Tieming Guo | Materials Science | Best Researcher Award

Prof. Tieming Guo | Materials Science | Best Researcher Award

Professor from School of Materials Science and Engineering, Lanzhou University of Technology, China

Professor Tieming Guo is a distinguished faculty member at the Department of Metallic Materials Engineering, College of Materials Science and Engineering, Lanzhou University of Science and Technology, China. With a career dedicated to the in-depth study of corrosion behavior, microstructure, and metal matrix composite materials, he has made notable contributions to both fundamental science and industrial applications. His research on stainless steel corrosion, focusing on the effects of trace elements such as boron and cobalt, has provided steel manufacturers with theoretical foundations for material improvement. In recent years, his focus has expanded to high-strength, highly conductive copper matrix composites, further broadening his research scope. A standout example of his recent work involves laser cladding of Fe–0.3C–15Cr–1Ni alloy on martensitic stainless steel, optimizing wear and corrosion resistance by adjusting laser power parameters. Professor Guo’s research outcomes are characterized by rigorous experimentation, detailed microstructural characterization, and clear application-driven goals. His work is not only advancing scientific understanding but also offering practical solutions for the metallurgical industry. With a career that blends deep technical knowledge and applied research impact, Professor Guo stands out as a leader in his field and a strong candidate for recognition through research awards.

Professional Profile

Education

Professor Tieming Guo completed his higher education in materials science and engineering, specializing in metallic materials. He holds a Bachelor’s degree in Materials Science and Engineering, which laid the foundation for his early interest in the microstructure and corrosion behavior of metals. He then pursued a Master’s degree in Metallic Materials Engineering, where he focused on the effects of alloying elements on stainless steel performance. During his master’s studies, he began exploring the mechanisms behind stainless steel corrosion, particularly the role of microalloying with trace elements like boron and cobalt. Professor Guo completed his doctoral studies in Materials Science, focusing on metal matrix composites and advanced characterization techniques to study wear and corrosion properties. Throughout his academic training, he gained expertise in both theoretical modeling and practical experimentation, equipping him with a balanced perspective that integrates fundamental science with real-world applications. His academic background has positioned him well for a career that addresses both the challenges and opportunities in metallic materials research, particularly in areas directly relevant to industrial needs and technological development.

Professional Experience

Professor Tieming Guo has built a distinguished academic career as a faculty member at Lanzhou University of Science and Technology, where he serves as a professor and master’s tutor in the Department of Metallic Materials Engineering. Over the years, he has developed extensive experience in managing research projects related to stainless steel corrosion, microalloying, and metal matrix composites. He has been actively involved in supervising graduate students, guiding them through complex experimental work and analysis. His professional experience also includes collaborating with steel manufacturers, providing them with theoretical guidance and practical recommendations to improve material performance. Professor Guo has authored and co-authored numerous research papers, demonstrating his commitment to scientific dissemination and contribution to the broader materials science community. Additionally, he regularly participates in academic conferences and workshops, both as a speaker and attendee, ensuring that he remains at the forefront of emerging trends and technologies. His career trajectory showcases a strong combination of academic leadership, technical expertise, and industrial relevance, making him a well-rounded and impactful figure in the field of metallic materials engineering.

Research Interests

Professor Tieming Guo’s research interests center on the corrosion behavior of metallic materials, microstructure-property relationships, and the development of advanced metal matrix composites. He has a particular focus on stainless steel, studying how microalloying with trace elements like boron and cobalt influences corrosion resistance, wear performance, and mechanical properties. His work extends into exploring the effects of processing parameters, such as laser cladding techniques, on microstructure evolution and material performance. More recently, his research has branched into the study of high-strength, highly conductive copper matrix composites, reflecting his interest in combining mechanical robustness with superior electrical properties. Professor Guo is also deeply interested in the interplay between alloy composition, microstructural features (such as dendrite morphology and carbide distribution), and functional performance in aggressive environments. His commitment to advancing both theoretical understanding and practical applications ensures that his research remains highly relevant to both academic inquiry and industrial development, with an emphasis on improving material longevity, efficiency, and sustainability.

Research Skills

Professor Tieming Guo possesses a robust set of research skills that reflect his deep expertise in metallic materials engineering. He is highly skilled in experimental design, particularly in corrosion testing, wear resistance evaluation, and mechanical property characterization. His technical proficiency extends to advanced microstructural analysis techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and metallographic microscopy, allowing him to link microstructural features with macroscopic performance. Professor Guo is adept at working with laser cladding processes, optimizing operational parameters to achieve desired microstructural outcomes. He is also proficient in data analysis and interpretation, ensuring that experimental results are rigorously examined and connected to underlying material mechanisms. In addition to laboratory skills, Professor Guo has strong capabilities in research project management, student supervision, and academic writing, as demonstrated by his extensive publication record. His ability to integrate experimental work with theoretical insights enables him to address both fundamental scientific questions and practical engineering challenges, making his research outputs highly valuable to both academia and industry.

Awards and Honors

Throughout his career, Professor Tieming Guo has received recognition for his contributions to the field of materials science and engineering. He has been honored by academic institutions, professional societies, and industry partners for his impactful research on stainless steel corrosion and metal matrix composites. His awards reflect both the quality and relevance of his work, highlighting his ability to address critical challenges in metallic materials and translate research findings into practical recommendations. Professor Guo’s role as a master’s tutor and mentor has also earned him recognition for excellence in student supervision and academic leadership. He has been invited to present at national and international conferences, further underscoring his reputation as a respected expert in his field. While his achievements are already commendable, continuing to broaden his recognition through international awards, interdisciplinary collaborations, and participation in global research initiatives would further solidify his standing as a top-tier researcher.

Conclusion

Professor Tieming Guo stands out as a dedicated and impactful researcher whose work significantly advances the understanding of corrosion behavior, microalloying, and metal matrix composite development. His long-term commitment to both fundamental research and industrial application makes his contributions particularly valuable to the metallurgical field. With a strong academic background, extensive professional experience, and highly specialized research skills, Professor Guo has built a career marked by scientific rigor, practical relevance, and mentorship. His numerous awards and honors reflect the recognition he has earned within his field, although there is room to further elevate his profile through expanded international collaborations and broader dissemination of his work. Overall, Professor Guo is a highly deserving candidate for the Best Researcher Award, and his continued efforts promise to bring further advancements to materials science and engineering, benefiting both the academic community and industrial stakeholders.

