Authors: Zhu, X., Hou, J., Zhang, B.
    Year: 2024
    Citations: 1
  2. Publication: Single-phase Single-stage Coupled Inductor Split-source Boost Inverter | 单相单级式耦合电感型分裂源升压逆变器
    Authors: Zhu, X., Ye, K., Jin, K., Zhou, W., Zhang, B.
    Year: 2024
  3. Publication: A Multiport Current-Fed IIOS Dual-Half-Bridge Converter for Distributed Photovoltaic MVDC Integration System
    Authors: Zhu, X., Hou, P., Zhang, B.
    Year: 2024
    Citations: 3
  4. Publication: A Modular Multiport DC-DC Converter With MVDC Integration for Multiple DC Units
    Authors: Zhu, X., Hou, J., Jin, K., Zhang, B.
    Year: 2024
    Citations: 2
  5. Publication: Multiphase BHB-CLL Resonant Converter Based on Secondary-Side VDR With Automatic Current Sharing Characteristic
    Authors: Zhu, X., Liu, K., Zhang, B., Jin, K.
    Year: 2024
    Citations: 2
  6. Publication: Analysis and Modeling of Fractional Order LC Series Resonant Boost Converter Based on Fractional Calculus and Laplace Transform
    Authors: Ma, C., Zhu, X., Chen, Z., Hou, J., Zhang, B.
    Year: 2024
  7. Publication: Fractional-Order Modeling and Steady-State Analysis of Single-Phase Quasi-Z-Source Pulse Width Modulation Rectifier
    Authors: Zhu, X., Chen, Z., Zhang, B.
    Year: 2024
    Citations: 2
  8. Publication: A Modular Multiport DC Power Electronic Transformer Based on Triple-Active-Bridge for Multiple Distributed DC Units
    Authors: Zhu, X., Hou, J., Liu, L., Zhang, B., Wu, Y.
    Year: 2024
    Citations: 1
  9. Publication: An Analytical Approach for Obtaining Steady-State Periodic Solutions of Fractional-Order quasi-Z-Source Rectifier
    Authors: Chen, Z., Zhu, X., Ma, C., Liu, L.
    Year: 2024
  10. Publication: Modeling and Analysis of Fractional-Order Full-Bridge LLC Resonant Converter
    Authors: Ma, C., Zhu, X., Wei, C.
    Year: 2024
    Citations: 1

 

Young Il Kim | Energy | Best Researcher Award

Prof. Young Il Kim | Energy | Best Researcher Award

Professor of School of Architecture at Professor of School of Architecture, China.

Professor Young Il Kim is a distinguished academic and researcher in the fields of mechanical engineering and architecture, currently serving as a Professor at the School of Architecture, Seoul National University of Science and Technology. With a career spanning over three decades, he has made significant contributions to HVAC systems, indoor air quality, and building energy simulation. Known for his expertise in sustainable and smart building systems, Professor Kim holds numerous leadership positions in professional societies dedicated to air-conditioning, energy, and smart building innovations. His research has helped advance eco-friendly and energy-efficient technologies in building design. He is currently the Dean of the Graduate School of Housing and Urban Studies, where he is pioneering research on smart urban living. His technical skills and commitment to the integration of environmental considerations into urban design make him a leading figure in sustainable building technologies in Korea and beyond.

Professional Profile

Education

Professor Kim holds a robust academic background in mechanical engineering, with both B.S. and M.S. degrees from Seoul National University, completed in 1984 and 1986, respectively. He further pursued his studies abroad, obtaining a Ph.D. from the University of Michigan in 1993. This blend of education from top institutions in South Korea and the United States provided him with a broad, international perspective and a rigorous foundation in engineering principles, particularly in thermal systems and environmental control. His academic background underpins his research into complex energy systems and building sustainability. The education he received at these esteemed institutions has been instrumental in shaping his approach to urban sustainability and innovative building systems, and continues to support his contributions to academic and professional communities in Korea and internationally.

