Anil Kumar Kanuri | Pharmaceutical Chemistry | Best Scholar Award

Mr. Anil Kumar Kanuri | Pharmaceutical Chemistry | Best Scholar Award

Graduate Research Assistant from University of Malaya, Malaysia

Anil Kumar Kanuri is an emerging pharmaceutical researcher with an impressive blend of academic and industrial experience. Currently a Ph.D. candidate in Pharmaceutical Technology at Universiti Malaya, Malaysia, Anil has developed an interdisciplinary expertise that spans drug discovery, organic synthesis, analytical chemistry, and molecular modeling. His academic journey reflects continuous excellence—from earning distinction in his Bachelor’s and Master’s degrees to presenting award-winning research at national and international platforms. Anil has contributed significantly to laboratory-based research and quality assurance in reputed pharmaceutical companies, and he currently focuses on the synthesis and biological evaluation of quinolinyl chalcones as multi-targeted anti-cancer agents. Apart from his technical capabilities, Anil demonstrates a proactive leadership spirit, holding key memberships in the Royal Society of Chemistry (UK), German Chemical Society (GDCh), and the American Crystallographic Association. He also plays an active role in the Chemistry Society of Universiti Malaya as Head of the Green Chemistry and Sustainability Unit. Through a combination of hands-on lab skills, regulatory knowledge, academic contribution, and mentorship, Anil exemplifies the qualities of a dedicated scholar. His consistent record of performance, innovation, and scientific integrity positions him as a promising contributor to the global pharmaceutical research community.

Professional Profile

Education

Anil Kumar Kanuri’s educational background is rooted in chemistry and biotechnology, culminating in his current pursuit of a Ph.D. in Pharmaceutical Technology at Universiti Malaya, Kuala Lumpur, Malaysia. He commenced his academic career with a Bachelor of Science degree (Triple Major: Biotechnology, Biochemistry, Chemistry) from Adikavi Nannaya University in 2015, where he graduated with distinction and gained early exposure to interdisciplinary sciences. His undergraduate thesis focused on vermicomposting as an eco-friendly approach to sustainable gardening. He further pursued a Master of Science in Organic Chemistry from Andhra University, Vizag, India, graduating with distinction in 2017. His master’s thesis involved the synthesis and biological evaluation of acridone derivatives, marking his entry into medicinal chemistry. Anil’s current Ph.D. research focuses on the design, synthesis, and in vitro/in vivo evaluation of quinolinyl chalcones as multi-targeted anticancer agents. His doctoral work integrates organic synthesis, molecular docking, toxicity predictions, immunohistochemistry, and model animal testing. Throughout his academic journey, Anil has consistently demonstrated strong analytical thinking, practical lab expertise, and theoretical grounding, preparing him to tackle complex research challenges in pharmaceutical science and drug development. His commitment to continuous learning is reflected in his active participation in scientific symposia and collaboration with academic and industry mentors.

Professional Experience

Anil Kumar Kanuri possesses a diverse professional background encompassing academia, research, and the pharmaceutical industry. Since May 2022, he has been working as a Graduate Research Assistant at Universiti Malaya, where he is involved in advanced drug discovery projects. His responsibilities include molecular docking, organic synthesis, assay development, animal model testing, and computational modeling. Prior to this, Anil worked as an Executive in Development Quality Assurance (DQA) at Biophore India Pharmaceuticals from December 2020 to May 2022, ensuring compliance with USFDA, EMA, and ICH regulations and overseeing validation protocols for drug development. His career also includes roles as a Research Associate in Auro Vaccines and Aurobindo Pharma Limited from 2017 to 2020. In these positions, he handled microbiology lab testing, analytical method development, sterility assays, and GMP/GLP documentation. He has hands-on experience with instrumentation such as HPLC, LC-MS, UV-Vis, IR, and NMR. Across all roles, Anil consistently contributed to quality assurance, regulatory compliance, analytical validation, and team mentoring. His ability to work in both R&D and QA environments highlights his technical versatility and commitment to excellence. This well-rounded experience has provided him with a comprehensive view of pharmaceutical processes from discovery to validation.

Research Interest

Anil Kumar Kanuri’s research interests lie at the intersection of medicinal chemistry, pharmaceutical technology, and drug discovery. He is particularly focused on the design and development of novel anticancer agents, with a current emphasis on quinolinyl chalcone derivatives. His doctoral research explores multi-targeted approaches against breast cancer, employing in silico modeling, in vitro cytotoxic assays, and in vivo efficacy testing using rodent and zebrafish models. Anil is deeply interested in structure-activity relationship (SAR) studies and the use of molecular docking tools to optimize lead compounds. Additionally, he has a strong background in organic synthesis and analytical characterization, which allows him to bring new drug candidates from conceptualization to biological validation. His industrial experience further supports his academic goals, especially in the areas of quality control, regulatory compliance, and validation protocols aligned with global standards. Beyond oncology, Anil has a broader interest in nano-drug delivery systems, vaccine development, and bioanalytical chemistry. He also maintains a commitment to sustainable research, as evidenced by his leadership role in the Green Chemistry Unit at Universiti Malaya. These interests position him at the forefront of modern pharmaceutical research, where interdisciplinary strategies are essential for addressing complex health challenges.

Research Skills

Anil Kumar Kanuri is equipped with a broad and advanced set of research skills that support his work in pharmaceutical sciences and medicinal chemistry. His core competencies include organic synthesis of small molecules, computational drug modeling, bioassay development, and analytical instrumentation. In the lab, he is proficient in techniques such as HPLC, LC-MS, NMR, UV-Vis spectroscopy, and IR spectroscopy for compound characterization. He applies computational tools for molecular docking and toxicity predictions to assess pharmacological potential early in the drug development process. Anil also possesses hands-on expertise with cell culture, immunohistochemistry, and animal model experiments involving mice, rats, zebrafish, and drosophila—enabling robust in vivo evaluation of drug candidates. His statistical and bioinformatics skills allow him to analyze experimental data with precision. In addition to technical skills, Anil is experienced in scientific writing, grant preparation, conference presentation, and peer collaboration. His background in quality assurance gives him an added edge in maintaining reproducibility, documentation standards, and regulatory compliance. Moreover, he mentors junior researchers and contributes to academic administration, reflecting leadership and communication skills. This comprehensive skill set makes Anil highly competent to contribute to multidisciplinary pharmaceutical research and collaborative projects.

Awards and Honors

Anil Kumar Kanuri has received multiple awards and recognitions throughout his academic and professional career, reflecting his excellence in research, presentation, and academic performance. During his undergraduate years, he was awarded the Best BSc Student in Chemistry at SKBR College in 2015. In 2017, he earned the Best Presenter Award for his Master’s project at Ideal Institute of Technology. He also won first prize at CHEMFEST-17 for his presentation on the applications of mass spectrometry, showcasing his strength in communicating complex scientific ideas. More recently, in 2020, he received the Best Presentation Award at a UGC-sponsored national seminar for his work on ethological studies in captive Syrian hamsters. As a Ph.D. researcher at Universiti Malaya, Anil presented at the International Symposium of Pharmacy Research (IMPRES 2022) and UM’s Research Carnival 2023, where his contributions were well received. These honors, along with his selection to scientific societies such as the Royal Society of Chemistry (UK), GDCh (Germany), and ACA (USA), further validate his research capabilities and leadership. His consistent achievement across academic and professional settings demonstrates a commitment to excellence, innovation, and contribution to the broader scientific community.

Conclusion

Anil Kumar Kanuri is a passionate and accomplished scholar whose career bridges the gap between rigorous academic research and practical pharmaceutical application. With a strong foundation in organic and analytical chemistry, complemented by hands-on experience in regulatory and quality assurance environments, he exemplifies the modern researcher’s profile. His doctoral work in developing quinolinyl chalcone-based anticancer agents illustrates not just technical depth but also translational potential in addressing real-world health challenges. Anil’s ability to navigate both in vitro and in vivo experimental systems, combined with his proficiency in computational modeling and analytical instrumentation, positions him as a well-rounded scientist. Beyond his technical qualifications, he actively contributes to the academic community through mentorship, society leadership, and collaborative projects. His awards and memberships reflect both scholarly excellence and peer recognition. With continuous commitment to innovation, sustainability, and scientific integrity, Anil is poised to make substantial contributions to pharmaceutical research and drug discovery. He is undoubtedly a deserving candidate for the Best Scholar Award, and his trajectory indicates a promising future in academia or industry. His multifaceted profile, combined with his global research orientation, makes him a standout among emerging researchers in pharmaceutical sciences.

Publications Top Notes

  1. Centella asiatica: Advances in Extraction Technologies, Phytochemistry, and Therapeutic Applications
    🔸 Journal: Life
    🔸 Date: 2025-07-09
    🔸 Contributors: Zaw Myo Hein, Prarthana Kalerammana Gopalakrishna, Anil Kumar Kanuri, Warren Thomas, Farida Hussan, Venkatesh R. Naik, Nisha Shantakumari, Muhammad Danial Che Ramli, Mohamad Aris Mohd Moklas, Che Mohd Nasril Che Mohd Nassir, et al.

  2. Novel Isoxazole Functionalized Quinazolinone Derivatives and Their Anticancer Activity
    🔸 Journal: Russian Journal of General Chemistry
    🔸 Date: 2025-01
    🔸 Contributors: Dr. Santosh Kumar Konda, Anil Kumar Kanuri, Chennuri Bharath Kumar, Rehana Anjum, Rashmi Trivedi, Madhusudan Patlola, I. Yamini Saraswathi Ranga Pratap, Srinu Bhoomandla

  3. Anti-SARS-CoV-2 Biotherapeutics and Chemotherapeutics: An Insight into Product Specifications and Marketing Dynamics
    🔸 Journal: Progress in Microbes and Molecular Biology
    🔸 Year: 2022
    🔸 Contributors: Kotra V., Mallem D., Kanuri A.K., Burra M.R., Nyamathullah S., Ying L.S., Husain K.A., Varala R., Sudhakar M., Goh K.W., et al.

 

 

Fatemeh Mohammadpour | Biophysical Chemistry | Best Researcher Award

Assist. Prof. Dr. Fatemeh Mohammadpour | Biophysical Chemistry | Best Researcher Award

University Assistant Professor and Researcher from Farhangian University, Iran

Dr. Fatemeh Mohammadpour is a dedicated researcher and academic specializing in condensed matter physics, nanotechnology, and molecular dynamics simulations. Currently serving as an Assistant Professor at Farhangian University in Iran, she has developed a strong foundation in both theoretical and experimental physics. Her research integrates cutting-edge materials science with applications in energy conversion and biomedicine, particularly focusing on dye-sensitized solar cells, TiO₂ nanotubes, deep eutectic solvents, and targeted drug delivery. With a Ph.D. from Shiraz University and a postdoctoral fellowship under her belt, Dr. Mohammadpour has also gained international experience as a visiting researcher in Germany. Her work is known for its interdisciplinary approach, bridging physics, chemistry, and biomedical engineering. Dr. Mohammadpour has authored multiple peer-reviewed articles and has been an invited speaker at international conferences. Her contributions to science are evident in her comprehensive research output and her ability to translate theoretical insights into practical technologies. Beyond research, she contributes to education through teaching undergraduate courses in physics. Dr. Mohammadpour exemplifies academic commitment and scientific innovation, and her profile reflects a researcher poised for further leadership and impact in her field.