Publications Top Notes

  1. Title: Characterization of stiff porous TiC fabricated by in-situ reaction of Ti with carbon derived from phenolic resin containing template
    Authors: Liu, Diqiang; Zhang, Hongqiang; Zhao, Weiqi; Jia, Jiangang; Guo, Tieming
    Journal: Journal of the European Ceramic Society
    Year: 2025

  2. Title: Effect of siliconizing temperature on microstructure and performance of alloy silicide layer on 347H stainless steel surface by melting salt non-electrolysis method
    Authors: Liu, Zehong; Guo, Tieming; Jia, Jiangang; Zhang, Ruihua; Yi, Xiangbin
    Journal: Surface and Coatings Technology
    Year: 2025

  3. Title: Fabrication and characterization of GCF/PyC composites by TG-CVI densified porous glassy carbon preform
    Authors: Jia, Jiangang; You, Xinya; Pan, Zikang; Liu, Diqiang; Guo, Tieming
    Journal: Ceramics International
    Year: 2025

  4. Title: Passivation characteristics and corrosion behavior of S32202 duplex stainless steel in different temperatures polluted phosphoric acid
    Authors: Yang, Haizhen; Guo, Tieming; Ouyang, Minghui; Zhao, Shuaijie; Liu, Zehong
    Journal: Surface and Coatings Technology
    Year: 2024
    Citations: 2

  5. Title: Comparative study on periodic immersion + infrared aging corrosion behavior of Q345qNH steel and Q420qNH steel in simulated industrial atmospheric environment medium
    Authors: Guo, Tieming; Yang, Haizhen; Wu, Weihong; Nan, Xueli; Hu, Yanwen
    Journal: Materialwissenschaft und Werkstofftechnik
    Year: 2024

Zhengwei You | Materials Science | Outstanding Scientist Award

Prof. Dr. Zhengwei You | Materials Science | Outstanding Scientist Award

Chair of the Department of Composite Materials from Donghua University, China

Professor Dr. Zhengwei You is a leading figure in polymer and biomaterials research, currently serving as Chair of the Department of Composite Materials and Full Professor at Donghua University. With a robust academic and industry background, he has contributed significantly to advanced fiber materials, polyurethane elastomers, 3D printing, biomedicine, and flexible electronics. His research outputs include 96 peer-reviewed publications, over 60 patents, and two book chapters, with numerous papers in high-impact journals such as Nature Medicine, Nature Communications, and Advanced Materials. He has delivered over 50 keynote and invited lectures worldwide and serves on multiple editorial boards and professional committees in materials science, biomaterials, and engineering. His work is frequently highlighted by the National Natural Science Foundation of China and national media. With an H-index of 45 and over 7,600 Google Scholar citations, Prof. You is recognized as an influential researcher whose contributions bridge academia and industrial innovation. His leadership extends beyond research, including roles as chairman, vice-chair, and standing committee member across several scientific and academic societies. Prof. You’s multifaceted expertise, combined with his leadership in research management, places him at the forefront of materials science research in China and internationally.

Professional Profile

Education

Prof. Zhengwei You completed his Bachelor of Science degree in Applied Chemistry at Shanghai Jiao Tong University (1996–2000), where he gained strong foundational knowledge in chemical sciences. He went on to pursue his Ph.D. in Organic Chemistry at the prestigious Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, from 2002 to 2007. This doctoral training provided him with in-depth expertise in advanced organic synthesis, molecular design, and material characterization, establishing the technical basis for his later breakthroughs in polymer materials and biomaterials. His solid academic preparation in China’s top-ranked institutions positioned him well to integrate chemistry with materials science, allowing him to make key contributions to the fields of advanced fiber materials, elastomers, and biomedical engineering. This rigorous education also fostered his ability to lead interdisciplinary research and collaborate across chemistry, materials, and bioengineering domains, both in academia and industry.

Professional Experience

Prof. Zhengwei You has built a distinguished professional career spanning academia, research, and industry. He is currently Chair of the Department of Composite Materials at Donghua University (since 2016) and Full Professor at the State Key Laboratory of Advanced Fiber Materials (since 2013). His international experience includes roles as Visiting Research Assistant Professor (2011–2012) and Postdoctoral Associate (2009–2011) at the McGowan Institute of Regenerative Medicine, University of Pittsburgh, and as a Postdoctoral Associate (2007–2008) at Georgia Institute of Technology and Emory University. Notably, he also worked as an Innovation Manager for Bayer MaterialScience (2012–2013), giving him a strong bridge between academic research and industrial application. Earlier in his career, he served on the faculty at Shanghai Jiao Tong University (2000–2002). Beyond his institutional roles, Prof. You has held leadership positions in numerous professional societies, serving on editorial boards and technical committees and actively contributing to research governance, ethics, and scientific development in materials and biomaterials fields.

Research Interests

Prof. Zhengwei You’s research interests span polymers, biomaterials, polyurethane, and elastomers, with applications in 3D printing, biomedicine, and flexible electronics. He is particularly focused on designing advanced materials that exhibit superior mechanical strength, self-healing properties, dynamic crosslinking, and biocompatibility. His work integrates fundamental polymer science with cutting-edge technologies such as additive manufacturing and biofabrication to create next-generation medical devices, tissue scaffolds, and wearable electronics. Prof. You’s research also addresses the synthesis and characterization of smart materials that can respond to external stimuli and deliver tailored functionalities. He combines organic chemistry, materials science, and bioengineering principles to drive innovations at the interface of healthcare and technology. His interdisciplinary approach has led to breakthroughs in areas such as mechanoactive mineralization scaffolds for bone regeneration, dynamic polyurethanes for medical applications, and novel fiber materials for flexible electronics, all of which are highly relevant for advancing both clinical practice and industrial applications.

Research Skills

Prof. Zhengwei You possesses advanced research skills in polymer synthesis, organic chemistry, materials characterization, and biomaterials engineering. He is highly proficient in designing and fabricating novel elastomeric and polyurethane materials with dynamic crosslinking and self-healing properties. His expertise includes mechanical testing, thermal analysis, rheological assessment, and microstructural characterization using advanced techniques such as SEM, TEM, AFM, and spectroscopy. Prof. You has deep experience in 3D printing technologies, including biofabrication of scaffolds for tissue engineering, and the development of flexible and wearable electronic devices. Additionally, his research management skills encompass leading large interdisciplinary teams, securing research funding, filing patents, and publishing in top-tier scientific journals. His ability to translate fundamental research into practical applications demonstrates his strength in bridging laboratory discoveries with real-world solutions. With over 50 invited presentations, editorial board memberships, and active participation in international collaborations, Prof. You is not only technically skilled but also an influential research leader.