Professional Experience

Professor Kim has an extensive career that blends academic research with practical applications in building systems and mechanical engineering. Beginning as a researcher at the Korea Advanced Institute of Science and Technology, he further honed his expertise as a student researcher at Ford Motor Company and a post-doctoral fellow at the University of Michigan. His career progressed with his role as Center Head at the Korea Institute of Science and Technology, where he was involved in leading critical projects in environmental and building systems research. Since 2005, he has been a Professor at Seoul National University of Science and Technology, actively contributing to both research and education in sustainable architecture. Currently, he serves as Dean of the Graduate School of Housing and Urban Studies, a role in which he oversees research into eco-friendly and smart housing solutions, further cementing his leadership in the academic field.

Research Interests

Professor Kim’s research interests lie primarily in thermal and environmental control within building systems, focusing on innovations in HVAC systems, indoor air quality management, and energy-efficient building design. He is particularly interested in the development of sustainable technologies that reduce energy consumption and improve air quality in buildings. In recent years, his research has expanded to include the “smartification” of urban spaces, exploring how advanced technologies can create more eco-friendly and resilient cities. He is dedicated to addressing the environmental challenges posed by urban growth through smart building systems that prioritize resource efficiency and sustainable design. His research aligns with the global movement toward greener architecture and reflects his commitment to creating healthy, energy-efficient indoor environments.

Research Skills

Professor Kim is skilled in various research techniques integral to sustainable building and HVAC systems. He has expertise in building energy simulation, allowing him to model and analyze energy flows within buildings to optimize their efficiency. His technical skills extend to indoor air quality assessments, a crucial factor in developing healthier indoor environments. He is also proficient in managing complex research projects, having led teams in various national and international collaborative studies. Furthermore, his role as a professional engineer in air-conditioning and building mechanical systems enables him to apply his research findings to practical implementations. Professor Kim’s combination of simulation, analytical, and project management skills makes him a highly capable researcher in the fields of smart building and sustainable urban design.

Awards and Honors

Throughout his career, Professor Kim has been recognized for his contributions to engineering and sustainable building practices. He has held prestigious roles such as President of the South Korea Chapter of ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) and the Korean Society for Geothermal and Hydrothermal Energy. Additionally, he served as President of the Korea Intelligent Smart Building Association, a position that highlights his influence on the development of smart and energy-efficient building technologies in Korea. These leadership positions, along with various professional recognitions, underscore his commitment to advancing engineering practices in air-conditioning and building energy efficiency. Professor Kim’s accolades reflect his dedication to fostering eco-friendly practices in urban development and his influence as a respected leader in the field of sustainable architecture.

Conclusion

Professor Young Il Kim is a highly accomplished researcher whose work in thermal and environmental control, building energy simulation, and sustainable urban planning is well-aligned with the aims of the Best Researcher Award. His leadership in professional organizations, technical expertise, and dedication to eco-friendly solutions make him a strong candidate for this award. Enhancing his application with more evidence of mentorship, recent research publications, and global collaboration would provide additional support to his already impressive profile. Overall, he is a commendable candidate for the Best Researcher Award.

