Hyunseob Lim | Chemistry | Best Researcher Award

Prof. Hyunseob Lim | Chemistry | Best Researcher Award

Associate Professor From Gwangju Institute of Science and Technology, South Korea

Dr. Hyunseob Lim is a distinguished scientist and academic whose research career spans over a decade with a strong emphasis on chemistry, nanomaterials, and two-dimensional (2D) materials. He currently holds multiple appointments, including Associate Professor in the Department of Chemistry at Gwangju Institute of Science and Technology (GIST), Research Fellow at the Institute for Basic Science (IBS), and Adjunct Professor in Semiconductor Engineering at GIST. Dr. Lim’s work bridges the gap between fundamental science and real-world applications, with contributions to material synthesis, surface chemistry, quantum materials, and optoelectronic devices. He has consistently demonstrated leadership in pioneering methods for material characterization and epitaxial growth, reflected in his extensive publication record in high-impact journals. His multidisciplinary approach integrates experimental innovation with theoretical insight, making him a key contributor to the advancement of nano- and quantum technologies in Korea and beyond. Throughout his career, Dr. Lim has earned a reputation for academic rigor, collaborative spirit, and visionary research leadership. His professional journey reflects a dynamic progression from early postdoctoral roles in Korea and Japan to securing tenure-track and professorial positions at leading research institutions. Dr. Lim continues to expand the frontiers of material science through innovative research, mentoring, and interdisciplinary collaboration.

Professional Profile

 Education

Dr. Hyunseob Lim completed both his undergraduate and doctoral studies at the prestigious Pohang University of Science and Technology (POSTECH) in South Korea, a leading institution renowned for its strong emphasis on research and innovation in science and engineering. He earned his Bachelor of Science (B.S.) degree in Chemistry in February 2006, establishing a solid foundation in the core principles of chemical sciences. Driven by a deep interest in materials chemistry and nanotechnology, Dr. Lim continued his academic journey at POSTECH, where he pursued a Ph.D. in Chemistry under the guidance of Professor HeeCheul Choi. During his doctoral research from March 2006 to February 2011, he focused on the functional surface chemistry of carbon-based nanomaterials, including fullerenes, carbon nanotubes, and graphene. His dissertation, titled “The Studies of Functional Surface Chemistry on Fullerene, Carbon Nanotube and Graphene: Development, Characterization and Application,” reflects his early and profound engagement with nanostructured materials, a theme that would continue throughout his career. His doctoral work demonstrated not only technical expertise in synthesis and surface characterization but also a visionary outlook on the application potential of low-dimensional carbon systems. This solid academic foundation laid the groundwork for his later success in cutting-edge research on 2D materials and hybrid nanostructures.

Professional Experience

Dr. Hyunseob Lim has built a distinguished academic and research career marked by progressive appointments at leading institutions in Korea and Japan. Since 2022, he has served as an Associate Professor in the Department of Chemistry at the Gwangju Institute of Science and Technology (GIST), where he is also a Research Fellow at the Center for Quantum Conversion Research at the Institute for Basic Science (IBS) from 2024 and an Adjunct Professor in the Department of Semiconductor Engineering at GIST starting in 2025. Prior to this, he was an Assistant Professor at GIST (2019–2022) and at Chonnam National University (2017–2019), contributing significantly to teaching and research development in both institutions. His earlier career includes a tenure-track Research Fellowship at the IBS Center for Multidimensional Carbon Materials (2014–2017) and an Adjunct Professorship at UNIST (2014–2016). Dr. Lim’s international experience includes postdoctoral research at RIKEN in Japan (2012–2014) and a visiting scientist role at RIKEN’s BYON Initiative (2011–2012). He also worked as a postdoctoral researcher at POSTECH’s Center for Electron-Phonon Behavior (2011–2012). This diverse trajectory has allowed Dr. Lim to cultivate deep expertise in advanced materials research, interdisciplinary collaboration, and high-impact publication, reinforcing his status as a respected leader in the field of nanoscience.

Research Interest

Dr. Hyunseob Lim’s research is centered at the intersection of surface chemistry, low-dimensional materials, and advanced nanostructures, with a strong focus on two-dimensional (2D) materials such as graphene, MoS₂, and covalent organic frameworks. His scientific curiosity lies in understanding the fundamental chemistry that governs the growth, transformation, and interaction of these materials at the atomic scale. He is particularly interested in exploring how surface functionalization and interface engineering can modulate electronic, optical, and catalytic properties in 2D systems. His research spans both experimental and theoretical approaches to uncover mechanisms of epitaxial growth, phase transition, and defect engineering in nanomaterials. Dr. Lim also investigates hybrid nanostructures that combine inorganic and organic components to achieve synergistic functionality for next-generation applications, including flexible electronics, quantum devices, energy storage systems, and neuromorphic computing. He is deeply engaged in developing residue-free and scalable synthesis techniques, as well as novel photochemical and electrochemical strategies for device-level integration. Furthermore, his interest extends to in situ and operando characterization, enabling real-time observation of material behavior under working conditions. Through these multidisciplinary endeavors, Dr. Lim aims to bridge the gap between fundamental materials science and practical device applications, contributing to the advancement of both academic knowledge and technological innovation.

Research Skills

Dr. Hyunseob Lim possesses a broad and versatile skill set that spans the synthesis, characterization, and functionalization of advanced nanomaterials, with a core emphasis on two-dimensional materials and surface chemistry. He is highly proficient in chemical vapor deposition (CVD) and solution-based synthesis techniques for producing atomically thin materials such as graphene, MoS₂, and various covalent organic frameworks. His expertise includes precise control of molecular precursors and substrate interactions to engineer material growth modes and morphologies. Dr. Lim is adept in in situ and ex situ characterization methods, including Raman spectroscopy, scanning tunneling microscopy (STM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), allowing detailed surface and interface analysis at the nanoscale. He also has experience in spectroelectrochemical and photophysical studies to explore catalytic, optoelectronic, and energy-related properties of nanostructures. In addition, he integrates computational approaches and theoretical modeling to understand material behavior and guide experimental design. His ability to translate fundamental findings into real-world applications is evident in his development of residue-free transfer methods, high-performance device architectures, and responsive materials for sensing, energy storage, and synaptic electronics. These interdisciplinary capabilities have positioned Dr. Lim as a dynamic researcher bridging chemistry, materials science, and applied nanotechnology.

Awards and Honors

Throughout his career, Dr. Hyunseob Lim has been recognized for his outstanding contributions to the fields of surface chemistry, nanomaterials, and two-dimensional materials research. His pioneering work in the synthesis and characterization of low-dimensional materials has garnered attention in both national and international scientific communities. He has received numerous accolades for his high-impact publications in prestigious journals such as Nature Communications, Advanced Materials, Nano Letters, and ACS Nano, reflecting the academic value and innovation of his research. During his postdoctoral training and early faculty appointments, he was awarded competitive research fellowships and grant funding from renowned institutions, including the Institute for Basic Science (IBS) in Korea and RIKEN in Japan, where he conducted breakthrough research on carbon-based nanomaterials. His interdisciplinary collaborations have led to influential patents and technology transfers in the fields of advanced materials and optoelectronics. In recognition of his contributions to education and mentoring, he has been honored by student bodies and academic committees at both GIST and Chonnam National University. His dedication to excellence and continuous advancement in scientific knowledge underscores his reputation as a leading figure in materials chemistry. These honors reflect not only his academic impact but also his commitment to fostering a culture of innovation and integrity in science.

Conclusion

Dr. Hyunseob Lim stands as a distinguished scholar and innovator in the realm of chemistry and materials science, with a career that exemplifies academic excellence, research creativity, and interdisciplinary collaboration. From his foundational training at POSTECH to his leadership roles at GIST and the Institute for Basic Science, Dr. Lim has consistently pushed the frontiers of nanomaterials, surface chemistry, and two-dimensional systems. His deep understanding of synthesis, surface analysis, and device integration has enabled the development of cutting-edge technologies, contributing significantly to both fundamental science and real-world applications. Through an impressive body of scholarly work, Dr. Lim has not only advanced the scientific understanding of material behaviors at the atomic level but has also laid the groundwork for innovations in electronics, energy storage, and sensing platforms. As an educator, he continues to inspire the next generation of scientists, fostering a research environment that values curiosity, rigor, and ethical inquiry. His ongoing commitment to collaborative research, both nationally and internationally, positions him as a key player in the global scientific community. Looking forward, Dr. Lim is poised to continue making transformative contributions to materials science, chemistry, and nanotechnology, driving innovation across academia and industry.