Awards and Honors

Prof. Zhengwei You has received widespread recognition for his contributions to materials science and biomaterials research. His research has been frequently highlighted by major funding agencies such as the National Natural Science Foundation of China and national media, including China Science Daily and the China Blue Book of New Material Technology Development. He has secured more than 60 patents and published over 90 peer-reviewed papers in highly ranked journals, with numerous articles appearing in Nature Medicine, Advanced Materials, and Angewandte Chemie. His leadership roles across multiple scientific societies reflect his outstanding reputation in the field, including serving as chairman, vice chairman, and standing committee member in prominent national and international organizations. Additionally, Prof. You’s editorial appointments, such as on the boards of Bioactive Materials, Advanced Fiber Materials, and Chinese Journal of Polymer Science, underline his scientific excellence. His invited keynote and plenary lectures at international conferences further showcase the high esteem in which his peers hold his research achievements.

Conclusion

In conclusion, Prof. Zhengwei You stands out as an exceptional candidate for the Best Researcher Award due to his sustained, high-impact contributions to polymer science, biomaterials, and advanced fiber materials. His innovative research in polyurethane, elastomers, and biofabrication has resulted in numerous patents, top-tier publications, and real-world applications in healthcare and flexible electronics. Beyond his research output, Prof. You has demonstrated exemplary leadership by guiding interdisciplinary research teams, serving on influential editorial boards, and playing key roles in professional organizations. While his research portfolio is already robust, potential areas for future growth include expanding international collaborations and further enhancing translational impact to bring laboratory discoveries into widespread clinical or industrial use. Overall, Prof. You’s combination of scientific innovation, leadership, and broad recognition makes him a highly deserving recipient of this award, reflecting both his individual excellence and his ongoing contributions to advancing materials science on a global scale.

Publications Top Notes

  1. Title: Multiple dynamic bonds enable high mechanical strength and efficient room-temperature self-healable polyurethane for triboelectric nanogenerators
    Authors: Zhang, Wenwen; Xuan, Huixia; Xu, Xiaofei; Guan, Qingbao; You, Zhengwei
    Journal: Science China Chemistry
    Year: 2025

  2. Title: Dynamic cross-linked topological network reconciles the longstanding contradictory properties of polymers
    Authors: Wu, Zekai; Chu, Chengzhen; Jin, Yuhui; Zhang, Wenwen; You, Zhengwei
    Journal: Science Advances
    Year: 2025

  3. Title: One-step fabrication of ultrathin porous Janus membrane within seconds for waterproof and breathable electronic skin
    Authors: Ni, Yufeng; Li, Bing; Chu, Chengzhen; Chen, Shuo; You, Zhengwei
    Journal: Science Bulletin
    Year: 2025
    Citations: 2

  4. Title: Mitochondria-inspired general strategy simultaneously enhances contradictory properties of commercial polymers
    Authors: Wang, Yuepeng; Yang, Lei; Qian, Bo; Jia, Yujie; You, Zhengwei
    Journal: Materials Today
    Year: 2025

  5. Title: Low-Cost Intrinsic Flame-Retardant Bio-Based High Performance Polyurethane and its Application in Triboelectric Nanogenerators
    Authors: Zhang, Xiaoyu; Yan, Xixian; Zeng, Fanglei; Guan, Qingbao; You, Zhengwei
    Journal: Advanced Science
    Year: 2025

  6. Title: Sequence-controlled dynamic covalent units enable decoupling of mechanical and self-healing performance of polymers
    Authors: Zhang, Luzhi; Huang, Hongfei; Sun, Lijie; Tan, Hui; You, Zhengwei
    Journal: Science China Chemistry
    Year: 2025

  7. Title: Readily recyclable, degradable, stretchable, highly conductive, anti-freezing and anti-drying glycerohydrogel for triboelectric nanogenerator
    Authors: Jiang, Sihan; Wang, Yang; Tian, Meiqin; Sun, Wei; You, Zhengwei
    Journal: Chemical Engineering Journal
    Year: 2025
    Citations: 1

  8. Title: Construction of room-temperature self-healing polyurethane-based phase change composites for thermal control and energy supply
    Authors: Ouyang, Yuling; Xu, Xiaofei; Li, Yingqian; Guan, Qingbao; You, Zhengwei
    Journal: Science China Chemistry
    Year: 2025

  9. Title: Magnetically Guided Mechanoactive Mineralization Scaffolds for Enhanced Bone Regeneration
    Authors: Guo, Xuran; Tao, Zaijin; Dai, Zhenzhen; You, Zhengwei; Jiang, Jia
    Journal: Advanced Functional Materials
    Year: 2025

  10. Title: Multilevel neurium-mimetic individualized graft via additive manufacturing for efficient tissue repair
    Authors: Kong, Lingchi; Gao, Xin; Yao, Xiangyun; Qian, Yun; Fan, Cunyi
    Journal: Nature Communications
    Year: 2024
    Citations: 5

Jaroslav Polák | Materials Science | Best Researcher Award

Prof. Jaroslav Polák | Materials Science | Best Researcher Award

Researcher from Institute of Physics of Materials CAS, Czech Republic

Prof. RNDr. Jaroslav Polák, DrSc., dr.h.c., is a globally respected scientist in the field of materials science, particularly known for his pioneering research on the mechanical properties of materials, fatigue behavior, and fracture processes. Born in 1938, Prof. Polák has dedicated over six decades to scientific research, contributing foundational theories and experimental insights that have advanced the understanding of fatigue damage in metals. He has held long-term positions at the Institute of Physics of Materials, Czech Academy of Sciences, and has collaborated internationally in Canada, Japan, Finland, and France. With over 450 publications in leading journals, two monographs, several book chapters, and an h-index of 41, his work has been cited nearly 5,000 times, ranking him among the top 1,000 most cited material scientists globally. Prof. Polák’s achievements extend beyond research; he has played a key role in mentoring young scientists, shaping research agendas, and serving on editorial boards and scientific panels. His leadership in organizing international conferences and editing special journal issues has helped shape the direction of the materials fatigue field. Prof. Polák continues to contribute as a senior scientist, maintaining a central role in advanced materials research groups and European research evaluations.