Publication Top  Notes

  1. “Analysis of in situ performance of rooftop PV system in Seoul, South Korea”
    Authors: Singh, R., Nam, A.Y., Park, J.J., Kim, Y.I.
    Year: 2023
    Journal: International Journal of Air-Conditioning and Refrigeration, 31(1), 10
    Citations: 3
  2. “Model Selection and Verification Approach for Green Remodeling of Non-residential Buildings Using Building Management Information and Energy Simulation”
    Authors: Ji, M.-H., Kim, Y.I.
    Year: 2023
    Journal: Journal of the Architectural Institute of Korea, 39(11), pp. 169–178
    Citations: 0
  3. “Economic Evaluation of Small Public Office Buildings with Class 1 of Zero Energy Building (ZEB) in Korea by Reflecting Life Cycle Assessment (LCA)”
    Authors: Lee, D., Kim, J., Kim, Y.I.
    Year: 2023
    Journal: Buildings, 13(7), 1693
    Citations: 0
  4. “A Proposal for Improvement of Zero Energy Building Certification System through Energy, Environmental and Economic Evaluation of Small-Sized Public Office”
    Authors: Lee, D.H., Kim, Y.I., Kim, J.M.
    Year: 2023
    Journal: Journal of the Architectural Institute of Korea, 39(3), pp. 201–212
    Citations: 1
  5. “Review of Machine Learning for Building Energy Prediction”
    Authors: Kwon, O.I., Kim, Y.I.
    Year: 2023
    Journal: Journal of the Architectural Institute of Korea, 39(5), pp. 133–140
    Citations: 1
  6. “Indoor Air Quality Diagnosis Program for School Multi-Purpose Activity and Office Spaces”
    Authors: Lee, Y.-K., Kim, Y.I., Kim, G.-H.
    Year: 2022
    Journal: Energies, 15(21), 8134
    Citations: 1
  7. “Selection of Energy Improvement Factors and Economic Analysis of Standard MDU Complexes in Korean Metropolitan Regions”
    Authors: Lee, K.-W., Kim, Y.I.
    Year: 2022
    Journal: Energies, 15(11), 4042
    Citations: 1
  8. “Cooling Performance Enhancement of a 20 RT (70 kW) Two-Evaporator Heat Pump with a Vapor–Liquid Separator”
    Authors: Yang, W.-S., Kim, Y.I.
    Year: 2022
    Journal: Energies, 15(11), 3849
    Citations: 0
  9. “Development of CO2 Concentration Prediction Tool for Improving Office Indoor Air Quality Considering Economic Cost”
    Authors: Lee, Y.-K., Kim, Y.I., Lee, W.-S.
    Year: 2022
    Journal: Energies, 15(9), 3232
    Citations: 5
  10. “Analysis of indoor air pollutants and guidelines for space and physical activities in multi‐purpose activity space of elementary schools”
    Authors: Lee, Y.-K., Kim, Y.I.
    Year: 2022
    Journal: Energies, 15(1), 220
    Citations: 15

Cláudio Frate | Renewables | Excellence in Research

Dr. Cláudio Frate | Renewables | Excellence in Research

Researcher and Federal University of Ceará, Brazil

Cláudio Frate is a distinguished researcher specializing in decentralized renewable energy systems, with a keen focus on their interplay with societal, institutional, and environmental factors. His research employs both qualitative and quantitative methods to address low-carbon technology challenges. Frate’s notable work includes studies on photovoltaic systems, wind power, and solar energy in Brazil, showcasing his expertise in renewable energy and stakeholder perspectives. His publications, featured in prominent journals such as Energy Policy and Utilities Policy, highlight his contributions to understanding and advancing renewable energy technologies. Frate’s innovative research addresses practical applications and societal impacts, making significant strides in the field of renewable energy. His comprehensive approach and influential work in both theoretical and applied aspects of energy systems underscore his recognition as a leading figure in the domain.

Profile

Education

Cláudio Frate pursued his academic journey with a strong focus on renewable energy and environmental studies. He earned his Bachelor’s degree in Environmental Engineering from the Federal University of Paraná, Brazil, laying the foundation for his future research in sustainable technologies. Frate continued his education with a Master’s degree in Energy Systems from the Federal University of Santa Catarina, where he deepened his knowledge in energy systems and their integration with societal needs. His academic path culminated in a Ph.D. in Environmental Engineering from the Federal University of Paraná, where his research emphasized decentralized renewable energy systems and their interaction with societal and environmental factors. This diverse educational background equipped him with a comprehensive understanding of both technical and social aspects of energy systems, positioning him as a leading researcher in the field of renewable energy and its applications.

Professional Experience

Cláudio Frate has a distinguished career in the field of renewable energy systems, focusing on decentralized technologies and their interplay with society and institutions. Currently, he is a prominent researcher with a strong track record in both academia and applied research. Frate’s professional experience includes leading research initiatives on photovoltaic systems and wind power diffusion in Brazil. His work emphasizes the integration of qualitative and quantitative methods to address complex questions related to low-carbon technologies. Over the years, he has contributed significantly to understanding stakeholder perceptions and the practical barriers and drivers for renewable energy adoption. His role in various research projects and publications highlights his expertise in analyzing energy policies and technological impacts on society. Frate’s dedication to advancing renewable energy systems and their societal implications underscores his significant contributions to the field.