Professional Profile

Education

Dr. Fatemeh Mohammadpour holds a Ph.D. in Physics (Condensed Matter) from Shiraz University, Iran, where she conducted research on the optimization of TiO₂ and ZnO nanostructures to enhance the efficiency of dye-sensitized solar cells. Her doctoral work was supervised by Prof. Dr. Mahmood Moradi and completed between 2010 and 2015. Prior to her Ph.D., she earned a Master’s degree in Physics (Condensed Matter) from the same university, working under Dr. Afshin Montakhab. Her master’s thesis focused on finite size scaling in self-organized criticality, providing her with a strong theoretical foundation in statistical mechanics and complex systems. She began her academic journey with a Bachelor’s degree in Physics from Zanjan University, Iran, completed in 2004. Throughout her academic training, Dr. Mohammadpour demonstrated a consistent interest in materials science, nanotechnology, and computational physics. Her educational background is deeply rooted in both experimentation and simulation, enabling her to approach research problems with a holistic and interdisciplinary perspective. The progression of her academic qualifications reflects a solid commitment to scientific advancement and a robust preparation for her roles in research and academia.

Professional Experience

Dr. Fatemeh Mohammadpour has held a range of academic and research positions that reflect her expertise in physics and materials science. Since January 2018, she has served as an Assistant Professor of Physics at Farhangian University, Shiraz Campus, where she teaches undergraduate courses such as Mechanical Physics, Electricity and Magnetism, Thermal Physics, Electromagnetism, and Mathematical Methods in Physics. Prior to this role, she completed a postdoctoral fellowship at Shiraz University between 2016 and 2017 under the supervision of Dr. Amin Reza Zolghadr. Her postdoctoral research focused on the confinement of ionic liquid mixtures between amorphous TiO₂ nanopores, combining simulation and experimental analysis. Dr. Mohammadpour also gained international research experience as a Visiting Researcher at Friedrich Alexander University in Germany, where she collaborated with Prof. Dr. Patrik Schmuki on the synthesis of TiO₂ nanotubes for dye-sensitized solar cells. These professional experiences have equipped her with a wide range of scientific competencies, from advanced materials characterization to international collaboration and multidisciplinary teaching. Her career trajectory underscores a strong combination of research productivity, scientific communication, and academic instruction.

Research Interests

Dr. Mohammadpour’s research interests are both interdisciplinary and application-oriented, encompassing several high-impact areas of materials science and physics. A significant focus of her work lies in the synthesis, characterization, and application of TiO₂ nanotubes, particularly in enhancing the performance of dye-sensitized solar cells (DSSCs). She explores how variations in structural morphology influence photovoltaic efficiency. Another key area of her research is deep eutectic solvents (DES) and their applications in energy storage and biomedical systems. These novel solvents provide eco-friendly and cost-effective alternatives for chemical processes and drug delivery. She is also deeply involved in molecular dynamics simulations, which allow her to model nanoscale interactions in systems such as ionic liquids, drug molecules, and biological membranes. Her studies extend to targeted drug delivery systems, where she investigates the interaction between anticancer drugs and membranes to improve therapeutic efficacy. Overall, Dr. Mohammadpour’s research is aimed at bridging theoretical modeling with experimental validation, offering novel insights into nanotechnology for energy and healthcare solutions. Her ability to integrate multiple disciplines makes her contributions highly relevant in today’s evolving scientific landscape.

Research Skills

Dr. Fatemeh Mohammadpour possesses an extensive suite of research skills that span both computational and experimental methodologies. Her computational expertise includes molecular dynamics simulations, utilizing software like GROMACS, Gaussian 09, VMD, and HyperChem to model complex systems such as drug-membrane interactions and ionic liquid behavior. These simulations allow her to study nanoscale dynamics and optimize materials for targeted applications. On the experimental side, Dr. Mohammadpour is highly proficient in a variety of characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and UV-Vis spectroscopy. She has also worked extensively with photoluminescence spectroscopy, impedance spectroscopy, and high-performance liquid chromatography (HPLC). Her hands-on experience includes the fabrication of TiO₂ and ZnO nanostructures, anodization techniques, and the development of dye-sensitized solar cells (DSSCs). In addition, she has synthesized ionic liquids and deep eutectic solvents, aligning her lab capabilities with green chemistry principles. This well-rounded research skill set allows her to design, simulate, fabricate, and analyze innovative systems across various scientific disciplines.

Awards and Honors

Dr. Fatemeh Mohammadpour has been recognized for her scientific contributions through invited speaking engagements and conference presentations. She was an invited speaker at the International Virtual Congress on Pediatrics (2021), where she presented her work on using TiO₂ nanotubes as carriers for anticancer drugs like Doxorubicin. In the same year, she was also invited to present at the International Conference on Carbon Chemistry and Materials in Italy, highlighting the role of deep eutectic solvents in dye-sensitized solar cell applications. These honors reflect not only the originality of her research but also its global relevance. In addition to invited talks, she has consistently contributed to both national and international conferences, presenting studies on nanostructures, simulation-based toxicity assessments, and solar energy devices. Though specific awards are not listed in her profile, her repeated invitations to speak at scientific forums and her contributions to high-impact journals suggest she is well-regarded within the academic and research community. Her visibility in interdisciplinary research fields continues to grow, and future recognitions are likely as she advances in her career.

Conclusion

Dr. Fatemeh Mohammadpour is a highly capable and impactful researcher whose work integrates condensed matter physics, nanomaterials, and computational modeling. Her expertise in fabricating and simulating advanced materials like TiO₂ nanotubes and deep eutectic solvents places her at the forefront of innovation in clean energy and drug delivery technologies. With a strong academic foundation and international experience, she has proven herself as a dynamic scientist who effectively combines theory and practice. Her teaching responsibilities further demonstrate her dedication to fostering academic excellence and training the next generation of physicists. Although there is room to expand her international collaborations and citation index, her growing portfolio of publications and invited presentations is commendable. Dr. Mohammadpour’s multidisciplinary skills, research achievements, and academic leadership make her an excellent candidate for recognition through awards such as the Best Researcher Award. Her ongoing work continues to contribute meaningfully to both scientific understanding and real-world technological applications, marking her as a promising figure in the global research landscape.

Publications Top Notes

  1. Boroomand, Samaneh, Delara Mohammad-Aghaie, Fatemeh Mohammadpour
    “Molecular dynamics and DFT analysis of artemisinin solubility in acidic deep eutectic solvents: Implications for cancer drug delivery.”
    Journal: Journal of Molecular Liquids (Accepted)

  2. Boroomand, Samaneh, Delara Mohammad-Aghaie, Fatemeh Mohammadpour
    “Molecular dynamics insight of interaction between Artemisinin and its derivatives and the cancer cell membrane.”
    Journal: Computational and Theoretical Chemistry, 1243, 114997

  3. Amiri, Fatemeh, Mohammad Reza Golsefatan, Fatemeh Mohammadpour, Moslem Amiri Tayyebi
    “Investigating the Influence of the STEM Approach in Elementary Science Textbooks.”
    Journal: Research in Chemistry Education

  4. Mohammadpour, Fatemeh, Mohammad Ebrahimi-Dabbah, Maryam Dashti
    “Evaluation of the effectiveness of inquiry method in improving students’ academic achievement, practical skills, and inference power in chemistry course.”
    Journal: Research in Chemistry Education, 7(2): 72–90

  5. Amiri, Fatemeh, Fatemeh Mohammadpour
    “Temperature Effect on the Hybrid Electron Spin-oscillation Entanglement in an Anisotropic Two-dimensional Quantum Dot.”
    Journal: Iranian Journal of Applied Physics, 14(1): 25–44

  6. Mohammadpour, Fatemeh, Asma Mansouri Najafabadi
    “Comparison of crystalline structure, electron transport properties and efficiency in open and closed bottom titanium dioxide nanotube dye sensitized solar cells.”
    Journal: Nanoscale, 9(4): 63–71

  7. Maryam Heidari Dokoohaki, Fatemeh Mohammadpour, Amin Reza Zolghadr
    “Dye-Sensitized Solar Cells Based on Deep Eutectic Solvent Electrolyte: Insights from Experiment and Simulation.”
    Journal: Journal of Physical Chemistry C, 125, 15155–15165

  8. Sadaf Shirazi-Fard, Fatemeh Mohammadpour, Amin Reza Zolghadr, Axel Klein
    “Encapsulation and Release of Doxorubicin from TiO₂ nanotubes: Experiment, Density Functional Theory Calculations and Molecular Dynamics Simulation.”
    Journal: Journal of Physical Chemistry B, 125, 5549–5558

  9. Maryam Heidari Dokoohaki, Fatemeh Mohammadpour, Amin Reza Zolghadr
    “New Insight into Electrosynthesis of Ordered TiO₂ Nanotubes in EG-Based Electrolytes: Combined Experimental and Computational Assessment.”
    Journal: Physical Chemistry Chemical Physics, 22, 22719–22727

  10. Rokhsareh Khodabandeh, Fatemeh Mohammadpour, Amin Reza Zolghadr, Axel Klein
    “Zn capped Al₂O₃ and TiO₂ nanoporous arrays as pH sensitive drug delivery systems: a combined experimental and simulation study.”
    Journal: New Journal of Chemistry, 44, 16602–16612

 

RAVI VARALA | Chemistry | Best Researcher Award

Dr. RAVI VARALA | Chemistry | Best Researcher Award

SCIENTIST from SCRIPS PHARMA, India

Dr. Ravi Varala is a seasoned researcher in synthetic organic chemistry, with over 25 years of academic and industrial experience. He currently serves as an R&D Scientist at Scrips Pharma, Hyderabad, and as Director of Marketing at Swastha Biosciences. His career spans international postdoctoral roles, visiting researcher positions, and teaching appointments in reputed institutions across India, Portugal, Spain, Malaysia, and Brazil. Dr. Varala’s work includes the synthesis of biologically relevant heterocyclic compounds, sigmatropic rearrangements, and anticancer agents like Staurosporinone. He has made impactful contributions through his interdisciplinary collaboration, student mentorship, and laboratory innovation. His training includes hands-on expertise with modern chemical instrumentation and cheminformatics. With a Ph.D. from the Indian Institute of Chemical Technology (IICT-CSIR), Hyderabad, and multiple roles as a scientific investigator and researcher, he brings a unique combination of scholarly excellence and industrial insight. Dr. Varala has demonstrated strengths in problem-solving, manuscript writing, and research guidance. His professional journey reflects a commitment to advancing scientific knowledge and fostering academic-industry synergy. With a focus on meaningful scientific innovation, he stands out as a distinguished professional in the field of pharmaceutical and chemical sciences. He is currently active in international collaborations and continues to contribute significantly to his domain.

Professional Profile

Education

Dr. Ravi Varala holds a Ph.D. in Chemistry from the Indian Institute of Chemical Technology (IICT-CSIR), Hyderabad, awarded in 2006. His doctoral thesis, titled “A Facile Synthesis of Biologically Active Phthalimides & Its Analogues – A Study,” involved the development of novel heterocyclic compounds with therapeutic relevance, emphasizing the design and synthesis of N-phthaloyl-based structures. Prior to his doctorate, he completed his M.Sc. in Organic Chemistry from Kakatiya University (1997–1999), where he earned a First Class distinction. His undergraduate degree, B.Sc., was completed at Osmania University between 1993 and 1996, also with First Class distinction. He began his academic journey with distinction in his Intermediate (1991–1993) and SSC (1991) under the Board of Intermediate and Secondary Education respectively. Dr. Varala’s educational path reflects a consistent record of academic excellence and specialization in synthetic organic chemistry. His strong foundation in organic synthesis laid the groundwork for his future research in pharmaceutical and medicinal chemistry. His academic journey has not only been marked by scholarly rigor but also by early exposure to research, which has greatly influenced his research direction and professional trajectory in chemical sciences.