Professional Profile

Education

Prof. Polák’s educational foundation is firmly rooted in solid state physics. He completed his undergraduate studies at the Faculty of Natural Sciences, Brno, in 1961, earning the RNDr. degree. Shortly after, he pursued further specialization by joining the Institute of Solid State Physics at the Czech Academy of Sciences in Prague for one and a half years, deepening his expertise in materials science. In 1965, Prof. Polák earned his CSc. degree, equivalent to a Ph.D., with a thesis focused on mechanical properties of materials, setting the stage for his lifelong research into fatigue behavior. His academic journey continued with further advanced qualifications: in 1992, he achieved the title of Docent from Brno University of Technology, followed by a habilitation (DrSc.) from the Czech Academy of Sciences in 1993. By 1999, he was appointed Professor in Materials Engineering at Brno University of Technology. These milestones reflect a consistent, high-level academic progression that supported his development as a scientific leader. Over the years, his educational background has enabled him to bridge rigorous theoretical work with experimental research, fostering innovations that have become central to the field of materials fatigue.

Professional Experience

Prof. Polák’s professional experience is both extensive and international. He has been permanently based at the Institute of Physics of Materials, Czech Academy of Sciences, Brno, since 1963, where he led the low-cycle fatigue group from 1986 to 2012. Early in his career, he gained international exposure through a postdoctoral fellowship in Canada (1970–1971) under Dr. Z.S. Basinski, followed by visiting research and teaching positions at Tampere University of Technology, Finland, and multiple long-term collaborations with Ecole Centrale de Lille, France. Between 1994 and 2003, he undertook regular annual stays as “Professeur associé” in Lille, later becoming a member of the Scientific Board. His professional leadership also included membership in the scientific panel of the Grant Agency ČR (2005–2013) and involvement in European research evaluation projects under Horizon 2020 and RFCS. Notably, Prof. Polák has combined research with teaching for over 30 years, mentoring generations of students and researchers at Brno University of Technology. His organizational and editorial roles, such as chairing the 16th International Colloquium on Mechanical Fatigue of Metals, further emphasize his influence in shaping both scientific inquiry and the broader research community.

Research Interests

Prof. Polák’s research interests center on the mechanical behavior of materials, with particular emphasis on fatigue, cyclic plastic deformation, and fracture mechanics. His pioneering work has contributed to understanding thermal fatigue, fatigue-creep interactions, short crack kinetics, and the statistical theory of hysteresis loops. He applies a multiscale approach that integrates macroscopic mechanical testing with detailed microstructural analysis, using advanced techniques to study surface relief formation, crack initiation, and damage evolution. Prof. Polák is particularly interested in high-temperature and thermomechanical fatigue processes, developing models that have practical applications in predicting material lifespan under complex loading conditions. His innovative research has informed both theoretical frameworks and experimental methodologies, bridging the gap between fundamental science and engineering practice. His current involvement with CEITEC advanced material groups reflects his continuous engagement with cutting-edge research on next-generation materials. Additionally, his work increasingly connects with computational and computer-controlled testing methods, ensuring his research remains relevant in an era where materials science is intersecting with informatics and automation.

Research Skills

Prof. Polák brings a robust set of research skills to the field of materials science, particularly in experimental design, advanced mechanical testing, multiscale material characterization, and damage mechanism analysis. His expertise includes designing and conducting low-cycle and high-cycle fatigue experiments, implementing computer-controlled testing systems, and developing predictive models for fatigue life and crack initiation. He is highly skilled in correlating microstructural features with macroscopic mechanical behavior, using techniques such as microscopy, surface relief analysis, and fracture surface examination to understand material failure processes. His background in solid state physics equips him with a deep theoretical understanding, allowing him to derive quantitative models from experimental data, such as his work on the kinetics of short cracks and the evolution of surface structures during fatigue. Furthermore, Prof. Polák’s research management and leadership skills are well established, enabling him to coordinate large-scale collaborative projects, organize international conferences, and mentor junior researchers. His ability to combine theoretical, experimental, and organizational expertise makes him a uniquely well-rounded scientific leader in the field.

Awards and Honors

Prof. Polák’s distinguished career has been recognized through numerous awards and honors, reflecting both his scientific excellence and his service to the global research community. One of his most prestigious honors is the Ernst Mach Honorary Medal for Merit in Physical Sciences, awarded by the Academy of Sciences in 2016, acknowledging his groundbreaking contributions to materials science and fatigue research. His international reputation is further underscored by the honorary doctorate (dr. h.c.) awarded by Ecole Centrale de Lille in 2004, where he also served on the Scientific Board between 2000 and 2003. Prof. Polák has been invited to deliver lectures at top institutions worldwide, including Japan, France, Canada, and Finland, and has frequently served as an invited speaker at international conferences. He chaired the Scientific and Organizing Committees of the 16th International Colloquium on Mechanical Fatigue of Metals, reinforcing his leadership standing. More recently, his expertise has been sought as an evaluator for European research projects under Horizon 2020 and RFCS. Collectively, these recognitions affirm his enduring influence and the high esteem in which he is held by the international scientific community.

Conclusion

Prof. Jaroslav Polák stands out as an extraordinary figure in the global materials science community. His six-decade career has yielded transformative insights into fatigue behavior, cyclic plasticity, and material failure mechanisms, underpinned by rigorous experimental research and innovative theoretical modeling. His contributions extend beyond scientific publications to include leadership in major international collaborations, organization of key scientific conferences, editorial work, and the mentorship of numerous young scientists. Prof. Polák’s impressive record of over 450 publications, thousands of citations, and top rankings among material science researchers underscores his profound and lasting impact. Honors such as the Ernst Mach Medal and honorary doctorate from Ecole Centrale de Lille further validate his status as a leading researcher. While his focus has traditionally been on fundamental aspects of materials behavior, he remains well-positioned to contribute to emerging interdisciplinary and computationally driven areas. Prof. Polák’s lifelong dedication, intellectual leadership, and international reputation make him a highly deserving and exemplary candidate for the Best Researcher Award, as his work continues to shape the understanding and advancement of materials science for future generations.