Research Interests

Cláudio Frate’s research interests center on decentralized renewable energy systems, emphasizing their interplay with societal, institutional, and environmental factors. His work explores the deployment and diffusion of low-carbon technologies, focusing on photovoltaic systems, wind power, and other renewable sources. Frate employs both qualitative and quantitative methods to address diverse research questions, such as stakeholder perceptions, procedural and distributive justice in energy projects, and the efficiency of renewable energy technologies. His studies frequently examine the socio-economic implications of renewable energy adoption, including its impact on local communities and the environment. Frate’s research aims to advance the understanding of how renewable energy technologies can be effectively integrated into society, considering both technical performance and social acceptance. His contributions are vital for developing sustainable energy solutions that align with both environmental goals and societal needs.

Research Skills

Cláudio Frate possesses a diverse and robust set of research skills that underscore his expertise in renewable energy systems and their societal impacts. His proficiency in quali-quantitative research methods enables him to tackle complex questions related to low-carbon technologies, integrating both qualitative insights and quantitative data. Frate’s skill in conducting in-depth sensitivity analyses and stakeholder assessments reflects his capability to evaluate and address various barriers and drivers in renewable energy diffusion. His ability to apply advanced statistical and analytical tools is evident in his research on photovoltaic and wind power systems, as well as his studies on procedural and distributive justice in energy contexts. Frate’s expertise extends to handling multi-dimensional research questions and effectively communicating findings through high-impact publications in leading journals. His comprehensive approach ensures that his research not only advances scientific knowledge but also informs practical solutions for energy and sustainability challenges.

 Awards and Recognition

Cláudio Frate has earned notable recognition for his outstanding contributions to renewable energy research. He received the Best Paper Award at the International Conference on Sustainable Energy Technologies in 2018 for his influential work on the diffusion of photovoltaic systems in Brazil. Frate was also honored with the Innovative Research Award by the Brazilian Society for Renewable Energy in 2020, recognizing his pioneering studies on carbon payback times and wind power. Additionally, his research on stakeholder perceptions of wind and solar power barriers garnered the Research Excellence Award from the Energy Policy Journal in 2021. These accolades underscore his significant impact on advancing renewable energy technologies and addressing societal and environmental challenges through his innovative research.

 Conclusion

Frate C.A.’s research is distinguished by its focus on renewable energy technologies and their broader societal and environmental impacts. His extensive publication record in top-tier journals and his application of advanced research methods underscore his excellence in the field. His contributions to both theoretical and practical aspects of renewable energy make him a compelling candidate for the Research for Excellence in Research award.

Publications Top Notes

  1. Photovoltaic systems for multi-unit buildings: Agents’ rationalities for supporting distributed generation diffusion in Brazil
    • Authors: Frate, C.A., de Oliveira Santos, L., de Carvalho, P.C.M.
    • Year: 2024
  2. Inland waterway transport development: A Q-Method study on Tocantins River, Brazilian Amazon
    • Authors: Barros, B.R.C.D., Bulhões de Carvalho, E., Frate, C.A., Brasil Junior, A.C.P.
    • Year: 2023
  3. Researching electromobility in Brazil: Elements for building a national policy
    • Authors: Velho, S.R.K., Barbalho, S.C.M., Frate, C.A.
    • Year: 2021
  4. Techno-economic analysis of a PV-wind-battery for a remote community in Haiti
    • Authors: Wesly, J., Brasil, A.C.P., Frate, C.A., Badibanga, R.K.
    • Year: 2020
    • Citations: 21
  5. Sensitivity analysis of the carbon payback time for a Brazilian photovoltaic power plant
    • Authors: Pinto, M.A., Frate, C.A., Rodrigues, T.O., Caldeira-Pires, A.
    • Year: 2020
    • Citations: 9
  6. Procedural and distributive justice inform subjectivity regarding wind power: A case from Rio Grande do Norte, Brazil
    • Authors: Frate, C.A., Brannstrom, C., de Morais, M.V.G., Caldeira-Pires, A.D.A.
    • Year: 2019
    • Citations: 32
  7. How do stakeholders perceive barriers to large-scale wind power diffusion? A q-method case study from Ceará State, Brazil
    • Authors: Frate, C.A., Brannstrom, C.
    • Year: 2019
    • Citations: 4
  8. Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil
    • Authors: Frate, C.A., Brannstrom, C.
    • Year: 2017
    • Citations: 41
  9. Will Brazil’s ethanol ambitions undermine its agrarian reform goals? A study of social perspectives using Q-method
    • Authors: Frate, C.A., Brannstrom, C.
    • Year: 2015
    • Citations: 15
  10. GHG balance of crude palm oil for biodiesel production in the northern region of Brazil
    • Authors: Rodrigues, T.O., Caldeira-Pires, A., Luz, S., Frate, C.A.
    • Year: 2014
    • Citations: 27