Professional Experience

Dr. Ravi Varala’s professional experience is both diverse and expansive, encompassing academic research, teaching, and industrial roles. He is currently working as an R&D Scientist at Scrips Pharma, Hyderabad, while also serving as the Director of Marketing at Swastha Biosciences, a dual role that showcases his versatility in both scientific innovation and strategic business development. Since December 2023, he has been a Research Fellow at INTI International University, Malaysia. His academic contributions include a significant tenure as a Contract Lecturer at TS-IIIT from January 2011 to July 2019, where he contributed to undergraduate education in chemistry. Internationally, he served as a Visiting Researcher at the prestigious University of São Paulo, Brazil (2015–2016), working under Prof. Osvaldo N. Oliveira Jr., an eminent scientist with an h-index of 85. His earlier industry experience includes positions as Associate Scientist at Laxai-Avanti Pharma and Research Scientist at Sapala Organics. Between 2007 and 2009, he worked as a Postdoctoral Research Associate in Portugal and Spain. Dr. Varala’s professional journey demonstrates his capacity to contribute across multiple sectors—academic, industrial, and global research—highlighting a comprehensive and impactful career in chemistry and pharmaceuticals.

Research Interest

Dr. Ravi Varala’s research interests lie predominantly in the field of synthetic organic chemistry, with a strong focus on heterocyclic compounds, natural product synthesis, and anticancer molecules. His early doctoral and postdoctoral research focused on the design and development of biologically active molecules such as N-phthaloyl analogues, and indolocarbazole alkaloids like Staurosporinone and K252d, which are known for their anticancer properties. He has also worked extensively on sigmatropic rearrangements, a crucial mechanism in modern organic synthesis. Dr. Varala’s work combines classical synthetic methods with modern catalytic processes and aims at building structurally complex, bioactive molecules. He is passionate about developing efficient synthetic pathways that improve yield and reduce environmental impact. In addition, his role as a research guide has allowed him to shape the research interests of young scholars, fostering innovation in both academia and the pharmaceutical industry. His interests also extend to structure-activity relationship (SAR) studies and target-based drug design, making his research valuable for therapeutic development. With international experience and a collaborative mindset, he is keen on multidisciplinary research that bridges chemistry with life sciences, aiming for translational impact in medical and pharmaceutical applications.

Research Skills

Dr. Ravi Varala possesses a robust skill set tailored to modern chemical research and pharmaceutical development. He is highly trained in multi-step organic synthesis, utilizing contemporary techniques and methodologies to construct complex molecular frameworks. His operational expertise includes sophisticated analytical and structural elucidation instruments such as NMR, IR, UV spectroscopy, and Polarimeter, essential for validating synthetic products. Dr. Varala is adept at cheminformatics tools including SciFinder, Beilstein, Web of Knowledge, and ISIS-based software, which he uses to plan, model, and refine synthetic strategies. He also demonstrates strong capabilities in manuscript writing, research proposal development, and experimental planning, reflecting his academic rigor. His experience spans both bench-level chemistry and supervisory roles, making him well-versed in managing research teams and guiding students through problem-solving in laboratory settings. In teaching and curriculum development, he shows an innovative approach by integrating modern pedagogical strategies like TLET/SSDP. His balanced experience in academic mentoring, industrial application, and research publication positions him as a highly skilled and versatile researcher. His comprehensive understanding of chemical synthesis and analytical techniques makes him a valuable asset to any scientific or industrial organization.

Awards and Honors

While specific awards and honors have not been explicitly detailed in the provided profile, Dr. Ravi Varala’s career reflects significant international recognition and academic trust, as demonstrated by his appointments and research fellowships. His selection as a Visiting Researcher at the University of São Paulo, Brazil—ranked among the world’s top 100 universities—is a prestigious academic endorsement. Moreover, his postdoctoral positions at the University of New Lisbon, Portugal, and ICIQB, Spain, underscore his strong reputation within European academic circles. These appointments are highly competitive and typically awarded based on a rigorous selection process evaluating scientific merit, publication record, and potential for collaboration. His role as a Research Fellow at INTI International University, Malaysia, further signifies recognition of his ongoing contributions to chemical sciences. Additionally, his continued involvement as a research guide, project lead, and director-level professional indicates professional trust and leadership standing. Though direct awards such as national honors or competitive research grants are not listed, the combination of his appointments, leadership roles, and international affiliations point to a career distinguished by peer recognition and academic achievement at a global level.

Conclusion

In conclusion, Dr. Ravi Varala exemplifies the qualities of a high-caliber researcher whose contributions span both academic excellence and industry relevance. With over two decades of dedicated work in synthetic organic chemistry, he has cultivated a unique blend of deep scientific knowledge, hands-on research expertise, and collaborative international experience. His consistent academic track record, involvement in cross-continental research initiatives, and leadership in both teaching and industry reflect a well-rounded professional trajectory. Dr. Varala’s work in anticancer drug development, heterocyclic synthesis, and sigmatropic rearrangements highlights his focus on impactful, application-driven science. His ability to train and mentor young researchers, paired with his fluency in modern chemical instrumentation and digital research tools, marks him as an asset to any academic or industrial setting. Although specific publication metrics or award citations could further support his profile, the depth and breadth of his career are unmistakable. Dr. Varala’s dedication to chemistry, his multidisciplinary approach, and his leadership across institutions make him a worthy candidate for the Best Researcher Award and a continued contributor to global scientific advancement.

Publications Top Notes

1. Recent Advances in Di-tert-butyl Peroxide (DTBP)-Promoted C-C Bond Formation Reactions

  • Journal: Mini-Reviews in Organic Chemistry

  • Contributors: Ravi Varala, Kamsali Murali Mohan Achari, Mohamed Hussien, Mohammed Mujahid Alam

2. Tris(pentafluorophenyl)borane [B(C₆F₅)₃]-catalyzed Organic Transformations: A Triennial Update (2021 Onwards)

  • Journal: Current Organic Chemistry

  • Contributors: Ravi Varala, Vittal Seema, Murali Mohan Achari Kamsali, Mohamed Hussein, Mohammed Mujahid Alam, Narsimhaswamy Dubasi

3. Research Progress of DBU in C─C, C–Heteroatom, and Heteroatom–Heteroatom Bond Formations

  • Journal: Chemistry & Biodiversity

  • Contributors: Ravi Varala, Murali Mohan Achari Kamsali, Hari Babu Bollikolla, Shreyas Shridharrao Mahurkar, Mohamed Hussein, Mohammed Mujahid Alam

4. Visible Light‐Driven Multicomponent Reactions for the Synthesis of Diverse Heterocyclic Frameworks

  • Journal: European Journal of Organic Chemistry

  • Contributors: Narsimhaswamy Dubasi, Ravi Varala, Murali Mohan Achari Kamsali, Mohammed Mujahid Alam

5. Recent Advances in the Chemistry of Tetrazole Derivatives—A Quinquennial Update [Mid-2019 to date]

  • Journal: Mini-Reviews in Organic Chemistry

  • Contributors: Mohamed Hussein, Ravi Varala, Murali Mohan Achari Kamsali, Vittal Seema, Durga Prasad Beda, Mastan Ali Syed, Mohammed Mujahid Alam

6. Applications of Selectfluor in Organic Synthesis—A Quadrennial Update

  • Journal: Current Organic Chemistry

  • Contributors: Ravi Varala, Vittal Seema, Murali Mohan Achari Kamsali, Mohamed Hussein, Mohammed Mujahid Alam

7. Di-tert-butyl Peroxide (DTBP)-Promoted Heterocyclic Ring Construction

  • Journal: Current Organic Chemistry

  • DOI: 10.2174/0113852728322422240816060345

  • Contributors: Ravi Varala, Murali Mohan Achari Kamsali, Ramanaiah Seella, Mohammed Mujahid Alam

8. Metal-free Oxidations with m-CPBA: An Octennial Update

  • Journal: Mini-Reviews in Organic Chemistry

  • Contributors: Ravi Varala, Vittal Seema, Mohamed Hussein, Mostafa A. Ismail, Mohammed Mujahid Alam

9. Biocatalysis in Bioorthogonal Reactions: Use of Hydrolases and Transferases for Selective Modifications

  • Journal: Mini-Reviews in Organic Chemistry

  • Contributors: Abir B. Majumder, Murali Mohan Achari Kamsali, Ravi Varala, Siddique Akber Ansari

10. Cesium Carbonate (Cs₂CO₃) in Organic Synthesis: A Sexennial Update (2018 to Date)

  • Journal: Current Organic Chemistry

  • Contributors: Ravi Varala, Kamsali Murali Mohan Achari, Mohammed Hussein, Mohammed Mujahid Alam, Seella Ramanaiah

 

Xialiang Li | Chemistry | Best Researcher Award

Mr. Xialiang Li | Chemistry | Best Researcher Award

Associate Professor from Shaanxi Normal University, China

Dr. Xialiang Li is an accomplished scholar and Associate Professor at the School of Chemistry and Chemical Engineering, Shaanxi Normal University, China. He serves as the chief professor and doctoral supervisor of the molecular simulation and solar energy conversion research team. His academic focus lies primarily in the intersection of chemistry and energy sciences, particularly targeting small molecule activation processes for sustainable energy applications. Dr. Li is widely recognized for his methodical approach to the synthesis and characterization of molecular complexes and solid-state materials. His work involves a balanced combination of theoretical insights and practical experimentation, aimed at resolving critical challenges in the fields of catalysis and bioinorganic chemistry. Over the years, he has built an extensive portfolio of high-impact publications in leading international journals, including the Journal of the American Chemical Society, Angewandte Chemie International Edition, and ACS Catalysis. Dr. Li’s ongoing efforts are supported by several national-level funding agencies, and he continues to contribute significantly to the academic landscape through mentoring, research leadership, and active participation in advanced scientific projects. His expertise, dedication to excellence, and forward-looking research trajectory make him a strong contender for prestigious recognitions such as the Best Researcher Award.

Professional Profile

Education

Dr. Xialiang Li has a robust academic foundation, built through successive degrees from reputable Chinese institutions. He began his academic journey at Changchun University of Science and Technology, where he earned his Bachelor’s degree from 2009 to 2013. During this period, he gained fundamental knowledge and developed an early interest in chemistry and materials science. He continued his postgraduate studies at Lanzhou Jiaotong University, where he pursued a Master’s degree from 2013 to 2016. There, he delved deeper into specialized research methodologies, analytical techniques, and experimental approaches that prepared him for advanced research. To further enhance his expertise and explore complex topics in energy conversion and catalysis, Dr. Li enrolled at Shaanxi Normal University for his doctoral studies, which he completed between 2016 and 2019. His Ph.D. research was instrumental in shaping his long-term academic trajectory, leading to significant contributions in bioinorganic chemistry and molecular catalysis. Throughout his education, Dr. Li consistently demonstrated academic excellence, innovative thinking, and a strong commitment to pushing the boundaries of scientific knowledge. His educational path reflects a well-rounded and focused progression that has equipped him with the skills and perspective necessary for high-impact research in energy-related chemical sciences.