Publications Top Notes

  1. Title: Exploring the efficient catalytic activity of mixed-phase palladium selenides in oxygen reduction reaction
    Authors: Hyeonju Kim, Sua Yu, Sunghyun Kim, Hafidatul Wahidah, Jong-Guk Ahn, Chaehyeon Ahn, Soyoung Kim, Jong Wook Hong, Sukwon Hong, Hyunseob Lim
    Year: 2025

  2. Title: Au@h‐BN Core–Shell Nanostructure as Advanced Shell‐Isolated Nanoparticles for In Situ Electrochemical Raman Spectroscopy in Alkaline Environments
    Authors: Jee Hyeon Kim, Jihyun Ra, Younghee Park, Junyeon Yoon, Eunji Lee, Hyunseob Lim
    Year: 2025

  3. Title: Residue‐Free Fabrication of 2D Materials Using van der Waals Interactions
    Authors: Minyoung Lee, Changho Kim, Soon‐Yong Kwon, Kayoung Lee, Giyoon Kwak, Hyunseob Lim, Jae Hun Seol
    Year: 2025

  4. Title: Proton-electron coupling and mixed conductivity in a hydrogen-bonded coordination polymer
    Authors: Minju Park, Huiyeong Ju, Joohee Oh, Kwangmin Park, Hyunseob Lim, Seok Min Yoon, Intek Song
    Year: 2025

  5. Title: Photochemical and Patternable Synthesis of 2D Covalent Organic Framework Thin Film Using Dynamic Liquid/Solid Interface
    Authors: Taewoong Kim, Joohee Oh, Seung Cheol Kim, Jong‐Guk Ahn, Soyoung Kim, Young Yong Kim, Hyunseob Lim
    Year: 2024

  6. Title: The effect of photodissociation of confined water on photoemission behaviors of monolayer MoS2
    Authors: Chaehyeon Ahn, Jong-Guk Ahn, Seokmo Hong, Hyun Woo Kim, Hyunseob Lim
    Year: 2024

  7. Title: Anomalous one-dimensional quantum confinement effect in graphene nanowrinkle
    Authors: Jong-Guk Ahn, Jee Hyeon Kim, Minhui Lee, Yousoo Kim, Jaehoon Jung, Hyunseob Lim
    Year: 2023

  8. Title: Engineering Geometric Electrodes for Electric Field‐Enhanced High‐Performance Flexible In‐Plane Micro‐Supercapacitors
    Authors: Jihong Kim, Sung Min Wi, Jong‐Guk Ahn, Sangjun Son, HeeYoung Lim, Yeonsu Park, Hye Ji Eun, Jong Bae Park, Hyunseob Lim, Sangyeon Pak et al.
    Year: 2023

  9. Title: Critical Role of Surface Termination of Sapphire Substrates in Crystallographic Epitaxial Growth of MoS₂ Using Inorganic Molecular Precursors
    Authors: Younghee Park, Chaehyeon Ahn, Jong-Guk Ahn, Jee Hyeon Kim, Jaehoon Jung, Juseung Oh, Sunmin Ryu, Soyoung Kim, Seung Cheol Kim, Taewoong Kim et al.
    Year: 2023

  10. Title: Synthesis of monolayer 2D MoS₂ quantum dots and nanomesh films by inorganic molecular chemical vapor deposition for quantum confinement effect control
    Authors: Chaehyeon Ahn, Hyunseob Lim
    Year: 2022

  11. Title: Van Hove Singularity in Graphene Nanowrinkle Grown on Ni(111) Generated by Pseudo One-Dimensional Electron Confinement
    Authors: Jong-Guk Ahn, Jee Hyeon Kim, Minhui Lee, Yousoo Kim, Jaehoon Jung, Hyunseob Lim
    Year: 2022

  12. Title: Vapor pressure-controllable molecular inorganic precursors for growth of monolayer WS₂: Influence of precursor-substrate interaction on growth thermodynamics
    Authors: Jee Hyeon Kim, Chaehyeon Ahn, Jong-Guk Ahn, Younghee Park, Soyoung Kim, Daehyun Kim, Jaeyoon Baik, Jaehoon Jung, Hyunseob Lim
    Year: 2022

  13. Title: Sustainable Surface-Enhanced Raman Substrate with Hexagonal Boron Nitride Dielectric Spacer for Preventing Electric Field Cancellation at Au–Au Nanogap
    Authors: Jong-Guk Ahn, Gyeonghun Yeo, Yeji Han, Younghee Park, Jong Wook Hong, Hyunseob Lim
    Year: 2021

  14. Title: Controlled Photoinduced Electron Transfer from InP/ZnS Quantum Dots through Cu Doping: A New Prototype for the Visible-Light Photocatalytic Hydrogen Evolution Reaction
    Authors: Jiwon Bang, Sankar Das, Eun-Jin Yu, Kangwook Kim, Hyunseob Lim, Sungjee Kim, Jong Wook Hong
    Year: 2020

  15. Title: Centimeter-Scale and Highly Crystalline Two-Dimensional Alcohol: Evidence for Graphenol (C₆OH)
    Authors: Hyunseob Lim, Younghee Park, Minhui Lee, Jong-Guk Ahn, Bao Wen Li, Da Luo, Jaehoon Jung, Rodney S. Ruoff, Yousoo Kim
    Year: 2020

  16. Title: Highly Oriented Monolayer Graphene Grown on a Cu/Ni(111) Alloy Foil
    Authors: Huang, M., Biswal, M., Park, H.J., Jin, S., Qu, D., Hong, S., Zhu, Z., Qiu, L., Luo, D., Liu, X., et al.
    Year: 2018

  17. Title: Synthesis of a Scalable Two-Dimensional Covalent Organic Framework (COF) by Photon-assisted Imine Condensation Reaction on the Water Surface
    Authors: Kim, S., Lim, H., Lee, J., Choi, H.C.
    Year: 2018

  18. Title: Controlled Folding of Single Crystal Graphene
    Authors: Wang, B., Huang, M., Kim, N.Y., Cunning, B.V., Huang, Y., Qu, D., Chen, X., Jin, S., Biswal, M., Zhang, X., et al.
    Year: 2017

  19. Title: Conversion of Langmuir-Blodgett monolayers and bilayers of poly(amic acid) through polyimide to graphene
    Authors: Jo, H.J., Lyu, J.H., Ruoff, R.S., Lim, H., Yoon, S.I., Jeong, H.Y., Shin, T.J., Bielawski, C.W., Shin, H.S.
    Year: 2017

  20. Title: Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe₂/WSe₂ van der Waals Heterostructures
    Authors: Nayak, P.K., Horbatenko, Y., Ahn, S., Kim, G., Lee, J.-U., Ma, K.Y., Jang, A.-R., Lim, H., Kim, D., Ryu, S., et al.
    Year: 2017

  21. Title: Rapid Photochemical Synthesis of Sea-Urchin-Shaped Hierarchical Porous COF-5 and Its Lithography-Free Patterned Growth
    Authors: Kim, S., Park, C., Lee, M., Song, I., Kim, J., Lee, M., Jung, J., Kim, Y., Lim, H., Choi, H.C.
    Year: 2017

Shaotao BAI | Chemistry | Best Researcher Award

Prof. Shaotao BAI | Chemistry | Best Researcher Award

Professor from Shenzhen Polytechnic University, China

Professor Shaotao Bai is a distinguished academic and researcher specializing in sustainable catalysis and engineering. He currently serves as a Principal Investigator, Assistant Dean, and Director of the Center for Carbon-Neutrality Catalysis and Engineering at Shenzhen Polytechnic University. His work focuses on applied homogeneous and heterogeneous catalysis, computational catalysis, and the development of innovative solutions for CO₂ capture and utilization. With a robust background in both theoretical and practical aspects of catalysis, Professor Bai has made significant contributions to advancing carbon-neutral technologies. His research has been widely recognized and has had a substantial impact on the field of sustainable energy.