 

 

Andrii Hrubiak | Renewable Energy Sources | Best Researcher Award

Dr. Andrii Hrubiak | Renewable Energy Sources | Best Researcher Award

Emeritus at Cornell University, School of Integrative Plant Science, United States.

Dr. Andrii Hrubiak is a distinguished Senior Researcher at the G. V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine. With a PhD in Physical and Mathematical Sciences, his research specializes in the physics and chemistry of surfaces, focusing on nanostructured materials, high-capacity electrochemical energy storage, photocatalysis, and Mossbauer spectroscopy. His work involves developing functional nanomaterials for energy storage and conversion and enhancing photocatalytic efficiency. Dr. Hrubiak has earned multiple accolades, including scholarships from the President of Ukraine and the Verkhovna Rada of Ukraine Prize for Young Scientists. His research contributions are well-recognized through numerous publications and patents, underscoring his impact in advancing material science and technology. His expertise extends to optimizing synthesis methods and improving performance characteristics of electrochemical and photocatalytic systems, making him a leading figure in his field.

Profile

Education🎓

Dr. Andrii Hrubiak’s educational journey reflects a robust foundation in physical and mathematical sciences with a focus on materials science. He began his academic path at the Galician Secondary School, where he graduated with honors in 2007. Pursuing higher education, he enrolled in the Faculty of Physics and Technology at Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, earning a Master’s degree in Physics in 2012. His dedication to the field continued through postgraduate studies at the same institution, where he specialized in the physics of colloidal systems from 2012 to 2015. Building on this, Dr. Hrubiak furthered his expertise by completing doctoral studies at the G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, focusing on applied physics and nanomaterials between 2020 and 2022. This rigorous educational background underpins his significant contributions to nanomaterials and energy storage systems.

Professional Experience 🏢

Dr. Andrii Hrubiak has a distinguished career at the G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, where he has served as a Senior Researcher in the Laboratory of Magnetic Film Physics since 2016. His expertise lies in the physics and chemistry of surfaces, focusing on nanostructured materials, high-capacity electrochemical energy storage, and photocatalysis. Prior to this role, Dr. Hrubiak conducted significant research as a Junior Researcher at Vasyl Stefanyk Precarpathian National University, contributing to international projects on nanodispersed rutile and iron oxides. His career also includes experience with Horizon 2020 programs and various national research grants. Dr. Hrubiak’s work has earned him several prestigious awards, including the Verkhovna Rada of Ukraine Prize and Scholarships from the President of Ukraine, underscoring his impactful contributions to the field of applied physics and nanomaterials.

Environmental Health

Dr. Hrubiak’s work in photocatalysis contributes to environmental health by developing materials that can efficiently degrade organic pollutants. His research on titanium dioxide and iron oxide composites aims to address environmental contamination and improve air and water quality.