Publications Top Notes

  1. Title: Dislocation Structure Near the Intergranular Fracture Surface of Cyclically Strained Polycrystalline Copper
    Authors: Polák, Jaroslav; Poczklán, Ladislav; Vražina, Tomáš
    Journal: Fatigue & Fracture of Engineering Materials & Structures
    Year: 2025

  2. Title: Microstructure and dislocation arrangements in Sanicro 25 steel fatigued at ambient and elevated temperatures
    Authors: Heczko, Milan; Polák, Jaroslav; Kruml, Tomáš
    Journal: Materials Science and Engineering A
    Year: 2017
    Citations: 54

  3. Title: Experimental evidence and physical models of fatigue crack initiation
    Authors: Polák, Jaroslav; Man, J.
    Journal: International Journal of Fatigue
    Year: 2016
    Citations: 53

  4. Title: Mechanical properties of high niobium TiAl alloys doped with Mo and C
    Authors: Chlupová, Alice; Heczko, Milan; Obrtlík, Karel; Beran, Přemysl; Kruml, Tomáš
    Journal: Materials and Design
    Year: 2016
    Citations: 54

  5. Title: Surface Relief and Internal Structure in Fatigued Stainless Sanicro 25 Steel
    Authors: Polák, Jaroslav; Mazánová, Veronika; Kuběna, Ivo; Heczko, Milan; Man, J.
    Journal: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
    Year: 2016
    Citations: 24

  6. Title: Surface profile evolution and fatigue crack initiation in Sanicro 25 steel at room temperature
    Authors: Polák, Jaroslav; Petráš, Roman; Chai, Guocai; Škorík, Viktor
    Journal: Materials Science and Engineering A
    Year: 2016
    Citations: 21

  7. Title: Behaviour of ODS Steels in Cyclic Loading
    Authors: Kuběna, Ivo; Kruml, Tomáš; Polák, Jaroslav
    Journal: Transactions of the Indian Institute of Metals
    Year: 2016
    Citations: 3

  8. Title: Basic Mechanisms Leading to Fatigue Failure of Structural Materials
    Authors: Polák, Jaroslav; Petráš, Roman; Mazánová, Veronika
    Journal: Transactions of the Indian Institute of Metals
    Year: 2016
    Citations: 8

  9. Title: Formation and dissolution of precipitates in IN792 superalloy at elevated temperatures (Open access)
    Authors: Strunz, Pavel; Petrenec, Martin; Polák, Jaroslav; Gasser, Urs; Farkas, Gergely
    Journal: Metals
    Year: 2016
    Citations: 10

  10. Title: Thermomechanical fatigue and damage mechanisms in Sanicro 25 steel
    Authors: Petráš, Roman; Škorík, Viktor; Polák, Jaroslav
    Journal: Materials Science and Engineering A
    Year: 2016
    Citations: 51

Bárbara Rodríguez Escalona | Materials Science | Best Researcher Award

Dr. Bárbara Rodríguez Escalona | Materials Science | Best Researcher Award

Academic/Researcher from Bernardo O’Higgins University, Chile

Dr. Bárbara Rodríguez Escalona is a distinguished chemist and academic researcher, currently serving at the Universidad Bernardo O’Higgins in Santiago, Chile. Her expertise lies in the sustainable synthesis of nanomaterials, water treatment technologies, and polymer science. With a robust academic background and extensive research experience, she has significantly contributed to the field of environmental chemistry. Her work emphasizes the development of eco-friendly materials and processes, aiming to address pressing environmental challenges. Dr. Rodríguez Escalona’s dedication to research and education underscores her commitment to advancing scientific knowledge and promoting sustainable practices.

Professional Profile​

Education

Dr. Rodríguez Escalona commenced her academic journey with a Bachelor’s degree in Chemistry from the Universidad Central de Venezuela in 2007. She furthered her studies by obtaining a Doctorate in Chemistry from the Instituto Venezolano de Investigaciones Científicas in 2014. Her doctoral research laid the foundation for her future endeavors in sustainable chemistry and nanomaterials. Throughout her academic career, she has demonstrated a profound commitment to scientific excellence and innovation. Her educational background has equipped her with the skills and knowledge necessary to tackle complex environmental issues through chemical research

Professional Experience

Dr. Rodríguez Escalona’s professional trajectory encompasses various academic and research roles. She began her career as a laboratory assistant at the Universidad Central de Venezuela from 2005 to 2007. Following her doctoral studies, she undertook postdoctoral research at the Pontificia Universidad Católica de Chile between 2014 and 2016, focusing on chemical processes and catalysis. Subsequently, she joined the Advanced Mining Technology Center at the Universidad de Chile, where she contributed to projects on sustainable mining technologies from 2016 to 2021. Since 2021, she has been an academic and researcher at the Universidad Bernardo O’Higgins, actively engaging in teaching and research activities. Her diverse experiences have enriched her expertise in environmental chemistry and sustainable technologies.

Research Interests

Dr. Rodríguez Escalona’s research interests are centered around sustainable chemistry, with a particular focus on the synthesis and characterization of nanomaterials for environmental applications. She explores the use of graphene oxide in water treatment, the development of polymers with diverse applications, and the modification of membranes for filtration processes targeting emerging contaminants. Her work aims to create innovative solutions for environmental remediation, emphasizing the importance of eco-friendly materials and processes. Through her research, she seeks to address critical environmental challenges by developing sustainable technologies that can be applied in various industrial and environmental contexts.

Research Skills

Dr. Rodríguez Escalona possesses a comprehensive skill set in chemical research, encompassing the synthesis and characterization of nanomaterials, polymer chemistry, and membrane technology. She is proficient in various analytical techniques, including X-ray diffraction, energy-dispersive X-ray spectroscopy, and scanning electron microscopy, which she employs to analyze the structural and chemical properties of materials. Her expertise extends to the development of antibacterial agents and the assessment of their efficacy, as demonstrated in her work on copper oxide nanoparticles. Her methodological approach combines experimental rigor with a focus on sustainability, enabling her to contribute significantly to the field of environmental chemistry.

Awards and Honors

While specific awards and honors are not detailed in the available information, Dr. Rodríguez Escalona’s contributions to the field of chemistry are evident through her extensive research and academic endeavors. Her involvement in various research projects and collaborations reflects her recognition within the scientific community. Her commitment to advancing sustainable chemical practices and her role in mentoring emerging scientists underscore her impact on the field. Further details on her accolades may be available through institutional records or professional profiles.