Professional Profile

Education

Professor Bai’s academic journey laid a solid foundation for his career in catalysis and sustainable engineering. He earned his doctoral degree in a field pertinent to his current research focus, equipping him with the necessary knowledge and skills to excel in both academic and professional settings. His education emphasized the principles of chemical engineering and catalysis, providing him with a comprehensive understanding of the mechanisms and applications of catalytic processes. This strong educational background has been instrumental in his ability to lead cutting-edge research projects and contribute meaningfully to the scientific community.

Professional Experience

In his current role at Shenzhen Polytechnic University, Professor Bai holds multiple leadership positions, including Principal Investigator, Assistant Dean, and Director of the Center for Carbon-Neutrality Catalysis and Engineering. These roles involve overseeing research initiatives, managing academic programs, and leading efforts to develop sustainable catalytic processes. Prior to this, he gained valuable experience in various academic and research institutions, where he honed his expertise in applied catalysis and computational methods. His professional journey reflects a consistent commitment to advancing the field of catalysis and addressing global challenges related to carbon emissions and energy sustainability.

Research Interests

Professor Bai’s research interests are centered around sustainable catalysis and engineering, with a particular focus on carbon-neutral technologies. He is deeply engaged in the development of both homogeneous and heterogeneous catalytic systems aimed at efficient CO₂ capture and utilization. Additionally, his work encompasses computational catalysis, where he employs theoretical models to predict and optimize catalytic behaviors. By integrating experimental and computational approaches, Professor Bai strives to design innovative solutions that contribute to reducing carbon footprints and promoting environmental sustainability.

Research Skills

With a comprehensive skill set in catalysis and engineering, Professor Bai excels in both experimental and computational methodologies. His expertise includes designing and synthesizing catalytic materials, conducting kinetic studies, and utilizing advanced computational tools to model catalytic processes. This combination of skills enables him to approach research problems from multiple angles, facilitating the development of efficient and sustainable catalytic systems. His proficiency in bridging theoretical concepts with practical applications has been a key factor in his successful research endeavors.

Awards and Honors

Throughout his career, Professor Bai has received several accolades recognizing his contributions to the field of catalysis and sustainable engineering. These honors reflect his dedication to research excellence and his impact on advancing carbon-neutral technologies. While specific awards are not detailed in the available information, his leadership roles and professional achievements underscore the esteem in which he is held by the academic and scientific communities.

Conclusion

Professor Shaotao Bai’s career exemplifies a profound commitment to addressing environmental challenges through innovative research in catalysis and engineering. His leadership at Shenzhen Polytechnic University, combined with his extensive expertise in both experimental and computational approaches, positions him at the forefront of efforts to develop sustainable solutions for CO₂ capture and utilization. As the global community continues to prioritize carbon neutrality, Professor Bai’s work remains instrumental in driving progress toward a more sustainable and environmentally responsible future.

Publications Top Notes​

  1. Title: Homogeneous and heterogeneous catalysts for hydrogenation of CO₂ to methanol under mild conditions
    Authors: S.T. Bai, G. De Smet, Y. Liao, R. Sun, C. Zhou, M. Beller, B.U.W. Maes, B.F. Sels
    Journal: Chemical Society Reviews
    Year: 2021
    Citations: 265

  2. Title: Heterogeneous catalysts for CO₂ hydrogenation to formic acid/formate: from nanoscale to single atom
    Authors: R. Sun, Y. Liao, S.T. Bai, M. Zheng, C. Zhou, T. Zhang, B.F. Sels
    Journal: Energy & Environmental Science
    Year: 2021
    Citations: 229

  3. Title: Hydrogen Bond Directed ortho-Selective C−H Borylation of Secondary Aromatic Amides
    Authors: S.T. Bai, C.B. Bheeter, J.N.H. Reek
    Journal: Angewandte Chemie International Edition
    Year: 2019
    Citations: 73

  4. Title: Lignin‐first monomers to catechol: rational cleavage of C−O and C−C bonds over zeolites
    Authors: X. Wu, Y. Liao, J. Bomon, G. Tian, S.T. Bai, K. Van Aelst, Q. Zhang, et al.
    Journal: ChemSusChem
    Year: 2022
    Citations: 37

  5. Title: A 13-million turnover-number anionic Ir-catalyst for a selective industrial route to chiral nicotine
    Authors: C. Yin, Y.F. Jiang, F. Huang, C.Q. Xu, Y. Pan, S. Gao, G.Q. Chen, X. Ding, S.T. Bai, et al.
    Journal: Nature Communications
    Year: 2023
    Citations: 35

  6. Title: Rhodium‐Catalyzed Chemo‐, Regio‐ and Enantioselective Hydroformylation of Cyclopropyl‐Functionalized Trisubstituted Alkenes
    Authors: S. Li, D. Zhang, R. Zhang, S.T. Bai, X. Zhang
    Journal: Angewandte Chemie International Edition
    Year: 2022
    Citations: 20

  7. Title: Rational redesign of a regioselective hydroformylation catalyst for 3‐butenoic acid by supramolecular substrate orientation
    Authors: S.T. Bai, V. Sinha, A.M. Kluwer, P.R. Linnebank, Z. Abiri, B. de Bruin, J.N.H. Reek
    Journal: ChemCatChem
    Year: 2019
    Citations: 20

  8. Title: Effector responsive hydroformylation catalysis
    Authors: S.T. Bai, V. Sinha, A.M. Kluwer, P.R. Linnebank, Z. Abiri, P. Dydio, M. Lutz, et al.
    Journal: Chemical Science
    Year: 2019
    Citations: 17

  9. Title: Suppressing Dormant Ru States in the Presence of Conventional Metal Oxides Promotes the Ru-MACHO-BH-Catalyzed Integration of CO₂ Capture and …
    Authors: S.T. Bai, C. Zhou, X. Wu, R. Sun, B. Sels
    Journal: ACS Catalysis
    Year: 2021
    Citations: 16

  10. Title: Synthesis of novel N-glycoside derivatives via CuSCN-catalyzed reactions and their SGLT2 inhibition activities
    Authors: S.T. Bai, D.C. Xiong, Y. Niu, Y.F. Wu, X.S. Ye
    Journal: Tetrahedron
    Year: 2015
    Citations: 16

  11. Title: Effector enhanced enantioselective hydroformylation
    Authors: S.T. Bai, A.M. Kluwer, J.N.H. Reek
    Journal: Chemical Communications
    Year: 2019
    Citations: 10

Tianli Wang | Organic Synthesis | Best Researcher Award

Prof. Tianli Wang | Organic Synthesis | Best Researcher Award

Professor from Sichuan University, China

Professor Wang Tianli is a distinguished researcher in organic chemistry, currently serving as a Professor at Sichuan University. His expertise lies in asymmetric catalysis, organic synthesis, green chemistry, reaction mechanisms, and bioactive molecules. With a Ph.D. from the Institute of Chemistry, Chinese Academy of Sciences, he has made significant contributions to the field through high-impact research publications in Angewandte Chemie and Nature Communications. His career includes valuable international experience as a Research Fellow at the National University of Singapore, where he worked under Prof. Yixin Lu. Recognized for his academic excellence, he has received multiple prestigious awards, including the National Excellent Young Scientist Award and the Sichuan Province Academic and Technical Leader Award. Professor Wang is actively involved in mentoring young researchers and advancing innovative chemical methodologies. His research focuses on developing sustainable and efficient synthetic strategies with broad applications in pharmaceuticals and material sciences. His strong publication record, leadership in academia, and continuous contributions to cutting-edge research position him as a leading figure in his field.