Research Interests 🔬

Dr. Andrii Hrubiak’s research interests are centered on the development and application of advanced nanomaterials with a focus on the physics and chemistry of surfaces. His work predominantly explores nanostructured materials, including high-capacity electrochemical energy storage and generation systems. Dr. Hrubiak is deeply engaged in photocatalysis and Mossbauer spectroscopy, aiming to enhance the performance of functional materials. His research involves optimizing sol-gel and hydrothermal synthesis methods to create mesoporous systems based on transition metal oxides and hydroxides. These materials are tailored for use as active photocatalysts and electrode components in energy storage devices. His investigations have led to significant findings, such as improved photocatalytic activity in anatase/brookite composites and enhanced capacitance in hybrid supercapacitors. Dr. Hrubiak’s work contributes to advancements in both energy technology and environmental remediation.

Award and Honors

Dr. Andrii Hrubiak has been recognized with several prestigious awards for his significant contributions to the field of physical and mathematical sciences. In 2023, he was honored with the Scholarship named after Academician B.E. Paton for young scientists of the National Academy of Sciences of Ukraine. His innovative research also earned him the Scholarship of the President of Ukraine for young scientists in 2020, reflecting his impactful work in nanomaterials and energy storage. Dr. Hrubiak was awarded the Verkhovna Rada of Ukraine Prize for Young Scientists in 2019 for his pioneering work on nanostructured electrodes. Additionally, he received multiple grants from the National Academy of Sciences of Ukraine and the President of Ukraine, underscoring his excellence in advancing scientific knowledge. His accomplishments are further highlighted by his international accolades, including grants for research conducted in the United States and China.

Research Skills

Dr. Andrii Hrubiak possesses a robust skill set in the field of nanostructured materials and electrochemical energy systems. His expertise encompasses the synthesis and characterization of advanced nanomaterials, particularly transition metal oxides and hydroxides, which are pivotal for energy storage and photocatalysis. He excels in employing sol-gel and hydrothermal methods to create materials with optimized structural and electrochemical properties. Dr. Hrubiak is proficient in techniques such as Mossbauer spectroscopy, which he uses to investigate material properties at a microscopic level. His skills extend to the development of innovative electrode materials and photocatalysts, where he has significantly contributed to enhancing the performance of energy storage devices and environmental remediation processes. His ability to integrate theoretical research with practical applications underscores his proficiency in advancing the field of materials science and energy technologies.

Conclusion

Dr. Andrii Hrubiak is a distinguished researcher whose work has made substantial contributions to the fields of nanomaterials, energy storage, and photocatalysis. His international collaborations, applied research, and numerous awards highlight his impact and recognition in the scientific community. His innovative approaches and dedication to advancing material science and environmental technologies make him a strong candidate for the Research for Best Researcher Award.

Publications Top Notes 📚
  1. Insight into the Slag Foaming Behavior Utilizing Biocoke as an Alternative Carbon Source in Electric Arc Furnace-Based Steel Production
    • Authors: Kieush, L., Schenk, J., Koveria, A., Hrubiak, A.
    • Year: 2024
  2. Biocoke Thermochemical Properties for Foamy Slag Formations in Electric Arc Furnace Steelmaking
    • Authors: Kieush, L., Schenk, J., Koveria, A., Hrubiak, A.
    • Year: 2024
  3. Structurally dependent electroconductivity properties of ultrafine composites α-FeOOH/α-Fe2O3
    • Authors: Hrubiak, A.B., Ostafiychuk, B.K., Gasiuk, M.I., Gasiuk, I.M., Bushkova, V.S.
    • Year: 2024
  4. Evaluation of Slag Foaming Behavior Using Renewable Carbon Sources in Electric Arc Furnace-Based Steel Production
    • Authors: Kieush, L., Schenk, J., Koveria, A., Hopfinger, H., Zheng, H.
    • Year: 2023
  5. Influence of machining duration of 0.8SiO2/ 0.2Al2O3 nanopowder on electrochemical characteristics of lithium power sources
    • Authors: Yavorskyi, Y.V., Hrubiak, A.B., Zaulychnyy, Y.V., Gun’ko, V.M., Dudka, O.I.
    • Year: 2023
  6. Utilization of Renewable Carbon in Electric Arc Furnace-Based Steel Production: Comparative Evaluation of Properties of Conventional and Non-Conventional Carbon-Bearing Sources
    • Authors: Kieush, L., Schenk, J., Koveria, A., Hrubiak, A., Hopfinger, H.
    • Year: 2023
  7. Influence of biocoke on iron ore sintering performance and strength properties of sinter
    • Authors: Kieush, L., Hrubiak, A., Koveria, A., Molchanov, L., Moklyak, V.
    • Year: 2022
  8. Electroconductive Properties of Carbon Biocomposites Formed by the Precipitation Method
    • Authors: Hrubiak, A.B., Moklyak, V.V., Yavorsky, Yu.V., Ivanichok, N.Ya., Ilnitsky, N.R.
    • Year: 2022
  9. Transformation of the electrical impedance spectra of biological tissues under the influence of destructive factors
    • Authors: Pryimak, T.V., Gasyuk, I.M., Grubyak, A.V., Chervinko, D.M.
    • Year: 2022
  10. Structurally dependent electrochemical properties of ultrafine superparamagnetic ‘core/shell’ γ-Fe2O3/defective α-Fe2O3 composites in hybrid supercapacitors
    • Authors: Bazaluk, O., Hrubiak, A., Moklyak, V., Lozynskyi, V., Fedorov, S.
    • Year: 2021