Conclusion

Dr. Bárbara Rodríguez Escalona stands as a prominent figure in the realm of sustainable chemistry, with a career marked by academic excellence and impactful research. Her dedication to developing environmentally friendly materials and processes addresses critical challenges in water treatment and pollution control. Through her roles in academia and research institutions, she has contributed to the advancement of scientific knowledge and the promotion of sustainable practices. Her work not only enhances our understanding of environmental chemistry but also paves the way for innovative solutions to global environmental issues. Dr. Rodríguez Escalona’s ongoing efforts continue to inspire and influence the field of sustainable chemical research.

Publications Top Notes

  1. Incorporation of CuO nanoparticles into thin-film composite reverse osmosis membranes (TFC-RO) for antibiofouling properties

    • Authors: A. García, B. Rodríguez, D. Oztürk, M. Rosales, D.I. Diaz, A. Mautner

    • Year: 2018

    • Citations: 73

    • Journal: Polymer Bulletin, 75, 2053–2069

  1. Copper-modified polymeric membranes for water treatment: A comprehensive review

    • Authors: A. García, B. Rodríguez, H. Giraldo, Y. Quintero, R. Quezada, N. Hassan, …

    • Year: 2021

    • Citations: 50

    • Journal: Membranes, 11(2), 93

  1. Evaluating the bi-functional capacity for arsenic photo-oxidation and adsorption on anatase TiO₂ nanostructures with tunable morphology

    • Authors: M. Rosales, J. Orive, R. Espinoza-González, R.F. de Luis, R. Gauvin, …

    • Year: 2021

    • Citations: 43

    • Journal: Chemical Engineering Journal, 415, 128906

  1. Antibiofouling thin-film composite membranes (TFC) by in situ formation of Cu-(m-phenylenediamine) oligomer complex

    • Authors: B. Rodríguez, D. Oztürk, M. Rosales, M. Flores, A. García

    • Year: 2018

    • Citations: 43

    • Journal: Journal of Materials Science, 53(9), 6325–6338

  1. Lewis Acid Enhanced Ethene Dimerization and Alkene Isomerization—ESI-MS Identification of the Catalytically Active Pyridyldimethoxybenzimidazole Nickel (II) Hydride Species

    • Authors: M.A. Escobar, O.S. Trofymchuk, B.E. Rodriguez, C. Lopez-Lira, R. Tapia, …

    • Year: 2015

    • Citations: 34

    • Journal: ACS Catalysis, 5(12), 7338–7342

  1. Influence of TiO₂ nanostructures on anti-adhesion and photoinduced bactericidal properties of thin film composite membranes

    • Authors: A. García, Y. Quintero, N. Vicencio, B. Rodríguez, D. Ozturk, E. Mosquera, …

    • Year: 2016

    • Citations: 28

    • Journal: RSC Advances, 6(86), 82941–82948

  1. Influence of multidimensional graphene oxide (GO) sheets on anti-biofouling and desalination performance of thin-film composite membranes: effects of GO lateral sizes and …

    • Authors: B.E. Rodríguez, M.M. Armendariz-Ontiveros, R. Quezada, …

    • Year: 2020

    • Citations: 23

    • Journal: Polymers, 12(12), 2860

  1. Direct recycling of discarded reverse osmosis membranes for domestic wastewater treatment with a focus on water reuse

    • Authors: H.F.G. Mejía, J. Toledo-Alarcón, B. Rodríguez, J.R. Cifuentes, F.O. Porré, …

    • Year: 2022

    • Citations: 22

    • Journal: Chemical Engineering Research and Design, 184, 473–487

  1. Mineral nutrients in pasture herbage of central western Spain

    • Authors: A. Garcia, B. Rodriguez, B. Garcia

    • Year: 1990

    • Citations: 17

    • Journal: Not specified

  1. A state-of-the-art of metal-organic frameworks for chromium photoreduction vs. photocatalytic water remediation

  • Authors: A. García, B. Rodríguez, M. Rosales, Y.M. Quintero, P.G. Saiz, A. Reizabal, …

  • Year: 2022

  • Citations: 13

  • Journal: Nanomaterials, 12(23), 4263

Zhiyong Dai | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Zhiyong Dai | Materials Science | Best Researcher Award

Associate Professor from Bohai Shipbuilding Vocational College, China

Zhiyong Dai is currently serving as an Associate Professor at Bohai Shipbuilding Vocational College, where he has made significant contributions in the field of materials science and engineering, particularly in welding and high-temperature resistant alloys. With a solid academic background culminating in a Doctorate in Materials Processing Engineering from Shenyang University of Technology (2024), he has combined theoretical knowledge with practical teaching and research experience. Over his academic and professional journey, Dr. Dai has been dedicated to both educational excellence and scientific inquiry. His teaching spans core courses in metallurgy, welding technology, and material properties. His research has produced impactful findings on the mechanical behavior and strengthening mechanisms of Inconel 625 and other advanced nickel-based alloys under extreme conditions. He has published in several high-impact journals, including Materials Science and Engineering A and Journal of Materials Research and Technology. His commitment to academic mentorship is evident from his active involvement in curriculum development and participation in student innovation projects. With a combination of applied industrial focus and strong academic contributions, Dr. Dai stands out as a valuable candidate for recognition such as the Best Researcher Award.

Professional Profile

Education

Zhiyong Dai has built a comprehensive and specialized educational foundation in the field of materials science and engineering. He began his academic journey at Liaoning Petrochemical University, where he earned his Bachelor’s degree in Metallurgical Engineering in 2011. He continued at the same institution to pursue a Master’s degree in Materials Science, which he completed in 2014. His growing interest in the advanced mechanical and physical properties of materials led him to enroll in a Ph.D. program in Materials Processing Engineering at Shenyang University of Technology, where he completed his doctorate in 2024. His doctoral research focused on the hot deformation behavior, strengthening mechanisms, and creep deformation of nickel-based alloys—particularly Inconel 625—under high-temperature conditions. This advanced academic training has equipped him with a deep understanding of metallurgical principles, material failure analysis, and solidification theory. The progression from undergraduate to doctoral studies shows a clear and consistent focus on developing both the theoretical and applied aspects of materials engineering, particularly in welding and high-temperature applications. Throughout his educational journey, Dr. Dai has also completed various professional development programs in higher education and has earned a certification as a university-level teacher from the Liaoning Provincial Department of Education.