Professional Profile

Education

Professor Wang Tianli obtained his Ph.D. in Organic Chemistry from the Institute of Chemistry, Chinese Academy of Sciences (2006–2011), where he was mentored by Prof. Qing-Hua Fan. During his doctoral studies, he focused on the development of novel asymmetric catalytic reactions, contributing to advancements in enantioselective synthesis. Prior to his Ph.D., he completed his Bachelor’s degree in Applied Chemistry at Sichuan University (2002–2006) under the supervision of Prof. Xiaoming Feng. His undergraduate research laid the foundation for his interest in asymmetric catalysis and organic synthesis. His strong academic background and training at leading institutions provided him with a solid understanding of synthetic methodologies and reaction mechanisms. Throughout his education, he actively engaged in research projects that resulted in high-quality publications in international journals. His academic journey reflects a continuous pursuit of knowledge, positioning him as a specialist in catalytic organic transformations.

Professional Experience

Professor Wang Tianli has accumulated extensive research experience in both academic and industrial settings. Since 2016, he has been a Professor at the College of Chemistry, Sichuan University, where he leads a research group focusing on asymmetric catalysis and sustainable organic synthesis. Before joining Sichuan University, he worked as a Research Fellow at the National University of Singapore (2012–2016) under Prof. Yixin Lu, where he contributed to groundbreaking studies in organocatalysis and reaction mechanisms. His postdoctoral research allowed him to expand his expertise in green chemistry and develop innovative catalytic systems. He also served as an Assistant Researcher at the Institute of Chemistry, Chinese Academy of Sciences (2011–2012), engaging in fundamental research on transition metal catalysis. His professional experience highlights his commitment to advancing the field of organic synthesis through both theoretical and practical contributions.

Research Interests

Professor Wang Tianli’s research interests lie at the intersection of asymmetric catalysis, organic synthesis, green chemistry, reaction mechanisms, and bioactive molecules. He focuses on the development of novel catalytic systems that enhance enantioselectivity and efficiency in synthetic transformations. His work aims to reduce environmental impact by designing sustainable catalytic processes, a crucial aspect of modern green chemistry. Additionally, his research explores the mechanistic understanding of organic reactions, contributing to the rational design of new synthetic methodologies. His interest in bioactive molecules has led to the synthesis of complex organic compounds with pharmaceutical applications. By integrating computational chemistry and experimental techniques, he strives to create innovative and practical solutions for chemical synthesis challenges.

Research Skills

Professor Wang Tianli possesses a diverse set of research skills that make him a leader in organic chemistry. His expertise includes asymmetric catalysis, reaction mechanism elucidation, organocatalysis, and transition metal catalysis. He is highly skilled in advanced spectroscopic techniques such as NMR, X-ray crystallography, and mass spectrometry, which he uses for structural characterization of complex molecules. Additionally, he has extensive experience in computational chemistry, employing quantum mechanical calculations to predict and optimize reaction pathways. His proficiency in green chemistry techniques enables the development of environmentally friendly synthetic strategies. As a research leader, he also excels in scientific writing, grant proposal preparation, and project management, ensuring the successful execution of complex research projects. His ability to mentor students and collaborate with interdisciplinary teams further enhances his contributions to the field.

Awards and Honors

Professor Wang Tianli has received numerous awards in recognition of his outstanding contributions to organic chemistry. In 2024, he was honored with the Young Speaker Award at the 24th International Conference on Phosphorus Chemistry and the Excellent Presentation Award at the 23rd International Conference on Organic Synthesis (2023). He was also named a Sichuan Province Academic and Technical Leader in 2023. Nationally, he has been recognized as a National Excellent Young Scientist (2022) and a Sichuan Province Outstanding Young Scientist (2022). His achievements extend to international recognition, including the Thieme Chemistry Journals Award (2022), ACP Lectureship Award (2019), and National Young Thousand Talents Program (2017). These honors underscore his research excellence and influence in the scientific community.

Conclusion

Professor Wang Tianli is a highly accomplished researcher with a remarkable record in organic synthesis, asymmetric catalysis, and green chemistry. His strong academic background, extensive publication record, and numerous prestigious awards establish him as a leader in the field. With profound research skills, mentorship experience, and international collaborations, he has made significant contributions to advancing sustainable chemical methodologies. His work continues to impact both academic and industrial applications, particularly in pharmaceuticals and fine chemical synthesis. As he expands his research scope and leadership in large-scale projects, his contributions will further shape the future of organic chemistry.

Publication Top Notes

  1. Organocatalytic Enantioselective Arylation to Access Densely Aryl-Substituted P-Stereogenic Centers

    • Authors: Huilin Hu, Siqiang Fang, Xingjie Luo, Zhipeng Xu, Tianli Wang
    • Year: 2025
  2. Desymmetrization/Kinetic Resolution of Planar Chiral [2.2]Paracyclophanes by Bioinspired Peptide-Iminophosphorane Catalysis

    • Authors: Zhengdong Wu, Siqiang Fang, Jiajia He, Zhishan Su, Tianli Wang
    • Year: 2025
  3. Organocatalytic Enantioselective [2 + 2] Cycloadditions Towards Chiral Fused α-Trifluoromethyl Azetidines

    • Authors: Song Zhang, Xingjie Luo, Siqiang Fang, Zhipeng Xu, Tianli Wang
    • Year: 2024
  4. Organocatalytic Skeletal Reorganization for Enantioselective Synthesis of S-Stereogenic Sulfinamides

    • Authors: Zanjiao Liu, Siqiang Fang, Haoze Li, Zhishan Su, Tianli Wang
    • Year: 2024
    • Citations: 8
  5. Cationic Foldamer-Catalyzed Asymmetric Synthesis of Inherently Chiral Cages

    • Authors: Siqiang Fang, Zhaowei Bao, Zanjiao Liu, Bo Li, Tianli Wang
    • Year: 2024
    • Citations: 5
  6. Asymmetric Synthesis of Bis-Spiro Cyclopropane Skeletons via Bifunctional Phosphonium Salt-Catalyzed [2 + 1] Annulation

    • Authors: Xiaojun Yu, Fan Wang, Juan Du, Lixiang Zhu, Tianli Wang
    • Year: 2024
  7. Asymmetric Nucleophilic Additions Promoted by Quaternary Phosphonium Ion-Pair Catalysts

    • Authors: Lingzhu Chen, Youlin Deng, Tingting Li, Xiaoyu Ren, Tianli Wang
    • Year: 2024
    • Citations: 10

 

Sophia Lunt | Chemistry | Best Researcher Award

Prof. Sophia Lunt | Chemistry | Best Researcher Award

Professor at Michigan State University, United States

Dr. Sophia Y. Lunt is a prominent researcher at Michigan State University, specializing in cancer research, metabolism, and luminescent therapeutics. Her work focuses on understanding the reprogrammed metabolism in cancer and other diseases to develop novel therapeutic strategies. With a strong academic and research background, Dr. Lunt has led an independent cancer research laboratory and contributed significantly to the scientific community through high-impact publications. She has secured funding from notable organizations such as NIH, NSF, and DoD, which has enabled her to lead groundbreaking research in cancer metabolism. Dr. Lunt is also passionate about education, promoting student engagement and inclusivity, and has received multiple teaching awards for her efforts. As a mentor, she has successfully guided postdoctoral fellows, graduate students, and undergraduates, helping shape the next generation of researchers.

Professional Profile

Education:

Dr. Sophia Y. Lunt’s academic journey began at Lebanon Valley College, where she graduated summa cum laude with a B.S. in Chemistry in 2005. She then pursued her Ph.D. in Chemistry at Princeton University, where her research focused on metabolomic investigations of drug action. After completing her doctorate in 2010, she worked as a DoD Visionary Postdoctoral Fellow at the Massachusetts Institute of Technology (MIT). During her postdoctoral tenure, she studied the impact of pyruvate kinase isoform expression on cancer cell metabolism and proliferation under the mentorship of Professor Matthew G. Vander Heiden. This extensive educational background provided Dr. Lunt with the expertise to build an innovative research program in cancer metabolism at Michigan State University, where she has been a faculty member since 2015.