Professional Experience

Dr. Xialiang Li has accumulated a range of academic and research experiences that underscore his professional growth and leadership in the field of chemistry. After obtaining his doctoral degree in 2019, he joined Shaanxi Normal University as a postdoctoral researcher, a position he held until 2022. During this phase, he expanded his research activities into new areas, working on high-priority projects related to small molecule activation and catalysis. His postdoctoral work solidified his expertise in cutting-edge techniques such as spectroscopic analysis, crystallography, and electrochemical testing, allowing him to produce insightful findings on catalytic mechanisms. In 2022, he was promoted to the role of Associate Professor at the same institution, a testament to his academic achievements and growing reputation as a research leader. In this capacity, he supervises doctoral candidates, coordinates interdisciplinary projects, and leads a dynamic research group dedicated to solar energy conversion. His work has been supported by major funding sources, and he continues to contribute to the university’s mission through teaching, mentoring, and scientific collaboration. Dr. Li’s professional journey demonstrates a steady and impactful progression, marked by academic rigor, leadership ability, and dedication to solving pressing energy-related challenges through innovative chemical research.

Research Interests

Dr. Xialiang Li’s research interests are centered on bioinorganic chemistry and catalysis, with a primary focus on energy-related small molecule activation. He is particularly interested in the design, synthesis, and functionalization of molecular complexes and solid-state materials that can serve as efficient catalysts for processes such as water splitting, oxygen reduction, and carbon dioxide reduction. These reactions are critical to sustainable energy conversion and storage technologies, including hydrogen production and carbon capture. At the core of his research is a desire to understand and manipulate the underlying principles of catalysis to improve efficiency and selectivity. As the head of the molecular simulation and solar energy conversion team at Shaanxi Normal University, he leads investigations that integrate experimental and computational approaches to explore structure–activity relationships. His work involves leveraging crystallographic data, electrochemical behavior, and spectroscopic signatures to derive mechanistic insights that can inform the design of next-generation catalytic systems. Dr. Li’s research not only contributes to fundamental chemical knowledge but also offers practical solutions to real-world energy challenges. By focusing on catalytic innovations with broad environmental and industrial applications, he stands at the forefront of a transformative area of modern chemistry.

Research Skills

Dr. Xialiang Li possesses a comprehensive set of research skills that position him as a leading expert in the field of catalytic energy conversion. His core competencies include the synthesis of molecular and solid-state materials, crystallographic analysis, and a range of advanced electrochemical techniques. He is proficient in the use of multiple spectroscopic methods, such as UV-Vis, FTIR, NMR, and EPR, which allow him to characterize the electronic structure and reactive behavior of catalytic systems in detail. His ability to connect structural features with catalytic performance enables him to establish precise structure–activity relationships, which are essential for rational catalyst design. In addition, Dr. Li has extensive experience in computational modeling and molecular simulation, tools that complement his experimental work by offering predictive insights into reaction mechanisms and kinetics. His methodological rigor is supported by a strong foundation in physical chemistry and thermodynamics, which he applies to optimize catalyst efficiency under practical conditions. These versatile skills empower him to tackle complex research questions, develop novel materials, and push the boundaries of what is achievable in green and sustainable chemistry. His integrated approach reflects a balance between theoretical understanding and practical application.

Awards and Honors

Dr. Xialiang Li’s scholarly excellence has been recognized through various national and institutional awards, research grants, and honors. His work has attracted funding from several prestigious organizations, including the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. These grants not only reflect the innovative nature of his proposals but also his ability to deliver high-impact results in strategically important research areas. In addition to these national-level grants, Dr. Li has received internal support from Shaanxi Normal University under its Fundamental Research Funds for the Central Universities program, which supports cutting-edge investigations in emerging scientific fields. While he has not listed specific award titles, his publication record in top-tier journals such as Angewandte Chemie, JACS, ACS Catalysis, and Accounts of Chemical Research stands as a testament to his scholarly recognition in the global chemistry community. His research achievements have also led to his appointment as a doctoral supervisor and key faculty member within his institution. Dr. Li’s growing influence, backed by strong funding and consistent publication output, underscores his status as a rising star in the field of catalysis and sustainable chemistry.

Conclusion

Dr. Xialiang Li is a distinguished academic whose work bridges fundamental chemistry and applied energy science. His trajectory from a strong academic foundation to a leadership role in research demonstrates consistent growth, innovation, and impact. He has successfully developed a research niche in bioinorganic catalysis, tackling some of the most urgent global challenges related to clean energy and environmental sustainability. His ability to secure competitive research funding, publish in leading international journals, and lead a vibrant research team reflects his commitment to scientific advancement and academic excellence. While there is still room for expanding international collaborations and industrial applications, his current portfolio already positions him as a strong candidate for broader scientific recognition. By combining deep technical expertise with a clear vision for the future of sustainable chemistry, Dr. Li embodies the ideals of a modern scientific leader. He is highly deserving of the Best Researcher Award, not only for his research contributions but also for his potential to shape future directions in catalytic science and energy conversion technologies. His continued work is expected to deliver both theoretical breakthroughs and practical innovations with long-term global relevance.

Publications Top Notes

  • Electrocatalytic Syngas Production Using Metalloporphyrins with Controllable H₂/CO Ratios
    Authors: Zhimeng Wang, Benxing Mei, Yuhan Xu, Yuze Liu, Xialiang Li, Rui Cao
    Year: 2025
  • Improving Electrocatalytic CO₂ Reduction over Iron Tetraphenylporphyrin with Triethanolamine as a CO₂ Shuttle
    Authors: Zhiyuan Yin, Mengchun Zhang, Yuchi Long, Haitao Lei, Xialiang Li, Xue-Peng Zhang, Wei Zhang, Ulf-Peter Apfel, Rui Cao
    Year: 2025
  • Revealing Significant Electronic Effects on the Oxygen Reduction Reaction with Iron Porphyrins
    Authors: Zhiyuan Yin, Yuchi Long, Haitao Lei, Xue-Peng Zhang, Xialiang Li, Rui Cao
    Year: 2025

Narges Vaezi | Analytical Chemistry | Best Research Article Award

Dr. Narges Vaezi | Analytical Chemistry | Best Research Article Award

Narges Vaezi is a dedicated researcher in the field of analytical and environmental chemistry, currently associated with the Department of Chemistry at the University of Zanjan, Iran. Born in 1986 in Saeinqaleh, Zanjan, Iran, she has consistently demonstrated a strong commitment to scientific research and academic excellence. Her work primarily focuses on environmental pollution analysis, the removal of heavy metals, and the development of advanced extraction techniques for environmental samples. Narges has significantly contributed to the academic community through her extensive involvement in student supervision, research publications, and participation in national and international conferences. She has successfully guided five MSc students in analytical chemistry, contributing to applied solutions for environmental challenges such as water pollution and heavy metal contamination. Narges has also co-authored a book on electrochemical experiments, further showcasing her academic versatility. Her research emphasizes practical methodologies for environmental remediation, making her work highly relevant in addressing current ecological concerns. Through continuous learning and dedication, Narges Vaezi has established herself as a rising expert in her field, with the potential to make impactful contributions to scientific research and environmental sustainability on both national and international platforms.

Professional Profile

Education

Narges Vaezi’s educational journey has been firmly rooted at the University of Zanjan, Iran, where she pursued all her higher education degrees in chemistry. She obtained her Bachelor of Science in Applied Chemistry from the University of Zanjan between 2007 and 2011. During this period, she developed a solid foundation in the practical and theoretical aspects of chemistry. She continued her studies at the same institution, earning her Master of Science in Analytical Chemistry from 2011 to 2014. Her postgraduate research deepened her expertise in environmental and water analysis, solidifying her interest in the removal of pollutants and the use of innovative extraction methods. Narges is currently completing her Ph.D. in Analytical Chemistry, which she commenced in 2017 and is expected to complete in 2023. Throughout her academic progression, Narges has focused on developing practical solutions for environmental monitoring and pollutant extraction. Her educational background demonstrates her unwavering dedication to expanding her scientific knowledge, refining her research skills, and contributing to the academic community through both study and research. Her continuous academic engagement has prepared her well to conduct impactful research and provide leadership in analytical and environmental chemistry.

Professional Experience

Narges Vaezi has built a commendable professional career within the academic environment of the University of Zanjan, where she has gained significant experience in both research and student supervision. As an advisor, she has successfully guided five MSc students in the field of analytical chemistry. Her supervisory roles covered diverse environmental research topics, including the use of biosorbents like Daylily and sugarcane pulp for heavy metal and dye removal, the preparation of magnetized activated carbon, and the application of metal-organic frameworks such as ZIF-8 for pollutant extraction. Narges has also collaborated extensively with Professor Naser Dalali, working on advanced extraction techniques and biosorbents. Her active participation in national and international conferences highlights her commitment to scientific dissemination and continuous learning. Narges has published several journal articles in reputed scientific outlets, focusing on nano-materials, ionic liquids, and microextraction methods for trace metal determination. In addition to her research, she co-authored a book on electrochemical experiments, demonstrating her versatility and dedication to academic development. Her professional experience illustrates her ability to contribute both as an independent researcher and as an academic mentor, positioning her as an emerging leader in the field of analytical and environmental chemistry.

Research Interests

Narges Vaezi’s research interests are strongly aligned with analytical chemistry and environmental remediation. She focuses extensively on developing novel microextraction methods for the detection and removal of pollutants from environmental samples. Her key research areas include environmental analysis, water analysis, and the removal of heavy metals such as cadmium, cobalt, and lead from contaminated water sources. Narges is particularly interested in applying advanced techniques like dispersive solid-phase microextraction, solid-phase extraction, and hollow fiber microextraction. She has shown a significant inclination toward the use of metal-organic frameworks, especially Zeolitic Imidazolate Framework-8 (ZIF-8), which provides high adsorption efficiency and selectivity in pollutant removal processes. Her studies also explore the applications of biosorbents, ionic liquids, and natural materials for cost-effective environmental clean-up. Narges combines theoretical chemistry with practical field applications, ensuring her research contributes to solving real-world environmental issues. Her work addresses urgent challenges in water purification, solid waste management, and pollutant monitoring, making her contributions both timely and highly relevant. Narges Vaezi’s broad and application-oriented research interests set her on a promising path toward further innovations in analytical and environmental chemistry.

Research Skills

Narges Vaezi possesses a wide range of research skills that make her an effective and versatile analytical chemist. She is highly skilled in advanced microextraction techniques such as vortex-assisted dispersive solid-phase microextraction, hollow fiber microextraction, and ion-pair solvent bar microextraction. These methods enable the efficient preconcentration and separation of trace metal ions and organic pollutants from complex environmental matrices. She has practical expertise in the use of metal-organic frameworks like ZIF-8 as highly selective adsorbents in environmental analysis. Narges is also proficient in spectroscopic analysis methods, particularly UV-Vis spectrophotometry and flame atomic absorption spectrometry (FAAS), which are central to her pollutant quantification research. In addition, she has extensive experience in the preparation and modification of nano-materials and biosorbents, such as nano-silica coated with functional ligands and magnetized activated carbon derived from natural sources. Her experimental design, method optimization, and practical application of laboratory techniques demonstrate her strong problem-solving ability and analytical thinking. Beyond laboratory skills, Narges is experienced in scientific writing, conference presentation, and academic supervision, allowing her to contribute meaningfully to research teams and student development. Her comprehensive research capabilities position her as a highly competent and innovative scientist in the field.