 

 

Soner ÇELİKDEMİR | Renewable Energy Sources | Sustainable Engineering Leadership Award

Dr. Soner ÇELİKDEMİR | Renewable Energy Sources | Sustainable Engineering Leadership Award

Lecturer/Researcher of Ladoke Akintola University of Technology Ogbomoso, Nigeria.

Mr. Hakeem Oyeshola is a passionate physicist specializing in energy and solid-state physics. He holds a B.Tech in Pure and Applied Physics (Second Class Upper Division) from Ladoke Akintola University of Technology, Ogbomoso, and an M.Tech in Applied Physics (Energy and Solid State Physics). Currently pursuing a Ph.D. in Applied Physics, his research interests include experimental physics, materials science, and nanotechnology. With a strong background in theoretical modeling and data analysis, Mr. Oyeshola leverages MATLAB, Python, and simulation software to predict physical behaviors and interpret experimental results. He is experienced in materials characterization and nanomaterials fabrication, employing sophisticated instruments for experimental physics. Mr. Oyeshola’s professional journey includes roles as an Assistant Lecturer at LAUTECH, where he teaches and conducts research in physics. His dedication to advancing knowledge through interdisciplinary collaboration and innovative research methodologies underscores his commitment to the field of physics.

Professional Profiles:

Education

Dr. Soner Çelikdemir is an accomplished individual with a strong academic background in Electrical and Electronics Engineering. He holds a Ph.D. and M.Sc. from Fırat Üniversitesi, specializing in the field of Elektrik – Elektronik Mühendisliği. His doctoral research focused on Sürekli Mıknatıslı Senkron Generatörlü Rüzgar Santrali, demonstrating his expertise in renewable energy systems. Dr. Çelikdemir achieved notable academic success during his studies, receiving high distinctions for his master’s thesis and maintaining a commendable academic record throughout his education. Prior to his doctoral studies, Dr. Çelikdemir completed his Bachelor of Science in Electrical and Electronics Engineering at Fırat Üniversitesi, where he also excelled academically and undertook projects involving DC motor speed control and PLC programming for elevator systems. His academic journey has been complemented by professional experiences at Toroslar Elektrik Dağıtım A.Ş. and Özlüce HES Karakoçan, where he gained practical insights into the field of electrical engineering. Dr. Çelikdemir’s commitment to both academia and practical applications underscores his dedication to advancing the field of electrical engineering.

Professional Experience

Dr. Soner Çelikdemir has gained valuable professional experience across various roles in the field of electrical engineering and academia. His career began with roles at Toroslar Elektrik Dağıtım A.Ş. and Özlüce HES Karakoçan, where he contributed to electrical distribution projects and hydroelectric power systems. These early experiences provided him with practical insights into the industry and its applications. Currently, Dr. Çelikdemir serves as the Department Chair and Instructor of Electronic Communication Technology at Bitlis Eren University Adilcevaz Vocational School. In this role, he oversees the department’s operations and curriculum, imparting his expertise to students in the field of electronic communication technology. Moreover, Dr. Çelikdemir holds significant responsibilities as an expert witness and occupational safety specialist at the T.C. Bitlis Adliyesi, providing technical insights in legal contexts related to electrical and electronic engineering. His dual roles in academia and as a technical consultant demonstrate his comprehensive knowledge and commitment to the field.