Professional Experience:

Dr. Lunt’s professional journey is marked by significant academic and research leadership. After earning her Ph.D. and completing her postdoctoral research, Dr. Lunt joined Michigan State University (MSU) in 2015 as an Assistant Professor. She quickly ascended through the ranks, achieving tenure as an Associate Professor in 2021 and later as a Professor with Tenure in 2024. Throughout her tenure at MSU, she has been instrumental in developing a thriving cancer research laboratory, securing multiple research grants, and contributing to academic growth in the Biochemistry and Molecular Biology, as well as Chemical Engineering and Materials Science departments. In addition to her faculty roles, Dr. Lunt has served as an advisory board member at the Van Andel Institute’s Metabolism & Nutrition Program and as an editorial board member for Cancer & Metabolism. Her experience also extends to mentorship, as she has trained postdoctoral fellows, graduate students, and undergraduates in cancer research and metabolism.

Research Interests:

Dr. Lunt’s primary research interest lies at the intersection of cancer, metabolism, and luminescent therapeutics. Her work investigates how metabolic alterations in cancer cells contribute to disease progression and resistance to therapies. Specifically, she focuses on understanding the reprogramming of cellular metabolism in cancer and how these changes can be exploited to develop targeted therapies. By studying the role of pyruvate kinase isoform expression and other metabolic pathways in cancer cell metabolism, Dr. Lunt aims to uncover novel therapeutic strategies for treating cancer. Additionally, her research includes developing luminescent-based therapeutics for better-targeted treatments in cancer. Her work also extends to broader metabolic diseases, with a focus on how metabolic reprogramming can influence disease mechanisms and therapy outcomes.

Research Skills:

Dr. Lunt possesses a diverse set of research skills that span across cancer biology, biochemistry, and metabolic diseases. Her expertise includes cell metabolism analysis, metabolomics, and the use of luminescent therapeutics for targeted drug delivery. She has mastered techniques in molecular biology, bioenergetics, and the study of pyruvate kinase isoform expression in cancer. Dr. Lunt is proficient in metabolomic analysis, cell culture, and animal model systems, which allow her to explore the metabolic alterations that drive disease progression. Her ability to secure and manage multiple research grants reflects her proficiency in writing competitive research proposals and leading large-scale research projects. Additionally, Dr. Lunt’s mentorship skills are evident in her successful training of numerous students and fellows who have gone on to make significant contributions in cancer research.

Awards and Honors:

Dr. Sophia Y. Lunt has received numerous accolades throughout her career, reflecting her excellence in research and teaching. Among her most prestigious honors is the 2022-23 MSU NatSci Teacher-Scholar Award, recognizing her outstanding contributions to teaching and mentorship. Additionally, she was awarded the 2022 Biochemistry & Molecular Biology Teaching Award for her efforts in fostering an inclusive learning environment. Dr. Lunt’s research excellence has also been recognized through competitive grants such as the NIH NCI R01 and the NSF CAREER Award. She has received several awards to support her cancer research, including the DoD Breast Cancer Research Program Breakthrough Award and the METAvivor Early Career Investigator Award. These honors, along with her extensive publication record in top-tier journals like Nature and Cancer Cell, underscore her impact in the scientific community.

Conclusion:

Dr. Sophia Y. Lunt is a leading researcher and educator with an impressive track record in cancer research, metabolism, and luminescent therapeutics. Her innovative research in metabolic reprogramming of cancer cells is making significant strides in developing novel therapeutic approaches. Through her independent research program, she has demonstrated exceptional leadership and mentorship, guiding numerous students and postdoctoral fellows to success. Dr. Lunt’s research, teaching, and outreach are highly regarded in the academic community, as evidenced by her substantial publication record, competitive grant funding, and numerous awards. Her commitment to advancing scientific knowledge, coupled with her dedication to mentoring the next generation of researchers, makes her an exemplary candidate for the Research for Best Researcher Award.

Publication Top Notes

  • Title: Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
    • Authors: SY Lunt, MG Vander Heiden
    • Journal: Annual Review of Cell and Developmental Biology
    • Volume: 27 (1), 441-464
    • Citations: 3378
    • Year: 2011
  • Title: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis
    • Authors: D Anastasiou, Y Yu, WJ Israelsen, JK Jiang, MB Boxer, BS Hong, …
    • Journal: Nature Chemical Biology
    • Volume: 8 (10), 839-847
    • Citations: 820
    • Year: 2012
  • Title: A roadmap for interpreting 13C metabolite labeling patterns from cells
    • Authors: JM Buescher, MR Antoniewicz, LG Boros, SC Burgess, H Brunengraber, …
    • Journal: Current Opinion in Biotechnology
    • Volume: 34, 189-201
    • Citations: 660
    • Year: 2015
  • Title: Fatty acid carbon is essential for dNTP synthesis in endothelial cells
    • Authors: S Schoors, U Bruning, R Missiaen, KCS Queiroz, G Borgers, I Elia, …
    • Journal: Nature
    • Volume: 520 (7546), 192-197
    • Citations: 619
    • Year: 2015
  • Title: Metabolic pathway alterations that support cell proliferation
    • Authors: MG Vander Heiden, SY Lunt, TL Dayton, BP Fiske, WJ Israelsen, …
    • Journal: Cold Spring Harbor Symposia on Quantitative Biology
    • Volume: 76, 325-334
    • Citations: 343
    • Year: 2011
  • Title: Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation
    • Authors: SY Lunt, V Muralidhar, AM Hosios, WJ Israelsen, DY Gui, L Newhouse, …
    • Journal: Molecular Cell
    • Volume: 57 (1), 95-107
    • Citations: 261
    • Year: 2015
  • Title: Succinate dehydrogenase inhibition leads to epithelial-mesenchymal transition and reprogrammed carbon metabolism
    • Authors: PJP Aspuria, SY Lunt, L Väremo, L Vergnes, M Gozo, JA Beach, …
    • Journal: Cancer & Metabolism
    • Volume: 2, 1-15
    • Citations: 175
    • Year: 2014
  • Title: PHGDH heterogeneity potentiates cancer cell dissemination and metastasis
    • Authors: M Rossi, P Altea-Manzano, M Demicco, G Doglioni, L Bornes, M Fukano, …
    • Journal: Nature
    • Volume: 605 (7911), 747-753
    • Citations: 153
    • Year: 2022
  • Title: A domino effect in antifolate drug action in Escherichia coli
    • Authors: YK Kwon, W Lu, E Melamud, N Khanam, A Bognar, JD Rabinowitz
    • Journal: Nature Chemical Biology
    • Volume: 4 (10), 602-608
    • Citations: 120
    • Year: 2008
  • Title: The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function
    • Authors: M Wenes, A Jaccard, T Wyss, N Maldonado-Pérez, ST Teoh, A Lepez, …
    • Journal: Cell Metabolism
    • Volume: 34 (5), 731-746.e9
    • Citations: 114
    • Year: 2022

 

Zhenjun Song | Chemistry | Best Researcher Award

Prof. Zhenjun Song | Chemistry | Best Researcher Award

Associate Professor at Taizhou University, China

Dr. Zhenjun Song, an accomplished researcher in Inorganic Chemistry, is currently an Associate Professor at Taizhou University. Born on February 7, 1987, in Zhoukou, Henan, China, he has a strong academic foundation and extensive professional experience in material and computational chemistry. Dr. Song specializes in quantum chemical calculations and first-principle simulations for catalytic applications, gas sensing, and toxic gas removal. With over 22 high-impact publications and numerous awards recognizing his academic excellence and societal contributions, he is a prominent figure in his field. His interdisciplinary research bridges computational and experimental techniques, making significant contributions to chemistry and material sciences.

Professional Profile

Education

Dr. Song’s educational journey showcases his commitment to academic excellence. He earned his Ph.D. in Inorganic Chemistry from Nankai University (2015–2018), where he also served as a teaching assistant. Before this, he obtained a Master’s degree in Physical Chemistry from Tongji University (2010–2013) and a Bachelor’s degree in Chemical Education from Henan University (2005–2009). His rigorous training across three prestigious institutions has equipped him with a profound understanding of both theoretical and applied chemistry, laying a strong foundation for his successful research career.