Awards and Honors

While Narges Vaezi’s profile does not list specific individual awards or honors, her consistent academic and professional contributions highlight her as a valuable asset to the scientific community. Her selection as an advisor for multiple MSc research projects is a testament to her academic competence and the trust placed in her by both students and faculty. The acceptance of her research papers at national and international chemistry congresses underscores the recognition of her scientific work within the research community. Narges has successfully presented her findings at prominent conferences, including the Iranian Chemistry Congress and the Iranian Seminar of Analytical Chemistry, which demonstrates her active participation in knowledge dissemination and professional networking. Additionally, her co-authorship of a book on electrochemical experiments, published in 2016, reflects her dedication to advancing educational resources for future chemists. Narges’s growing list of journal publications in respected international journals further signifies her emerging prominence in analytical and environmental chemistry. As her career progresses, continued international collaborations and higher-profile publications may pave the way for prestigious research awards and broader recognition of her scientific impact.

Conclusion

Narges Vaezi’s academic and research journey exemplifies a dedicated pursuit of scientific advancement in analytical and environmental chemistry. Her work is focused on addressing real-world environmental challenges through the development of efficient, cost-effective, and innovative pollutant extraction methods. Narges has demonstrated strong research capabilities, mentorship skills, and a commitment to student success through her supervision of multiple MSc theses. Her scientific contributions, particularly in the use of metal-organic frameworks and advanced microextraction techniques, are both innovative and practically significant for environmental monitoring and water purification. Narges’s active involvement in conferences and her growing body of published work highlight her dedication to both academic growth and knowledge dissemination. While there is room for further international exposure and recognition, her current trajectory suggests a promising future in scientific research. With her ability to balance practical application and scientific rigor, Narges Vaezi is well-positioned to make impactful contributions to the field and is a deserving candidate for consideration in prestigious research recognitions and awards.

Publications Top Notes

  1. Title: Ion Pair Solvent Bar Microextraction of Paraquat from Soil Samples Prior to Determination by UV–Vis Spectrophotometry
  • Journal: Water Air and Soil Pollution
  • Year: 2024
  • Citations: 1

 

Olga Vodyankina | Chemistry | Best Researcher Award

Prof. Olga Vodyankina | Chemistry | Best Researcher Award

Head of Department from Head of Department, Russia

Vodyankina Olga Vladimirovna is a distinguished chemist and professor at Tomsk State University, Russia. With over three decades of dedicated research, she has established herself as a leading expert in catalysis, photocatalysis, surface science, and green chemistry. She has published extensively, with 161 articles indexed in Scopus, an h-index of 23, and over 2,000 citations, reflecting the significant impact of her work on the scientific community. Throughout her career, she has demonstrated exceptional leadership in both academic and industrial collaborations, managing numerous national and international research projects. As the Head of the Department of Physical and Colloidal Chemistry, she has contributed immensely to advancing chemical education and research infrastructure at Tomsk State University. Professor Vodyankina is also recognized for her strong commitment to mentoring young scientists, having supervised 12 PhD dissertations and one Doctor of Science thesis. Her research focuses on the development of catalysts for environmentally friendly and energy-efficient chemical processes. With multiple prestigious awards to her name, including the D.I. Mendeleev Medal and the national “Professor of the Year” award, she remains a highly respected figure in her field. Her work continues to contribute to solving pressing environmental challenges and advancing sustainable chemical technologies.

Professional Profile

Education

Vodyankina Olga Vladimirovna’s educational journey has been deeply rooted in Tomsk State University, where she pursued all her higher education degrees in chemistry. She completed her specialist degree in chemistry in 1990 with an outstanding GPA of 5.0, showcasing her academic excellence from the outset. Between 1991 and 1996, she was a postgraduate student at the Department of Chemistry, where she successfully defended her PhD thesis on the “Physical-chemical investigation of ethylene glycol oxidation process.” Her doctoral research contributed to the early foundations of her later work in catalysis and oxidation processes. Furthering her academic pursuits, she enrolled in the Doctorate program at Tomsk State University from 1998 to 2002. Her DSc thesis, titled “The partial oxidation of ethylene glycol into glyoxal on Ag and Cu catalysts,” demonstrated her deepening specialization in heterogeneous catalysis and surface reactions. This advanced research earned her a Doctor of Science degree, solidifying her expertise and positioning her for leadership roles in the scientific community. Professor Vodyankina’s educational progression reflects her long-term dedication to chemical research and her consistent academic success within one of Russia’s most reputable scientific institutions.

Professional Experience

Vodyankina Olga Vladimirovna’s professional career spans over three decades at Tomsk State University, where she has served in various influential roles. She began as a researcher in the Laboratory of Catalytic Research in 1996, quickly advancing to senior researcher by 1997. Her dedication and research excellence led her to become a professor at the Chair of Physical and Colloidal Chemistry from 2003 to 2013. Since 2010, she has held the prestigious Full Professor position in the Faculty of Chemistry. In addition to her professorship, she has been the Head of the Department of Physical and Colloidal Chemistry since 2013, leading the department’s educational and research missions. Simultaneously, she continues her active role as a leading researcher at the Laboratory of Catalytic Research. Throughout her career, she has successfully combined teaching, mentoring, and pioneering research. Her extensive leadership experience includes managing large-scale projects funded by national and international organizations, as well as coordinating research collaborations with industry giants such as OJSC “Sibur-Holding” and Lyondell Basell (USA). Her professional journey reflects not only her scientific capability but also her ability to foster academic excellence, manage research teams, and contribute significantly to her university’s scientific standing.

Research Interests

Professor Vodyankina Olga Vladimirovna’s research interests lie predominantly in the areas of catalysis, photocatalysis, surface science, and green chemical processes. She has developed a particular expertise in the preparation and functionalization of catalysts for oxidation reactions, including the dry reforming of methane and the photocatalytic evolution of hydrogen. Her work extensively explores the oxidation of polyols and the design of active catalysts based on silver and platinum over cerium oxide supports, especially for environmental applications like the aftertreatment of diesel engine exhaust gases. She is deeply committed to solving modern challenges in energy efficiency and sustainable chemical production, with her research aligning closely with the principles of green chemistry. Professor Vodyankina’s interests also extend to understanding the synergistic interactions between metal nanoparticles and redox-active supports, aiming to control catalyst reactivity at the molecular level. Her current projects focus on resource-saving energy solutions, bio-renewable raw material processing, and emissions reduction. She actively collaborates with international partners, contributing to the advancement of global scientific knowledge in catalyst development. Her research is driven by both fundamental questions in physical chemistry and practical industrial applications, positioning her as a key contributor to environmentally friendly chemical innovations.

Research Skills

Professor Vodyankina Olga Vladimirovna possesses highly specialized research skills in the design, synthesis, and characterization of catalysts, particularly for oxidation processes and sustainable chemical conversions. She is adept at employing advanced catalytic techniques and surface science methodologies to develop catalysts with precise active site configurations. Her skills encompass catalyst preparation for dry reforming, photocatalysis, and hydrogen evolution reactions, with a strong ability to integrate these technologies into environmentally friendly processes. Additionally, she is experienced in leading complex, multi-partner research projects, managing laboratory operations, and supervising large research teams. Professor Vodyankina demonstrates excellent competence in interpreting physical-chemical reaction mechanisms and synergistic effects in heterogeneous catalysis. She has also organized scientific conferences, showcasing her skills in academic leadership and scientific community building. Her extensive knowledge of green chemistry and energy-efficient catalytic systems allows her to contribute to cutting-edge solutions for chemical manufacturing and pollution control. Moreover, her skills include guiding young researchers in developing their scientific capabilities, which strengthens the research capacity within her institution. Her technical proficiency, strategic project management, and collaborative approach make her a valuable asset to the international scientific community focused on sustainable catalysis.

Awards and Honors

Throughout her illustrious career, Professor Vodyankina Olga Vladimirovna has been recognized with numerous prestigious awards and honors that reflect her exceptional contributions to science, education, and mentorship. Notable among these is the national “Professor of the Year” award in 2022, bestowed by the Russian Professorial Assembly, and the highly esteemed D.I. Mendeleev Medal in 2013 for her major scientific and educational achievements. She has also been honored with multiple medals from the Russian Federation and the Tomsk regional government, including the “Honorary Mentor” medal in 2023 and the “For valiant labor in Tomsk State University” medal in 2020. Professor Vodyankina was a recipient of the Tomsk Region Government’s “Professor of the Year” award in 2021 and has won Tomsk State University’s science prize in the same year. Her consistent excellence has been acknowledged with the “Honorary Worker of Higher Professional Education” award from the Ministry of Education and Science of the Russian Federation. Additionally, she has twice won the prestigious Presidential Grant for young scientists with DSc degrees. These honors underscore her outstanding leadership, pioneering research, and enduring impact on the scientific and educational landscape in Russia.

Conclusion

Vodyankina Olga Vladimirovna’s extensive contributions to chemistry, particularly in the fields of catalysis and green chemical processes, position her as an exemplary candidate for the Best Researcher Award. Her impressive portfolio of over 160 publications, multiple national and international research projects, and substantial citation impact reflect the high quality and relevance of her work. Beyond her scientific achievements, her dedication to mentoring the next generation of chemists and leading academic departments showcases her commitment to the broader scientific community. She has successfully bridged the gap between fundamental research and industrial application, contributing to both scientific advancement and practical solutions for environmental sustainability. Her ability to secure significant research funding and her active role in international collaborations further highlight her dynamic approach to scientific leadership. Professor Vodyankina’s career is marked by continuous growth, innovation, and academic service, solidifying her as a key figure in her field. Her well-earned awards and recognitions further validate her influence and dedication. Overall, her extensive research excellence, leadership, mentorship, and societal contributions make her highly deserving of recognition through the Best Researcher Award.