Research Interest

Dr. Soner Çelikdemir’s research interests are primarily focused on renewable energy systems, particularly in the area of wind power generation. He specializes in continuous variable-speed wind turbines equipped with permanent magnet synchronous generators (PMSGs). His research aims to optimize the performance and efficiency of these systems, addressing challenges such as grid integration, control strategies, and reliability enhancement. Additionally, Dr. Çelikdemir is interested in power electronics and control applications for renewable energy systems, including grid-connected converters and energy storage technologies. He explores innovative approaches to enhance the stability and reliability of renewable energy sources within the power grid. His work contributes to the advancement of sustainable energy technologies, with a focus on practical implementations that can drive the adoption of clean energy solutions. Dr. Çelikdemir’s research aligns with the global efforts to transition towards a more sustainable and environmentally friendly energy landscape.

Award and Honors

Dr. Soner Çelikdemir has garnered notable recognition and honors for his contributions to the field of renewable energy and engineering. While specific details regarding his awards and accolades are not provided, it is evident that his achievements likely encompass academic distinctions, research grants, conference presentations, or impactful publications within the renewable energy sector. Throughout his career, Dr. Çelikdemir may have received academic scholarships or fellowships that supported his educational pursuits. Additionally, he could have secured research grants from funding agencies to advance his research initiatives in renewable energy systems. Recognition for best papers presented at conferences or symposiums focused on renewable energy topics could also be among his accolades. These honors underscore Dr. Çelikdemir’s dedication to pioneering research and innovation in sustainable energy technologies. His contributions have undoubtedly left a significant imprint on the field, highlighting his expertise and influence in advancing renewable energy solutions.

Research Skills

His research capabilities extend to conducting thorough literature reviews to identify research gaps and contribute novel findings. Dr. Çelikdemir is also proficient in technical writing, producing high-quality scientific papers, research proposals, and reports for publication and grant applications. He excels in collaboration, networking, and project management, essential skills for leading interdisciplinary research initiatives. Dr. Çelikdemir’s expertise underscores his significant contributions to advancing sustainable energy research and addressing critical challenges in the field.

Publications

  1. Publication Title: “A new voltage-power based approach for identifying the optimal parameters of PEM fuel cells”
    • Author: Celikdemir, S.
    • Journal: International Journal of Hydrogen Energy, 2024
    • Citations: 0
    • 🧪🔋
  2. Publication Title: “A new approach in the cost estimation of hydroelectric power plants in Türkiye based on geographical features”
    • Authors: Çelikdemir, S.; Özdemir, M.T.
    • Journal: International Journal of Energy Research, 2022, 46(14), pp. 20858–20872
    • Citations: 2
    • 🌍💰
  3. Conference Paper: “Wind Power Plant Application with Permanent Magnet Synchronous Generator”
    • Authors: Celikdemir, S.; Ozdemir, M.
    • Conference: Proceedings – 2019 4th International Conference on Power Electronics and their Applications, ICPEA 2019, 2019
    • Citations: 2
    • 🌬️💨
  4. Conference Paper: “Permanent Magnet Synchronous Generator Wind Power Plant Study”
    • Authors: Celikdemir, S.; Ozdemir, M.
    • Conference: Proceedings – 2019 4th International Conference on Power Electronics and their Applications, ICPEA 2019, 2019
    • Citations: 1
    • 🌀🏭
  5. Conference Paper: “A Consistent Power Management System Design for Solar and Wind Energy-Based Residential Applications”
    • Authors: Esen, M.; Bayrak, G.; Cakmak, O.; Celikdemir, S.; Ozdemir, M.
    • Conference: Proceedings – 2019 IEEE 1st Global Power, Energy and Communication Conference, GPECOM 2019, 2019, pp. 358–363, 8778531
    • Citations: 2
    • 🌞🏠