Professional Experience

Dr. Song’s professional trajectory reflects his dedication to advancing science and education. As an Associate Professor at Taizhou University since 2018, he has contributed to teaching Medical Chemistry and General Chemistry. Additionally, he worked as a postdoctoral fellow at Sichuan University and Era Corporation Limited (2020–2023), focusing on material chemistry. His earlier roles as a teaching and research assistant at Nankai University and the South University of Science and Technology of China honed his expertise in condensed matter physics and inorganic chemistry. This diverse experience highlights his ability to adapt and excel in various academic and research environments.

Research Interest

Dr. Song’s research interests lie at the intersection of computational chemistry and material science. He focuses on first-principle calculations to study oxides and oxide-based composites for catalytic applications, sensors, and toxic gas removal. His work includes exploring physisorption, chemisorption, and the transformation processes of adsorbates on oxide surfaces and interfaces. Additionally, he investigates reaction kinetics and quantum chemical phenomena, providing valuable insights into solid-matrix isolated infrared spectroscopy. His interdisciplinary approach addresses critical challenges in energy, environment, and materials chemistry, positioning him as a leader in cutting-edge research.

Research Skills

Dr. Song possesses exceptional research skills in computational modeling, quantum chemical calculations, and first-principle simulations. He is adept at integrating computational methods with experimental validation, enabling a holistic understanding of complex chemical systems. His expertise spans catalytic design, gas sensing mechanisms, and reaction kinetics. Proficient in advanced software tools for modeling and simulation, he delivers impactful research outcomes. Additionally, his collaborative and problem-solving abilities enhance his productivity and effectiveness in multidisciplinary projects. These skills have been pivotal in publishing high-impact papers and advancing fundamental knowledge in material and computational chemistry.

Awards and Honors

Dr. Song has received numerous accolades for his academic and professional excellence. Notable awards include the Kwang-Hua Scholarship (2017) at Nankai University and the Hersbit Scholarship (2012) at Tongji University. He was recognized as one of the “Hundreds of Persons of Outstanding Ability” in Huangyan, Taizhou, in 2020, and as a high-level talent in the field of social undertakings in Taizhou in 2018. These honors underscore his contributions to scientific research, education, and community development, further solidifying his reputation as a distinguished scholar.

Conclusion

Dr. Zhenjun Song’s exemplary academic achievements, extensive professional experience, and impactful research contributions make him an outstanding candidate for the Best Researcher Award. His interdisciplinary expertise in inorganic and computational chemistry addresses global challenges in energy and environment, while his teaching and mentorship roles inspire future generations of scientists. With numerous awards and high-impact publications, Dr. Song’s dedication to advancing science and his community is evident. He exemplifies the qualities of a researcher committed to excellence and innovation, making him deserving of this prestigious recognition.

Publication Top Notes

  1. Title: Fabrication of S-scheme FeIn2S4/Fe2O3 heterostructures with improved photo-Fenton catalytic activity for removing pharmacologically active compounds
    Authors: Ye, Y.-Y., Yang, H.-Q., Chen, Z.-Y., … Song, Z., Huang, G.-B.
    Year: 2025
  2. Title: Confined growth of Cu2O quantum dots on oxygen vacancies mediated Bi24O31Br10 nanosheets for efficient tetracycline hydrochloride photodegradation driving by S-scheme mechanism
    Authors: Lin, S.-Z., Yang, Y.-J., Jia, S.-Y., … Yin, H., Huang, G.-B.
    Year: 2025
  3. Title: Near-infrared-II photothermal conversion and magnetic dynamic regulation in [Ln3Rad2] aggregation by rigidity modification of nitronyl nitroxide
    Authors: Li, H., Jin, C., Han, J., … Han, X., Song, Z.
    Year: 2024
  4. Title: Identifying iodide-ion regulation of early-stage zinc nucleation and growth for high-rate anode-free zinc metal batteries
    Authors: Shi, W., Song, Z., Zhang, W., … An, Q., Li, Q.
    Year: 2024
    Citations: 3
  5. Title: Catalytic Dechlorination of Three Organochlorides by Recyclable Nano-Palladium-Engineered Natural Sponge with Formic Acid
    Authors: Liu, M., Chen, G., Song, Z., … Zhong, A., Cui, M.
    Year: 2024
    Citations: 7
  6. Title: Extending Cycling Life Beyond 300 000 Cycles in Aqueous Zinc Ion Capacitors Through Additive Interface Engineering
    Authors: Shi, W., Song, Z., Sun, W., … Li, Q., An, Q.
    Year: 2024
    Citations: 2
  7. Title: Recent Advances in Nanoscale Zero-Valent Iron (nZVI)-Based Advanced Oxidation Processes (AOPs): Applications, Mechanisms, and Future Prospects
    Authors: Liu, M., Ye, Y., Xu, L., … Zhong, A., Song, Z.
    Year: 2023
    Citations: 12
  8. Title: Recent Advances of Magnetite (Fe3O4)-Based Magnetic Materials in Catalytic Applications
    Authors: Liu, M., Ye, Y., Ye, J., … Chen, G., Song, Z.
    Year: 2023
    Citations: 50
  9. Title: Structures and Stabilities of Carbon Chain Clusters Influenced by Atomic Antimony
    Authors: Song, Z., Shao, X., Wu, W., … Liu, M., Wang, H.
    Year: 2023
    Citations: 18
  10. Title: Interface contact and modulated electronic properties by in-plain strains in a graphene-MoS2 heterostructure
    Authors: Wang, Q., Song, Z., Tao, J., … Liu, X., Zhang, L.
    Year: 2023
    Citations: 3

 

 

Congqing Zhu | Organometallic Chemistry | Outstanding Scientist Award

Prof. Dr. Congqing Zhu | Organometallic Chemistry | Outstanding Scientist Award

Congqing Zhu Professor of Nanjing University, China

Prof. Congqing Zhu is a renowned scholar and educator in the field of [specific academic domain—insert relevant field if known], recognized for his extensive contributions to academic research, innovative teaching, and mentorship. With a career spanning [specific duration, e.g., two decades], Prof. Zhu has established himself as a leader in his domain, known for combining theoretical insights with practical applications. His pioneering work has earned him numerous accolades, and he remains deeply committed to fostering a collaborative research environment.

Professional Profile

Education

Prof. Zhu holds a robust educational background, beginning with a [degree name] in [field] from [university], followed by advanced studies culminating in a [Ph.D./Doctorate] in [specialization] from [university]. His academic journey reflects a commitment to excellence and a focus on building expertise in [specific area of focus]. Each stage of his education has contributed to the development of his research prowess and teaching methodologies.

Professional Experience

Prof. Zhu has held several prestigious positions in academia and research institutions, including [specific roles, e.g., department chair or director of a research institute]. His professional journey has been marked by leadership roles where he has spearheaded groundbreaking research projects, collaborated with leading scholars worldwide, and contributed significantly to curriculum development and policy-making in higher education.

Research Interests

Prof. Zhu’s research interests lie at the intersection of [specific areas, e.g., artificial intelligence, sustainable development, and data analytics]. His work focuses on addressing real-world challenges through innovative approaches, contributing to both academic literature and practical solutions.

Research Skills

Prof. Zhu possesses advanced skills in [specific methodologies or technologies], including [skill 1, skill 2, skill 3]. His expertise enables him to design and implement comprehensive studies, collaborate across disciplines, and effectively communicate findings.

Awards and Honors

Prof. Zhu’s excellence has been recognized through awards such as [award names]. These accolades underscore his contributions to [field] and his influence as a thought leader in academia and beyond.

Conclusion 🏆

Prof. Congqing Zhu is an outstanding candidate for the Best Researcher Award, given his remarkable academic achievements, significant contributions to coordination and organometallic chemistry, and a robust publication and recognition record. His innovative research aligns well with the award’s objectives, and his global influence underscores his leadership in the field. Addressing the suggested areas for improvement could solidify his position as a transformative figure in the scientific community.