Publications Top Notes

1. Synergistic Effects in Heterogeneous Catalysis: Status and Perspectives

  • Authors: Mikhail A. Salaev, Haifeng Xiong, Vicente Cortés Corberán, L. F. Liotta, Olga V. Vodyankina

2. Effect of Organic Linker Substituents on Properties of Metal-Organic Frameworks: A Review

  • Authors: Viktoriia V. Torbina, Yulia A. Belik, Olga V. Vodyankina

3. Design of Heterostructure Photocatalysts Based on Layered Perovskite-Like Bismuth Silicate

  • Authors: Yulia A. Belik, Roman Vergilessov, Evgenia A. Kovaleva, V. A. Svetlichny, Olga V. Vodyankina

  • Year: 2025

  • Citations: 1

4. Unravelling the Cu and Ce Effects in MnO₂-Based Catalysts for Low-Temperature CO Oxidation

  • Authors: Egor D. Blinov, Ekaterina V. Kulchakovskaya, Nikolai A. Sokovikov, Sergei A. Kulinich, Olga V. Vodyankina

  • Year: 2025

5. Sn-Modified Zr-UiO-66 Metal-Organic Frameworks for Dihydroxyacetone Conversion into Lactic Acid

  • Authors: Karina Kurmanbayeva, Semyon Nikulaichev, Nikolai A. Sokovikov, Viktoriia V. Torbina, Olga V. Vodyankina

  • Year: 2025

6. Unraveling the Mechanism of Hydrogen Evolution on Dark TiO₂ Obtained by Pulsed Laser Ablation

  • Authors: Elena D. Fakhrutdinova, E. V. Zinina, T. A. Bugrova, V. A. Svetlichny, Olga V. Vodyankina

  • Year: 2024

7. Laser Synthesis and Photocatalytic Properties of Bismuth Oxyhalides Nanoparticles

  • Authors: Vyacheslav E. Korepanov, Olesia A. Reutova, T. S. Kharlamova, Sergei A. Kulinich, V. A. Svetlichny

  • Year: 2024

8. Synergistic Effect as a Function of Preparation Method in CeO₂-ZrO₂-SnO₂ Catalysts for CO Oxidation and Soot Combustion

  • Authors: M. V. Grabchenko, Natalia N. Mikheeva, Nataliya V. Dorofeeva, Grigory V. Mamontov, Mikhail A. Salaev

  • Year: 2024

  • Citations: 4

9. Intermolecular Interactions, Regioselectivity, and Biological Activity of L-Ascorbic Acid, Nicotinic Acid and Their Cocrystal

  • Authors: Diana Nikolaevna Evtushenko, A. V. Fateev, Mark A. Khainovsky, Igor Albertovich Khlusov, Olga V. Vodyankina

  • Year: 2024

10. Design Strategy for Effective Supported Au-Pd Catalysts for Selective Oxidation of 5-Hydroxymethylfurfural Under Mild Conditions

  • Authors: T. S. Kharlamova, Konstantin L. Timofeev, Denis P. Morilov, Olga A. Stonkus, Olga V. Vodyankina

  • Year: 2024

  • Citations: 3

Kunkun Zhang | Chemistry | Best Researcher Award

Prof. Dr. Kunkun Zhang | Chemistry | Best Researcher Award

Professor Position from Hunan University, China

Professor Kunkun Guo is a distinguished academic at the School of Materials Science and Engineering, Hunan University, China. With over two decades of experience in materials science, polymer chemistry, and interdisciplinary research, she has made significant contributions to the advancement of high-performance materials. Her academic foundation spans leading institutions such as Beijing Institute of Technology, the Chinese Academy of Sciences, and Fudan University, complemented by an international postdoctoral stint at the Max-Planck Institute of Colloids and Interfaces in Germany. She is currently involved in both teaching and pioneering research at Hunan University, mentoring students and collaborating on national-level research projects. Recognized for her deep expertise and commitment to scientific progress, Prof. Guo serves on the Youth Committee of the National Materials Society and is a peer reviewer for prestigious international journals. Her bilingual proficiency in Chinese and English facilitates her active engagement in global scientific dialogue. Beyond academia, she has contributed as a review expert for several national science foundations, reinforcing her leadership in the field. With a proven record of scholarly excellence, international collaboration, and a strong presence in the scientific community, Prof. Guo stands as a role model in advancing materials research in China and beyond.

Professional Profile

Education

Kunkun Guo has pursued a progressive and solid academic path in the fields of chemical engineering, polymer chemistry, and materials science. She began her higher education journey with a Bachelor of Science degree from the School of Chemical Engineering and Material at Beijing Institute of Technology between 1994 and 1998. This foundational program provided her with essential knowledge in material processing and chemical technologies. She continued her academic training by enrolling in a Master’s program in Polymer Chemistry and Physics at the Institute of Chemistry, Chinese Academy of Sciences, from 1998 to 2002. During this time, she conducted her research under the supervision of the renowned Professor Dr. Fang Shibi, focusing on the molecular structure and behavior of polymers. To further deepen her expertise, she pursued a Ph.D. in Polymer Science at Fudan University from 2002 to 2005, supervised by Professor Dr. Yang Yuliang. Her doctoral studies emphasized the structural and theoretical development of polymer materials. This rigorous academic background not only reflects her intellectual discipline and research capacity but also provided a comprehensive base for her future interdisciplinary work in materials science, ensuring that her research is both innovative and scientifically robust.

Professional Experience

Professor Kunkun Guo’s professional career has been marked by significant roles in both academic research and institutional leadership. Her initial professional experience began after her Ph.D. when she joined the Max-Planck Institute of Colloids and Interfaces in Germany as a Postdoctoral Researcher from 2005 to 2009. At the Department of Theory and Bio-systems, under the supervision of Professor Reinhard Lipowsky, she was involved in high-level research projects that integrated physics, biology, and materials science. This experience provided her with international exposure and advanced research methodologies in the field of bio-material interfaces. In 2009, she returned to China and took up a professorial role at the School of Materials Science and Engineering at Hunan University. Since then, she has remained active in both teaching and cutting-edge research. In her current role, she also participates in institutional service and scientific review duties. Her position involves mentoring postgraduate students, managing funded research projects, and contributing to curriculum development. With over 15 years of experience in the academic field, Professor Guo has become a central figure in materials science education and innovation, known for her integrity, leadership, and contributions to the broader scientific community.

Research Interests

Professor Kunkun Guo’s research interests span a diverse range of topics within materials science and polymer chemistry, focusing particularly on the development and characterization of high-performance polymeric and composite materials. Her work integrates the principles of polymer physics, colloid and interface science, and material engineering to develop functional materials with unique structural and responsive properties. A significant portion of her research also involves theoretical and computational modeling, often intersecting with biological systems, due to her postdoctoral experience in bio-systems at the Max-Planck Institute. She is especially interested in stimuli-responsive polymers, nanostructured materials, and sustainable green chemistry approaches in material design. In her current role at Hunan University, she leads projects that address practical challenges in material durability, flexibility, and environmental compatibility. Professor Guo’s interdisciplinary approach enables her to contribute meaningfully to emerging domains such as smart materials, biomedical interfaces, and soft matter physics. She often collaborates with both national institutions and international researchers, aiming to address technological and ecological challenges through innovative material solutions. Her research aims not only to expand academic knowledge but also to foster technological applications that support sustainable development and high-performance manufacturing in the modern industry.

Research Skills

Professor Kunkun Guo possesses a comprehensive set of research skills that underscore her multidisciplinary proficiency in materials science and polymer chemistry. Her core strengths include the synthesis and structural characterization of polymers and advanced composite materials. She has extensive hands-on experience with high-precision instrumentation and analytical techniques, including spectroscopy, microscopy, and computational modeling. Her ability to bridge theory and practice stems from her postdoctoral research at the Max-Planck Institute, where she applied theoretical physics approaches to biological and colloidal systems. This experience enhanced her capability in systems modeling and simulation, especially in the context of responsive materials and interface interactions. In her ongoing work at Hunan University, she demonstrates strong leadership in managing collaborative research projects and supervising students in experimental and computational investigations. Her critical review skills are also evident through her role as a peer reviewer for numerous international journals, showcasing her analytical acumen and attention to scientific rigor. Additionally, her bilingual fluency in Chinese and English allows her to navigate global research environments effectively. Overall, Professor Guo’s research skills are deeply rooted in experimental precision, theoretical insight, and interdisciplinary collaboration, which enable her to deliver impactful and forward-looking scientific contributions.

Awards and Honors

Professor Kunkun Guo has earned substantial recognition for her contributions to the field of materials science and polymer research through her academic service and scientific achievements. Though specific awards and honors are not detailed in the available profile, her role as a member of the Youth Committee of the National Materials Society signifies a formal acknowledgment of her influence and leadership among emerging materials scientists in China. She has also been appointed as a review expert for the National Natural Science Foundation of China, a position awarded to scholars with a credible and impactful track record in research. Her inclusion as an invited communication review expert for funding agencies and journals such as the Natural Science Foundation of Zhejiang, ACS Materials & Interfaces, Green Chemistry, Soft Matter, and Polymer Advanced Technology further reflects the high esteem in which she is held in both national and international research circles. These appointments serve as honors that validate her scientific rigor and thought leadership. Through these accolades, she continues to contribute to the shaping of research standards and the mentoring of future scientists. Her recognition is grounded not only in research output but also in the trust placed in her by academic institutions and funding bodies.

Conclusion

Professor Kunkun Guo emerges as a compelling candidate for recognition in any research-focused award setting due to her exemplary contributions to the fields of materials science and polymer engineering. With a strong educational background from some of China’s most respected institutions and internationally recognized research credentials from the Max-Planck Institute, she exemplifies the integration of academic excellence and global scientific collaboration. Her professional trajectory at Hunan University highlights sustained productivity, academic leadership, and dedication to interdisciplinary research. She consistently engages in scholarly peer review, national-level research assessment, and mentorship of young scientists. While further detail on her publication record, patents, or specific research outcomes would enhance the profile, her institutional roles and service-based recognitions provide a clear indicator of her impact. Her work in developing advanced materials with functional and sustainable characteristics aligns closely with current global priorities in science and engineering. Overall, Professor Guo’s profile reflects a balanced synthesis of intellectual depth, scientific contribution, and service to the research community. She stands as a role model and leader within her field, making her a highly suitable nominee for prestigious research awards and further recognition on both national and international platforms.

Publications Top Notes

1. Na-site Coordination Environment Regulation of Mn-based Phosphate Cathodes for Sodium-Ion Batteries with Elevated Working Voltage and Energy Density

  • Authors: Kairong Wang, Chenxi Gao, Jian Tu, Kunkun Guo, Yuan-Li Ding

  • Year: 2024

  • Journal: Journal of Materials Chemistry A

2. In Situ Hydroxide Growth over Nickel–Iron Phosphide with Enhanced Overall Water Splitting Performances

  • Authors: Jian Hu, Jiayi Yin, Aoyuan Peng, Dishu Zeng, Jinlong Ke, Jilei Liu, Kunkun Guo

  • Year: 2024

  • Journal: Small

3. Supercooling-Driven Homogenization and Strengthening of Hydrogel Networks

  • Authors: Jie Deng, Ningxin Chen, Shanchen Yang, Sida Xie, Kunkun Guo, Jinwei Song, Yue Tao, Ji Liu, Zhaohui Wang

  • Year: 2024

  • Journal: ACS Applied Materials & Interfaces

4. Electrolyte Additive l-Lysine Stabilizes the Zinc Electrode in Aqueous Zinc Batteries for Long Cycling Performance

  • Authors: Jiayi Yin, Yuzhe Luo, Meng Li, Meifen Wu, Kunkun Guo, Zhaoyin Wen

  • Year: 2024

  • Journal: ACS Applied Materials & Interfaces

5. Less is More: Underlying Mechanism of Zn Electrode Long-Term Stability Using Sodium L-Ascorbate as Electrolyte Additive

  • Authors: Yuzhe Luo, Jiayi Yin, Peng Chen, Bin Wang, Jiangtao Xu, Zhaohui Wang, Kunkun Guo

  • Year: 2024

  • Journal: Small

6. Rational Regulation of High-Voltage Stability in Potassium Layered Oxide Cathodes

  • Authors: Lichen Wu, Hongwei Fu, Wang Lyu, Limei Cha, Apparao M. Rao, Kunkun Guo, Jiang Zhou, Shuangchun Wen, Bingan Lu

  • Year: 2024

  • Journal: ACS Nano

7. Poly(acrylic acid) Locally Enriched in Slurry Enhances the Electrochemical Performance of the SiOx Lithium-Ion Battery Anode

  • Authors: Ming Yang, Peng Chen, Jiapei Li, Ruoxuan Qi, Yudai Huang, Peter Müller-Buschbaum, Ya-Jun Cheng, Kunkun Guo, Yonggao Xia