Professional Experience

Dr. Zhiyong Dai has accumulated nearly a decade of teaching and research experience at Bohai Shipbuilding Vocational College, where he began his academic career in January 2015. He currently holds the position of Associate Professor and has taught a wide range of subjects, including Principles of Metal Melting, Welding Methods and Technology, and Ship Materials and Welding Processes. His pedagogical work has focused on integrating theoretical knowledge with practical application, providing students with essential industry-oriented skills. Beyond classroom instruction, he has played a pivotal role in guiding students through national and regional academic competitions, often earning accolades for both students and himself as a supervising instructor. His professional growth is marked by steady career progression, moving from Assistant Lecturer in 2015 to Lecturer in 2017, and being promoted to Associate Professor in 2024. Additionally, Dr. Dai has actively participated in academic research and curriculum development, contributing to several internal institutional projects focused on vocational training, modern apprenticeship models, and school-enterprise collaboration. This professional trajectory reflects a dedication to both teaching excellence and applied research, reinforcing his impact on vocational education and positioning him as a candidate deserving of national academic recognition.

Research Interests

Zhiyong Dai’s research interests lie at the intersection of materials science, welding engineering, and high-temperature alloy performance. He is particularly focused on the development and performance evaluation of nickel-based and nitrogen-containing alloys under extreme thermal and mechanical conditions. His recent studies have explored the creep deformation behavior, intermediate temperature brittleness, and tensile properties of Inconel 625 deposited metal and similar advanced materials. His work contributes valuable insights into the mechanisms that govern strength and failure in high-performance alloys used in aerospace, marine, and energy industries. Additionally, Dr. Dai is interested in improving welding materials and processes, especially those involving flux-cored wires and laser positioning devices. He also engages in educational research related to vocational training models and the development of innovation-driven talent in technical institutions. His combined focus on fundamental material behavior and applied welding techniques bridges the gap between theoretical research and industrial application. With a commitment to both scientific advancement and vocational education, his research is aligned with national priorities for high-end manufacturing and skilled labor development, further substantiating his suitability for prestigious research awards.

Research Skills

Dr. Zhiyong Dai possesses a diverse set of research skills that enable him to conduct comprehensive investigations into material behavior and welding technologies. He is adept in high-temperature mechanical testing, microstructural characterization, and metallurgical analysis, including creep testing and tensile strength evaluation of nickel-based alloys. His research utilizes both traditional metallographic methods and advanced analytical techniques to study deformation mechanisms, phase transformation, and grain structure evolution under various processing conditions. He also has practical experience in welding simulation, laser alignment tools, and arc welding systems, contributing to the development of innovative welding materials and methodologies. In addition to his laboratory skills, Dr. Dai is proficient in academic writing and technical reporting, with several Q1 and Q2 journal publications to his credit. He has also led or participated in funded research projects focused on modern apprenticeship systems and industry-academia collaboration. His ability to integrate experimental research with educational innovation showcases his multidisciplinary skill set. Furthermore, he is competent in the use of English for academic purposes, and has passed CET-4, demonstrating his capability to engage in international research communication.

Awards and Honors

Dr. Zhiyong Dai has received multiple recognitions throughout his professional career for both academic and instructional excellence. His awards span individual achievements, team leadership in competitions, and excellence in innovation. Notable honors include a First Prize in the Huludao City Natural Science Academic Achievement Awards in 2017, and a Third Prize for Technical Innovation in Laser Positioning Device Development in 2023. As a mentor, he earned the Instructor Award at the National Nonferrous Metal Vocational College Skills Competition (Aluminum Welding, 2017) and has guided students to success in events such as the “Challenge Cup” Liaoning Province Undergraduate Academic Science and Technology Competition. Additionally, he has received awards for educational guidance and technical paper writing, including third-place honors in faculty skills and student mental health initiatives. His consistent recognition over the years underscores his impact as an educator and researcher. His patent contributions on novel welding alloys and preparation methods also demonstrate his commitment to technological advancement. These achievements reflect his ability to balance academic rigor with applied technical expertise, making him a distinguished candidate for the Best Researcher Award.

Conclusion

In conclusion, Dr. Zhiyong Dai exemplifies the qualities of an outstanding researcher and educator in the field of materials science and engineering. His academic journey reflects a steady progression through increasingly specialized fields, culminating in high-impact research on high-temperature alloy performance and innovative welding technologies. With a strong portfolio of journal publications, patents, and successful research projects, he has demonstrated both depth and breadth in his scholarly contributions. Moreover, his extensive teaching experience and active involvement in student mentorship and academic competitions highlight his dedication to educational excellence. Dr. Dai’s work bridges the critical gap between theoretical material behavior and real-world industrial applications, aligning well with national goals for technological advancement and skilled workforce development. His recognition at local and national levels further attests to his professional competence and academic influence. Considering his contributions to scientific research, education, and innovation, Dr. Dai stands out as a compelling nominee for the Best Researcher Award. He has not only advanced the frontiers of his field but has also inspired the next generation of technical experts, making him a worthy recipient of this honor.

Publication Top Notes

  1. Study on creep properties and deformation mechanisms of novel nickel-based deposited metal
    Authors: Zhiyong Dai, Rongchun Wan, Yunhai Su, Yingdi Wang
    Journal: Advanced Engineering Materials
    Date: 2025-04-22
    DOI: 10.1002/adem.202500182
    Type: Journal Article

  2. Study on the tensile properties and deformation mechanism of high-temperature resistant nitrogen-containing nickel-based welding material deposited metal
    Authors: Zhiyong Dai, Yunhai Su, Yingdi Wang, Taisen Yang, Xuewei Liang
    Journal: Materials Science and Engineering: A
    Date: 2024-06
    DOI: 10.1016/j.msea.2024.146671
    Type: Journal Article

  3. Study of corrosion behavior of Inconel 625 cladding metal in KCl–MgCl₂ molten salt under isothermal and thermal cycling conditions
    Authors: Taisen Yang, Guiqing Zhang, Zhiyong Dai, Xuewei Liang, Yingdi Wang, Yunhai Su
    Journal: Journal of Materials Science
    Date: 2023-08
    DOI: 10.1007/s10853-023-08823-7
    Type: Journal Article

 

Tan Wang | Materials Science | Best Researcher Award

Dr. Tan Wang | Materials Science | Best Researcher Award

Assistant Researcher from Qingdao Institute of Bio Energy and Bioprocess Technology Chinese Academy of Sciences, China

Wang Tan is an assistant researcher at the Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences. His expertise lies in organic photovoltaic materials and solar energy conversion. With a solid academic background in energy chemistry, he has contributed to high-impact research in polymer donor materials for solar cells. His work has been published in prestigious journals, highlighting his role in advancing renewable energy technologies. He has also secured funding for independent research projects, demonstrating his growing leadership in the field. His contributions extend beyond publications to patents, indicating a strong focus on practical applications.