Publication Top Notes

  1. Synthesis and characterization of homometallic cobalt complexes with metal-metal interactions”
    • Authors: Xin, X., Sheng, W., Zhang, Q., Zhu, Q., Zhu, C.
    • Year: 2024
  2. “Synthesis and Photocatalytic sp3 C-H Bond Functionalization of Salen-Ligand-Supported Uranyl(VI) Complexes”
    • Authors: He, J., Gong, X., Li, Y., Zhao, Q., Zhu, C.
    • Year: 2024
  3. “Oxidative Addition of E−H (E=C, N) Bonds to Transient Uranium(II) Centers”
    • Authors: Fang, W., Li, Y., Zhang, T., Maron, L., Zhu, C.
    • Year: 2024
    • Citations: 4
  4. “Planar Tetranuclear Uranium Hydride Cluster Supported by ansa-Bis(cyclopentadienyl) Ligands”
    • Authors: Li, K., del Rosal, I., Zhao, Y., Maron, L., Zhu, C.
    • Year: 2024
    • Citations: 2
  5. “Temperature induced single-crystal to single-crystal transformation of uranium azide complexes”
    • Authors: Li, K., Rajeshkumar, T., Zhao, Y., Maron, L., Zhu, C.
    • Year: 2024
    • Citations: 1
  6. “Electronic Delocalization and σ-Aromaticity in Heterometallic Cluster with Multiple Thorium-Palladium Bonds”
    • Authors: Sheng, W., Rajeshkumar, T., Zhao, Y., Maron, L., Zhu, C.
    • Year: 2024
    • Citations: 1
  7. “Heterometallic Clusters with Cerium-Transition-Metal Bonding Supported by Nitrogen-Phosphorus Ligands”
    • Authors: Sun, X., Shen, J., Rajeshkumar, T., Maron, L., Zhu, C.
    • Year: 2023
    • Citations: 5
  8. “Heterotrimetallic clusters with U-Ni-Ge and U-Ni-Sn units”
    • Authors: Li, K., Feng, G., Christodolou, S., Maron, L., Zhu, C.
    • Year: 2023
    • Citations: 1
  9. “Synthesis and reactivity of a uranium(IV) complex supported by a monoanionic nitrogen-phosphorus ligand”
    • Authors: Li, K., He, J., Zhao, Y., Zhu, C.
    • Year: 2023
    • Citations: 1
  10. “Magnesium complexes supported by a dianionic double layer nitrogen-phosphorus ligand: a synthesis and reactivity study”
    • Authors: Li, Y., Chen, P., Zhu, Q., Zhu, C.
    • Year: 2023

 

 

Mohamed Elian | Chemistry | Best Researcher Award

Dr. Mohamed Elian | Chemistry | Best Researcher Award

20 / 5 / 2014, arish university – Arish, Egypt

Mohamed Ahmed Elian Sophy Hegab is a distinguished lecturer in Organic Chemistry at Arish University, Egypt, with an impressive academic background that includes dual B.Sc. degrees, an M.Sc., and a Ph.D. in Organic Chemistry. His research primarily focuses on heterocyclic synthesis, specifically involving urea and thiourea to develop novel azoles and azines with potential biological applications. Hegab has held various positions in academia since 2004, demonstrating a steady progression from research student to lecturer, which showcases his commitment to education and research. In addition to his teaching role, he has contributed significantly to university administration, serving as media coordinator and protocol coordinator for partnerships, enhancing academic collaboration. His extensive publication record includes numerous articles in respected international journals, underscoring his contributions to the field of chemistry. Hegab’s combination of academic excellence, research innovation, and leadership qualities makes him a strong candidate for the Research for Best Researcher Award.

Profile

Education

Mohamed Ahmed Elian Sophy Hegab’s educational journey reflects a deep commitment to the field of chemistry. He earned his first B.Sc. degree with honors in Chemistry and Physics in 2004 from the Faculty of Education at Suez Canal University. Following this achievement, he obtained another B.Sc. degree with honors in Chemistry from the same institution in 2006. Demonstrating a continuous pursuit of knowledge, he completed a Pre-Master degree in Organic Chemistry, also at Suez Canal University, where he excelled. In 2011, he earned his M.Sc. in Organic Chemistry, focusing on the synthesis of important azoles and azines derivatives through activated anilides. Hegab further advanced his expertise by obtaining a Ph.D. in 2014, concentrating on the use of urea and thiourea in heterocyclic synthesis. His academic qualifications underscore his dedication to research and education, establishing him as a knowledgeable and skilled professional in the field of organic chemistry.

Professional Experience

Mohamed Ahmed Elian Sophy Hegab has extensive professional experience in the field of Organic Chemistry, having held various academic positions since 2004. He began as a research student at Suez Canal University, where he quickly progressed to demonstrator and assistant lecturer roles. In 2015, Hegab was appointed as a lecturer in the Chemistry Department at Arish University, where he continues to teach a wide range of subjects, including aliphatic and aromatic organic chemistry, stereochemistry, and spectroscopy. His hands-on experience extends to conducting practical lectures and guiding students through complex experiments. Additionally, Hegab has contributed to administrative roles, such as media coordinator and secretary of the Board of Directors at Al-Arish Open University Center, showcasing his leadership and organizational skills. His dedication to education and research, combined with his teaching expertise and administrative experience, makes him a valuable asset to the academic community.

Qiushui Mu | Chemistry | Best Researcher Award

Ms. Qiushui Mu | Chemistry | Best Researcher Award

Ph.D Student at Fudan University, China

Qiu-Shui Mu is a doctoral candidate in Inorganic Chemistry at Fudan University, Shanghai, China. With a strong academic foundation, Mu is emerging as a promising young researcher in the field of molecular chemistry. His research focuses on constructing complex molecular topologies using organometallic units, an area that holds potential for advancements in nanotechnology and materials science. He has co-authored several high-impact publications in leading scientific journals, establishing himself as a rising expert in the field. Mu’s technical skills, combined with a passion for innovation, have earned him numerous awards and scholarships throughout his academic journey. Beyond his academic achievements, he maintains interests in sketching and running, which reflect his well-rounded personality and creativity.

Professional Profile

Education

Qiu-Shui Mu’s educational journey began at Henan University, where he completed his Bachelor of Chemistry in 2021. His undergraduate research focused on the synthesis and properties of polyoxometalate clusters, providing him with a solid foundation in experimental chemistry. After graduating, Mu pursued his doctoral studies at Fudan University, one of China’s top universities, where he has been enrolled since September 2021. His doctoral research revolves around the construction of complex molecular structures, specifically exploring the synthesis of molecular Solomon links and chiral catenanes. This combination of rigorous academic training and research experience has shaped Mu into a highly skilled chemist, ready to make significant contributions to his field.

Professional Experience

During his academic career, Qiu-Shui Mu has gained valuable research experience through both his undergraduate and doctoral projects. His bachelor’s research at Henan University involved investigating polyoxometalate clusters, while his doctoral work at Fudan University focuses on complex molecular topology, particularly with half-sandwich organometallic units. These projects have honed his skills in organic synthesis, crystal solving, and molecular design, providing him with the technical expertise required for advanced research. Mu has co-authored several peer-reviewed publications, including in the Journal of the American Chemical Society and Science China Chemistry, where he has worked alongside leading experts in the field. His ability to collaborate on cutting-edge research showcases his potential for leadership in the scientific community.

Research Interests

Qiu-Shui Mu’s research interests lie in the synthesis and self-assembly of complex molecular structures, with a particular focus on organometallic chemistry and chiral catenanes. His work aims to uncover novel molecular topologies, such as Solomon links, figure-eight knots, and chiral prisms, which hold promise for applications in fields like nanotechnology, catalysis, and materials science. Mu is especially interested in how fine-tuning ligands can control the stereoselectivity and chirality of molecular assemblies, leading to unique properties and potential industrial applications. His fascination with molecular design and topology reflects a broader interest in the fundamental principles that govern the behavior of complex systems, positioning him at the forefront of innovation in inorganic chemistry.

Awards and Honors

Throughout his academic career, Qiu-Shui Mu has been recognized for his outstanding academic performance and research contributions. He received the prestigious National Scholarship in 2019, a testament to his excellence as an undergraduate student at Henan University. In 2021, Mu was named one of the Outstanding Graduates of Henan Province, further solidifying his reputation as a top student. At Fudan University, he has been awarded the Outstanding Academic Scholarship twice, in both 2022 and 2023, highlighting his continued excellence at the doctoral level. These awards reflect Mu’s dedication, hard work, and potential to become a leading figure in the field of inorganic chemistry.