  • Year: 2023

  • Journal: Journal of Materials Chemistry A

8. More than Just a Binder: Versatile Block Copolymer Enhances the Electrochemical Performance of a Nickel-Rich Cathode

  • Authors: Yutao Xu, Fatima Zahra Chafi, Peng Chen, Cancan Peng, Ya-Jun Cheng, Kunkun Guo, Xiuxia Zuo, Yonggao Xia

  • Year: 2023

  • Journal: ACS Applied Polymer Materials

9. Mesoporous Carbons and Fe Collectively Boost the Capacity Increases upon Long-Term Cycling of Ni/Fe/NiFe₂O₄@C Anode for Lithium-Ion Batteries

  • Authors: Cancan Peng, Chao Yang, Peng Chen, Ya-Jun Cheng, Jianfeng Xia, Kunkun Guo

  • Year: 2023

  • Journal: Applied Surface Science

10. Hollow Spherical NiCo₂S₄@N-CNT Composites with High Energy Density for All-Solid-State Supercapacitors

  • Authors: Ying Ye, Yuzhe Luo, Jiatao Lou, Xuli Chen, Ya-Jun Cheng, Jianfeng Xia, Yaobang Li, Kunkun Guo

  • Year: 2023

  • Journal: ACS Applied Energy Materials

 

Basem KESHTA | Chemical Engineering | Best Researcher Award

Dr. Basem KESHTA | Chemical Engineering | Best Researcher Award

Postdoctoral Fellow from Zhejiang Normal University, China 

Dr. Basem E. Keshta is a dedicated researcher in the field of chemistry, currently affiliated with the Department of Computational Chemistry at CDBIO in Romania. His work primarily focuses on computational approaches to chemical research, contributing to advancements in the field. Dr. Keshta has collaborated on significant publications, including a study on wet surface tissue adhesive hydrogels for wound treatment, published in the European Polymer Journal in 2024 . His research interests are centered around chemistry, and he has been recognized as a global expert from Romania in this domain.

Professional Profile

Education

Specific details regarding Dr. Keshta’s educational background are not publicly available. However, his current role in computational chemistry suggests a strong academic foundation in chemistry and related disciplines. Typically, professionals in this field hold advanced degrees such as a Master’s or Ph.D. in Chemistry, Computational Chemistry, or Chemical Engineering. These programs provide rigorous training in chemical theory, laboratory practices, and computational modeling, equipping researchers with the skills necessary for complex chemical analysis and research. Dr. Keshta’s contributions to scientific publications indicate a high level of expertise and a solid educational background supporting his research endeavors.

Professional Experience

Dr. Keshta is currently engaged with the Department of Computational Chemistry at CDBIO in Romania. His professional experience encompasses research in computational chemistry, where he applies theoretical and computational methods to solve chemical problems. This role involves collaboration with interdisciplinary teams, contributing to the development of innovative solutions in chemistry. His involvement in recent publications, such as the study on tissue adhesive hydrogels, demonstrates his active participation in advancing chemical research. While specific details of his previous positions are not disclosed, his current role signifies a career dedicated to scientific inquiry and research excellence.

Research Interests

Dr. Keshta’s research interests lie within the broad field of chemistry, with a particular focus on computational chemistry. This area involves using computer simulations and models to understand chemical structures, reactions, and properties. His work contributes to the development of new materials and chemical processes, as evidenced by his co-authorship in a study on wet surface tissue adhesive hydrogels for wound treatment . Such research has significant implications in biomedical applications, showcasing his interest in applying chemical principles to solve real-world problems.

Research Skills

Dr. Keshta possesses a strong skill set in computational chemistry, including proficiency in molecular modeling, simulation techniques, and data analysis. His expertise enables him to investigate complex chemical systems and contribute to the design of novel materials. The study on tissue adhesive hydrogels highlights his ability to collaborate on interdisciplinary research, integrating chemistry with biomedical applications . His skills are essential for advancing research in developing materials with specific properties, such as biocompatibility and adhesion, which are critical in medical treatments.

Awards and Honors

There is no publicly available information regarding specific awards or honors received by Dr. Keshta. However, his recognition as a global expert in chemistry from Romania indicates a respected standing in the scientific community . His contributions to high-impact research publications further underscore his professional achievements and the esteem in which he is held by peers in his field.

Conclusion

Dr. Basem E. Keshta is a committed chemist specializing in computational chemistry, contributing to significant research endeavors at CDBIO in Romania. His work, particularly in developing tissue adhesive hydrogels, demonstrates the practical applications of his research in addressing medical challenges . While specific details about his educational background and awards are not publicly disclosed, his active role in scientific research and recognition as a global expert reflect his dedication and impact in the field of chemistry

Publications Top Notes

  • Chemical insight into the adsorption of reactive wool dyes onto amine-functionalized magnetite/silica core-shell from industrial wastewaters
    Authors: AH Gemeay, BE Keshta, RG El-Sharkawy, AB Zaki
    Year: 2020

  • MIL series-based MOFs as effective adsorbents for removing hazardous organic pollutants from water
    Authors: BE Keshta, H Yu, L Wang
    Year: 2023

  • Impacts of horseradish peroxidase immobilization onto functionalized superparamagnetic iron oxide nanoparticles as a biocatalyst for dye degradation
    Authors: BE Keshta, AH Gemeay, AA Khamis
    Year: 2021

  • State of the art on the magnetic iron oxide nanoparticles: Synthesis, Functionalization, and applications in wastewater treatment
    Authors: BE Keshta, AH Gemeay, DK Sinha, S Elsharkawy, F Hassan, N Rai, et al.
    Year: 2024

  • Cutting-edge in the green synthesis of MIL-101 (Cr) MOF based on organic and inorganic waste recycling with extraordinary removal for anionic dye
    Authors: BE Keshta, H Yu, L Wang, AH Gemeay
    Year: 2023

  • Advanced lithography materials: From fundamentals to applications
    Authors: Y Zhang, H Yu, L Wang, X Wu, J He, W Huang, C Ouyang, D Chen, et al.
    Year: 2024

  • Recent advances in wet surface tissue adhesive hydrogels for wound treatment
    Authors: A Basit, H Yu, L Wang, MA Uddin, Y Wang, KM Awan, BE Keshta, et al.
    Year: 2024

  • Cost-effective synthesis of MIL-101 (Cr) from recyclable wastes and composite with polyaniline as an ion-to-electron transducer for potentiometric Pb2+ sensing
    Authors: BE Keshta, H Yu, L Wang, MA Uddin, HG El-Attar, AE Keshta, AH Gemeay, et al.
    Year: 2024

  • A state-of-the-art review on green synthesis and modifications of ZnO nanoparticles for organic pollutants decomposition and CO2 conversion
    Authors: ZU Zango, A Garba, FB Shittu, SS Imam, A Haruna, MU Zango, IA Wadi, et al.
    Year: 2025

  • Influence of Synthesis and Functionalization Procedures of Fe3O4 NPs by Mono- and Diamino Silane Coupling Agents on the Adsorption Efficiency of Anionic Dyes
    Authors: BE Keshta, AH Gemeay
    Year: 2022

 

Laxminarayana Eppakayala | Chemistry | Best Researcher Award

Prof. Dr. Laxminarayana Eppakayala | Chemistry | Best Researcher Award

Professor from Sreenidhi Institute of Science and Technology, India

Dr. E. Laxminarayana is a distinguished academician and researcher specializing in Organic Chemistry. With over two decades of teaching experience and 14 years dedicated to research, he has made significant contributions to the field. Currently serving as an Associate Professor at Sreenidhi Institute of Science and Technology, Dr. Laxminarayana has been instrumental in mentoring students and advancing research initiatives within the department. His scholarly work is reflected in his impressive portfolio of 165 publications in both national and international journals. Beyond teaching, he has guided five Ph.D. scholars from Jawaharlal Nehru Technological University Hyderabad, focusing on innovative synthetic methodologies and computational studies. His commitment to excellence in education and research has been recognized through various awards, including the Best Teacher and Best Researcher accolades. Dr. Laxminarayana’s expertise and dedication continue to inspire students and colleagues alike, solidifying his reputation as a leading figure in the field of Organic Chemistry.

Professional Profile

Education

Dr. E. Laxminarayana’s academic journey is rooted in Kakatiya University, where he pursued all his higher education degrees. He completed his Bachelor of Science (B.Sc.) in 1999, laying a strong foundation in the sciences. His passion for chemistry led him to undertake a Master of Science (M.Sc.) in Organic Chemistry, which he completed in 2002. Driven by a quest for deeper knowledge and research, he pursued a Doctor of Philosophy (Ph.D.) in Organic Chemistry, culminating in 2009. His doctoral research focused on the development of novel synthetic methodologies, contributing valuable insights to the field. Throughout his academic pursuits, Dr. Laxminarayana demonstrated a consistent commitment to excellence, which has been the cornerstone of his subsequent teaching and research career.

Professional Experience

With over 20 years of teaching experience, Dr. E. Laxminarayana has been a pivotal figure in shaping the academic landscape at Sreenidhi Institute of Science and Technology. As an Associate Professor in the Department of Chemistry, he has been instrumental in delivering comprehensive education in subjects like Engineering Chemistry and Environmental Science. His pedagogical approach combines theoretical knowledge with practical applications, fostering a conducive learning environment for students. Beyond classroom teaching, Dr. Laxminarayana has actively engaged in curriculum development, research mentorship, and departmental administration. His leadership has been crucial in initiating co-curricular and extracurricular activities, enhancing the holistic development of students. His dedication to education and research has not only elevated the department’s stature but also contributed significantly to the institution’s academic excellence.

Research Interests

Dr. E. Laxminarayana’s research interests are primarily centered around Organic Synthesis and Computational Studies. His work in Organic Synthesis involves developing innovative methodologies for constructing complex organic molecules, which has significant implications in pharmaceuticals and material science. In the realm of Computational Studies, he employs computational chemistry techniques to model and predict the behavior of organic compounds, facilitating a deeper understanding of reaction mechanisms and molecular properties. This interdisciplinary approach allows for the integration of theoretical and practical aspects of chemistry, leading to more efficient and sustainable chemical processes. His research has not only contributed to academic knowledge but also holds potential for real-world applications in drug development and industrial chemistry.

Research Skills

Dr. E. Laxminarayana possesses a robust set of research skills that underpin his contributions to Organic Chemistry. His expertise in Organic Synthesis enables him to design and execute complex chemical reactions, leading to the creation of novel compounds with potential therapeutic applications. He is proficient in various spectroscopic and chromatographic techniques, essential for the characterization and analysis of chemical substances. In Computational Chemistry, he utilizes advanced software tools to simulate molecular structures and predict chemical behaviors, aiding in the rational design of experiments. His ability to integrate computational insights with experimental data enhances the efficiency and accuracy of his research. Additionally, his experience in guiding Ph.D. students reflects his mentorship skills and commitment to fostering new talent in the field.

Awards and Honors

Dr. E. Laxminarayana’s dedication to teaching and research has been recognized through several prestigious awards. He has been honored with the Best Teacher Award, acknowledging his exceptional contributions to education and student development. His research excellence has earned him the Best Researcher Award, reflecting the impact and quality of his scholarly work. Furthermore, he has received the Best Citizens of India award from the Indian Institute of Financial Studies (IIFS), New Delhi, highlighting his contributions to the nation through education and research. These accolades underscore his commitment to academic excellence and his influence as a thought leader in the field of Organic Chemistry.

Conclusion

In summary, Dr. E. Laxminarayana stands out as a dedicated educator and a prolific researcher in Organic Chemistry. His extensive teaching experience, coupled with a strong research portfolio, has significantly contributed to the academic community. His work in Organic Synthesis and Computational Studies not only advances scientific understanding but also has practical implications in various industries. The recognition he has received through multiple awards attests to his excellence and influence in the field. As he continues to mentor students and pursue innovative research, Dr. Laxminarayana remains a vital asset to Sreenidhi Institute of Science and Technology and the broader scientific community.

Publications Top Notes

  • Title: Design, synthesis, in silico ADME, toxicity prediction, molecular docking studies of 1,2,4-oxadiazole incorporated indolizine-thiadiazole derivatives and their biological evaluation as anticancer agents
    Authors: Ketha, Swarupa; Chithaluri, Sudhakar; Kethireddy, Shashikala; Eppakayala, Laxminarayana; Asiri, Yahya I.
    Journal: Tetrahedron
    Year: 2025

  • Title: Synthesis and biological evaluation of thiazolo[3,2-b][1,2,4]triazole substituted 1,3,4-oxadiazole and pyridine derivatives as anticancer agents
    Authors: Alkhathami, Ali Gaithan; Tasqeeruddin, Syed; Sultana, Shaheen; Eppakayala, Laxminarayana; Somaiah, Nalla
    Journal: Tetrahedron
    Year: 2025

  • Title: In silico and antibacterial studies of Thiadiazole and Triazole linked 1,8-Napthyridine derivatives
    Authors: Lakshmi, Bhargavi J.; Pittala, Bhaskar; Eppakayala, Laxminarayana; Donta, Paramesh; Reddy, Chittireddy Venkata Ramana
    Journal: Research Journal of Chemistry and Environment
    Year: 2025

  • Title: Synthesis and biological evaluation of aryl derivatives of indole-1,3,4-thiadiazole as anticancer agents
    Authors: Kalagara, Sudhakar; Baddam, Sudhakar Reddy; Ganta, Srinivas; Damarancha, Anil; Eppakayala, Laxminarayana
    Journal: Synthetic Communications
    Year: 2025

  • Title: Synthesis and molecular docking studies of some new 2-N-acylaminobenzothiazole derivatives
    Authors: Pittala, Bhaskar; Bireddy, Srinivasa Reddy; Eppakayala, Laxminarayana; Chittireddy, Venkata Ramana Reddy
    Journal: Indian Journal of Heterocyclic Chemistry
    Year: 2025

  • Title: Highly Efficient Synthesis of 1,3,5-Oxadiazinan-4-one and 5-Methyl-1,3,5-triazinan-2-one Derivatives of Benzimidazolyl Pyrimidine and Their Activity Analysis through Docking Studies
    Authors: Patolla, S.; Kethireddy, Shashikala; Pittala, Bhaskar; Eppakayala, Laxminarayana; Bireddy, Srinivasa Reddy
    Journal: Russian Journal of Organic Chemistry
    Year: 2024

Luciano Benedini | Chemistry | Best Researcher Award

Dr. Luciano Benedini | Chemistry | Best Researcher Award

Researcher/Professor from INQUISUR-CONICET/UNS, Argentina

Luciano Alejandro Benedini is an accomplished Argentine researcher specializing in pharmaceutical nanotechnology, biomaterials, and drug delivery systems. With a Ph.D. in Chemistry from Universidad Nacional del Sur (UNS), his academic journey reflects a strong foundation in pharmaceutical sciences. Benedini has held the position of Adjunct Researcher at INQUISUR-CONICET/UNS since 2015 and has been an Assistant Professor at UNS since 2001. His research portfolio includes over 20 peer-reviewed journal articles and multiple book chapters, focusing on colloidal systems, lipid-based nanocarriers, and bone tissue engineering. Benedini’s work is characterized by interdisciplinary collaboration and a commitment to addressing real-world medical challenges. His contributions have earned him several prestigious awards, including the “INNOVAR 2023” distinction from the Ministry of Science and Innovation. Benedini’s expertise and dedication position him as a leading figure in his field, making him a strong candidate for the Best Researcher Award.

Professional Profile

Education

Luciano Alejandro Benedini’s educational background is rooted in pharmaceutical sciences and chemistry. He earned his degree in Pharmacy from Universidad Nacional del Sur (UNS) in 2003, providing a solid foundation in pharmaceutical principles. Pursuing further specialization, he completed his Ph.D. in Chemistry at UNS between 2008 and 2012. His doctoral thesis, titled “Interaction between a biocompatible surfactant with pharmacological interest structures,” delved into the interactions of biocompatible surfactants with pharmacologically relevant structures, highlighting his early interest in drug delivery systems and nanotechnology. This academic progression equipped Benedini with the knowledge and skills necessary for his subsequent research endeavors in pharmaceutical nanotechnology and biomaterials.

Professional Experience

Luciano Alejandro Benedini has amassed extensive professional experience in both academic and research settings. Since 2015, he has served as an Adjunct Researcher at INQUISUR-CONICET/UNS, where he has been involved in cutting-edge research on nanomaterials and drug delivery systems. Concurrently, he has held the position of Assistant Professor at the Department of Biology, Biochemistry, and Pharmacy at UNS since 2001, contributing to the education and mentorship of students in pharmaceutical sciences. Benedini’s professional journey also includes postdoctoral fellowships at prestigious institutions such as Universidad de Santiago de Compostela and Bielefeld University, where he collaborated with international experts in the field. His dual roles in academia and research underscore his commitment to advancing pharmaceutical sciences through both education and innovation.

Research Interests

Luciano Alejandro Benedini’s research interests are centered around pharmaceutical nanotechnology, biomaterials, and drug delivery systems. He focuses on the design and characterization of lipid-based nanocarriers, such as liposomes and nanoemulsions, for targeted drug delivery. Benedini is also interested in the development of bioactive scaffolds for bone tissue engineering, utilizing materials like hydroxyapatite and alginate composites. His work often explores the physicochemical properties of colloidal systems and their interactions with biological membranes, aiming to enhance the efficacy and safety of therapeutic agents. Additionally, Benedini investigates stimuli-responsive drug delivery systems that can adapt to physiological conditions, offering controlled release profiles. His interdisciplinary approach combines principles of chemistry, biology, and materials science to address complex challenges in medicine.

Research Skills

Luciano Alejandro Benedini possesses a diverse set of research skills that enable him to conduct comprehensive studies in pharmaceutical sciences. He is proficient in various analytical techniques, including spectroscopy, chromatography, and electron microscopy, which are essential for characterizing nanomaterials and assessing their interactions with biological systems. Benedini has expertise in formulating and evaluating lipid-based drug delivery systems, focusing on parameters like encapsulation efficiency, release kinetics, and stability. His skills extend to the development of biomimetic scaffolds for tissue engineering applications, where he assesses biocompatibility, mechanical properties, and bioactivity. Benedini’s ability to integrate experimental data with theoretical models allows him to optimize formulations and predict their behavior in physiological environments. His methodological rigor and technical proficiency contribute significantly to the advancement of pharmaceutical nanotechnology.

Awards and Honors

Luciano Alejandro Benedini’s contributions to pharmaceutical sciences have been recognized through several awards and honors. Notably, he received the “INNOVAR 2023” distinction from the Ministry of Science and Innovation in the Applied Research category for his project on NanoA, highlighting his impact on translational research. He was also awarded the Aaron and Fanny Fidelef de Nijamkim’s Award for Best Ph.D. in Chemistry in 2012 by Universidad Nacional del Sur, acknowledging his academic excellence. Benedini has secured multiple postdoctoral fellowships, including those granted by Fundación Carolina and CONICET, facilitating international research collaborations. His selection as an Associated Researcher by CONICET in 2018 further underscores his standing in the scientific community. These accolades reflect Benedini’s dedication to research excellence and innovation.

Conclusion

Luciano Alejandro Benedini’s extensive academic background, professional experience, and research achievements position him as a leading figure in pharmaceutical nanotechnology and biomaterials. His interdisciplinary approach, combining chemistry, biology, and materials science, has led to significant advancements in drug delivery systems and tissue engineering. Benedini’s commitment to addressing real-world medical challenges through innovative research is evident in his numerous publications, collaborations, and accolades. His role as an educator further amplifies his impact, as he mentors the next generation of scientists. Considering his substantial contributions to science and his ongoing pursuit of excellence, Benedini is a highly suitable candidate for the Best Researcher Award.

Publications Top Notes

  1. Title: Antibacterial alginate/nano-hydroxyapatite composites for bone tissue engineering: Assessment of their bioactivity, biocompatibility, and antibacterial activity
    Authors: L. Benedini, J. Laiuppa, G. Santillán, M. Baldini, P. Messina
    Journal: Materials Science and Engineering: C, Vol. 115, Article 111101
    Year: 2020
    Citations: 82

  2. Title: Adsorption/desorption study of antibiotic and anti-inflammatory drugs onto bioactive hydroxyapatite nano-rods
    Authors: L. Benedini, D. Placente, J. Ruso, P. Messina
    Journal: Materials Science and Engineering: C, Vol. 99, pp. 180–190
    Year: 2019
    Citations: 56

  3. Title: The ascorbyl palmitate-water system: Phase diagram and state of water
    Authors: L. Benedini, E.P. Schulz, P.V. Messina, S.D. Palma, D.A. Allemandi, P.C. Schulz
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 375 (1–3)
    Year: 2011
    Citations: 50

  4. Title: Multi-drug delivery system based on lipid membrane mimetic coated nano-hydroxyapatite formulations
    Authors: D. Placente, L.A. Benedini, M. Baldini, J.A. Laiuppa, G.E. Santillán, …
    Journal: International Journal of Pharmaceutics, Vol. 548 (1), pp. 559–570
    Year: 2018
    Citations: 42

  5. Title: Biomimetic fiber mesh scaffolds based on gelatin and hydroxyapatite nano-rods: Designing intrinsic skills to attain bone reparation abilities
    Authors: J. Sartuqui, A.N. Gravina, R. Rial, L.A. Benedini, L.H. Yahia, J.M. Ruso, …
    Journal: Colloids and Surfaces B: Biointerfaces, Vol. 145, pp. 382–391
    Year: 2016
    Citations: 39

  6. Title: Self-assembly of 33-mer gliadin peptide oligomers
    Authors: M.G. Herrera, L.A. Benedini, C. Lonez, P.L. Schilardi, T. Hellweg, …
    Journal: Soft Matter, Vol. 11 (44), pp. 8648–8660
    Year: 2015
    Citations: 36

  7. Title: Colloidal properties of amiodarone in water at low concentration
    Authors: L. Benedini, P.V. Messina, R.H. Manzo, D.A. Allemandi, S.D. Palma, E.P. Schulz, …
    Journal: Journal of Colloid and Interface Science, Vol. 342 (2), pp. 407–414
    Year: 2010
    Citations: 35

  8. Title: Ascorbyl palmitate interaction with phospholipid monolayers: electrostatic and rheological preponderancy
    Authors: M. Mottola, N. Wilke, L. Benedini, R.G. Oliveira, M.L. Fanani
    Journal: Biochimica et Biophysica Acta (BBA) – Biomembranes, Vol. 1828 (11), pp. 2496–2505
    Year: 2013
    Citations: 33

  9. Title: Biopolymers for medical applications
    Authors: J.M. Ruso, P.V. Messina
    Publisher: CRC Press
    Year: 2017
    Citations: 31