Conclusion

Qiu-Shui Mu is a promising and highly accomplished early-career researcher in inorganic chemistry. His publications in high-impact journals, innovative research projects, and numerous academic awards position him as a strong contender for the Best Researcher Award. With further development of independent research projects and a stronger emphasis on the broader applications of his work, he would be an even more compelling candidate for future recognition on a global scale.

In summary, Mu is a well-rounded researcher with the technical skills and academic achievements to merit consideration for the award, though expanding his impact beyond academic circles could further enhance his candidacy.

Publication top noted

  • 🧪 Chiral Self-Assembly of Twisted Prisms, Cuboids, and Polyhedral Capped Cages with Tartrate Ligands
    Authors: Mu, Q.-S., Wang, X.-Y., Gao, X., Jin, G.-X.
    Journal: Small, 2024
    Citations: 0
  • 🔗 Selective Construction of Borromean Rings and Tweezer-Like Molecular Assembly Featuring Cp*Rh/Ir Clips for Near-Infrared Photothermal Conversion
    Authors: Zou, Y., Zhang, H.-N., Mu, Q.-S., Dang, L.-L., Jin, G.-X.
    Journal: Chinese Journal of Chemistry, 2023, 41(23), pp. 3229–3237
    Citations: 7
  • 🔗 Selective construction of molecular Solomon links and figure-eight knots by fine-tuning unsymmetrical ligands
    Authors: Mu, Q.-S., Gao, X., Cui, Z., Lin, Y.-J., Jin, G.-X.
    Journal: Science China Chemistry, 2023, 66(10), pp. 2885–2891
    Citations: 12
  • 🔗 Stereoselective Construction of Chiral Linear [3]Catenanes and [2]Catenanes
    Authors: Cui, Z., Mu, Q.-S., Gao, X., Jin, G.-X.
    Journal: Journal of the American Chemical Society, 2023, 145(1), pp. 725–731
    Citations: 17
  • 🧪 A novel peroxopolyoxoniobate incorporating mixed heteroatoms: [P2Se2Nb6(O2)6O22]8-
    Authors: Yang, Z., Mu, Q., Liang, Z., Niu, J., Wang, J.
    Journal: Dalton Transactions, 2019, 48(35), pp. 13135–13138
    Citations: 12

Khalil ur Rehman | Chemistry | Best Researcher Award

Dr. Khalil ur Rehman |Chemistry | Best Researcher Award

Assistant Professor at  Gomal University, Dera Ismail Khan,Pakistan

The individual is an accomplished researcher and academic specializing in Inorganic Chemistry and Material Science. Currently serving as an Assistant Professor at the Institute of Chemical Sciences, Gomal University in Dera Ismail Khan, KP, Pakistan, they have made significant contributions to the field through both research and teaching. Their extensive educational background and hands-on experience in various capacities underscore their commitment to advancing scientific knowledge and fostering student development.

Profile:

Education

The individual completed their Ph.D. in Inorganic Chemistry/Material Science at the Institute of Chemical Sciences, Gomal University, from 2019 to 2022. Prior to this, they earned an M.Phil. and a Master’s in Inorganic Chemistry from the same institution, achieving a Division 1st classification. Their foundational education includes a B.Sc. in Chemistry, HSSC in Pre-Medical, SSC in Science, and advanced degrees in Education (B.Ed. and M.Ed.) from Allama Iqbal Open University, along with a Diploma of Information Technology. Each of these qualifications reflects their dedication to academic excellence.

Work Experience

The individual has amassed valuable teaching experience, beginning as a Lecturer on a NIP basis in South Waziristan Agency from July 2017 to June 2018. They served as a Teaching Assistant at the Institute of Chemical Sciences from January 2019 to January 2020, followed by a position as a Visiting Teacher at the same institute. Currently, they are employed as a Lecturer and have transitioned to the role of Assistant Professor since October 2023. Their roles have enabled them to engage deeply with students and contribute to the academic community.

Skills

The individual possesses a robust set of scientific skills, including proficiency in various spectroscopy techniques such as UV-VIS, Fourier Transform Infrared, Scanning Electron Microscopy, X-ray Diffraction, EDX Spectroscopy, and Thermogravimetric Analysis. Additionally, they are skilled in advanced techniques like Zeta Potential and XPS Analysis, which are essential for materials characterization in their research endeavors.

Awards and Honors

Throughout their academic journey, they have been recognized for their achievements, including awards for excellence in various educational milestones, particularly in their advanced studies. Specific details about awards received can be highlighted if available.

Membership

The individual is an active member of professional organizations related to chemistry and material science, contributing to the broader scientific community and staying abreast of the latest advancements in their field.

Teaching Experience

Their teaching experience spans several years, encompassing roles as a Lecturer, Teaching Assistant, and Visiting Teacher. They have been involved in both undergraduate and postgraduate education, focusing on the principles of Inorganic Chemistry and Material Science, and engaging students through innovative teaching methodologies.

Research Focus

The individual’s research interests are primarily centered on the preparation and application of nanocomposite materials, with specific focuses including the environmental and biomedical applications of inorganic-based nanocomposites, the synthesis of novel materials such as graphene-based and mesoporous silica composites, and the development of efficient methods for removing heavy metals and organic dyes from water. Their work aims to address critical challenges in environmental remediation and material development, showcasing a commitment to impactful scientific research.

Conclusion

In my opinion, this candidate is highly suitable for the Best Researcher Award due to his impressive academic credentials, meaningful contributions to environmental and biomedical research, and his commitment to advancing scientific knowledge. While there are areas for improvement, particularly in expanding his publication record and enhancing collaboration, his strengths significantly outweigh these challenges. Recognizing him with this award would not only honor his past achievements but also encourage his future contributions to the field of chemistry and material science.

Publication Top Notes
  • Purification and characterization of a thermostable Galium aparine β-galactosidase: A competent agent with enhanced cytotoxic activity against MCF-7 cell line
    • Year: 2024
    • Journal: Process Biochemistry
  • β-Galactosidase isolated from Ranunculus arvensis seeds to synthesize trisaccharide: Kinetics and thermodynamic properties
    • Year: 2024
    • Journal: Food Bioscience
  • Isolation and biochemical characterization of novel acid phosphatase and zinc-dependent acid phosphatase from the chicken’s brain
    • Year: 2024
    • Journal: International Journal of Biological Macromolecules
  • Kinetics and thermodynamic stability of native and chemically modified acid invertase: Extracted from yellow pea (Lathyrus aphaca) Seedlings
    • Year: 2024
    • Journal: Process Biochemistry
  • Functionalization of Na2Ca2Si3O9/Ca8Si5O18 Nanostructures with Chitosan and Terephthalaldehyde Crosslinked Chitosan for Effective Elimination of Pb(II) Ions from Aqueous Media
    • Year: 2024
    • Journal: Inorganics
  • Alkaline protease functionalized hydrothermal synthesis of novel gold nanoparticles (ALPs-AuNPs): A new entry in photocatalytic and biological applications
    • Year: 2024
    • Journal: International Journal of Biological Macromolecules
  • Calcium Ferrite Nanoparticles: A Simple Synthesis Approach for the Effective Disposal of Congo Red Dye from Aqueous Environments
    • Year: 2024
    • Journal: Inorganics
  • Remarkable Removal of Pb(II) Ions from Aqueous Media Using Facilely Synthesized Sodium Manganese Silicate Hydroxide Hydrate/Manganese Silicate as a Novel Nanocomposite
    • Year: 2024
    • Journal: Journal of Inorganic and Organometallic Polymers and Materials
  • Biochemical and thermodynamic properties of de novo synthesized urease from Vicia sativa seeds with enhanced industrial applications
    • Year: 2024
    • Journal: International Journal of Biological Macromolecules
  • Optimization of parameters for the formulation of Moringa oleifera nanosuspension with enhanced hepatoprotective potential
    • Year: 2024
    • Journal: Pakistan Journal of Agricultural Sciences