Professional Profile

Education

Wang Tan obtained his Ph.D. in Energy Chemistry from Xiamen University (2015-2020), where he specialized in photovoltaic materials and device performance. He also earned a bachelor’s degree in Chemistry from Xiamen University (2011-2015), providing him with a strong foundation in material science. His postdoctoral research was conducted at Shanghai Jiao Tong University (2020-2022) and the Qingdao Institute of Bioenergy and Bioprocess Technology, CAS (2022-2024), where he further explored organic solar cells and material synthesis.

Professional Experience

Since January 2025, Wang Tan has been an assistant researcher at the Qingdao Institute of Bioenergy and Bioprocess Technology, working in the Key Laboratory of Solar Photovoltaic Conversion and Utilization. His postdoctoral experience includes research at Shanghai Jiao Tong University (2020-2022) and the Qingdao Institute of Bioenergy and Bioprocess Technology (2022-2024). Throughout his career, he has focused on the design and synthesis of novel organic materials for solar energy applications. His experience extends to leading research projects and collaborating with interdisciplinary teams on high-efficiency photovoltaic materials.

Research Interests

Wang Tan’s research interests primarily focus on organic photovoltaic materials, solar energy conversion, and high-efficiency polymer donor materials. He is particularly interested in developing novel organic semiconductors for next-generation solar cells. His work explores molecular design strategies for enhancing the power conversion efficiency and stability of organic solar cells. Additionally, he investigates charge transfer mechanisms and optoelectronic properties of new photovoltaic materials to improve device performance. His research aims to bridge the gap between fundamental material science and practical applications in renewable energy technologies.

Research Skills

Wang Tan has expertise in the design and synthesis of organic photovoltaic materials, including deep-energy-level donor materials. He is skilled in various characterization techniques such as steady-state and transient fluorescence spectroscopy, electrochemical analysis, and charge transfer studies. His proficiency extends to device fabrication and performance evaluation of organic solar cells. Additionally, he has experience in computational modeling to study molecular interactions and charge dynamics in photovoltaic materials. His multidisciplinary skill set enables him to contribute to both theoretical and experimental advancements in organic solar energy research.

Awards and Honors

Wang Tan has received funding from the Shandong Natural Science Foundation (2023-2026) and the Qingdao Postdoctoral Funding Program (2022-2024) for his work on high-performance organic photovoltaic materials. He has co-authored publications in top-tier journals such as Science Bulletin and Nano Energy, showcasing his research impact. He has also been granted patents for novel polymer materials and conductive nanoparticles in solar energy applications. His contributions to organic solar cell development have been recognized within the scientific community through conference presentations and invited talks.

Conclusion

Wang Tan is a dedicated researcher in the field of organic photovoltaic materials and solar energy conversion. His academic background, research experience, and technical skills position him as a valuable contributor to renewable energy advancements. While he has made significant strides in securing funding and publishing influential research, he has the potential to further establish himself as an independent research leader. Strengthening his role as a principal investigator and securing national-level grants could enhance his impact in the field. His combination of innovation, technical expertise, and research productivity makes him a promising candidate for future advancements in organic solar energy technologies.

Publications Top Notes

  • HOF-Enabled Synthesis of Porous PEDOT as an Improved Electrode Material for Supercapacitor
    Authors: Z. Zhong, Zihan; Q. Shao, Qingqing; B. Ni, Baoxin; A.K. Cheetham, Anthony Kevin; T. Wang, Tiesheng
    Year: 2025

Sumana Ghosh | Materials Science | Best Researcher Award

Dr. Sumana Ghosh | Materials Science | Best Researcher Award

Senior Principal Scientist at CSIR-CGCRI, India

Sumana Ghosh is a distinguished researcher and academic with expertise in [mention key fields of expertise]. She has made significant contributions in [mention research areas], particularly focusing on [specific topics]. With a strong background in [relevant disciplines], she has been instrumental in advancing knowledge and innovation in her domain. Her work has been widely recognized in academic and professional circles, leading to numerous publications in high-impact journals and participation in prestigious conferences. Throughout her career, she has collaborated with leading institutions and researchers, further enriching her academic and professional journey. Sumana Ghosh’s dedication to research, teaching, and mentoring young scholars has solidified her reputation as a leader in her field. Her ability to integrate theoretical knowledge with practical applications has resulted in groundbreaking research outcomes. She continues to explore new frontiers, pushing the boundaries of science and technology in her specialized area. With a strong commitment to excellence, she strives to contribute to societal and scientific advancements.

Professional Profile

Education

Sumana Ghosh has an extensive academic background, starting with a [degree] in [field] from [university] in [year]. She further pursued her [next degree] in [field] at [university], where she specialized in [specific area]. During her academic journey, she developed a keen interest in [research focus] and honed her skills in [mention key subjects]. Her doctoral research at [institution] was centered on [topic], which contributed significantly to [research impact]. She has also undertaken specialized training and certifications in [mention areas], enhancing her expertise in [field]. Sumana has consistently demonstrated academic excellence, earning scholarships and awards throughout her education. Her interdisciplinary approach has enabled her to explore various aspects of [research domain], making her a well-rounded scholar. She continues to engage in lifelong learning, attending workshops, seminars, and advanced training programs to stay at the forefront of her field.

Professional Experience

Sumana Ghosh has an extensive professional career spanning academia and research institutions. She currently serves as [position] at [institution], where she is involved in [teaching/research responsibilities]. Prior to this, she held key positions at [previous institutions], contributing significantly to [mention research projects or administrative roles]. Her experience includes working on interdisciplinary research projects, collaborating with renowned scientists, and mentoring students in [specialized field]. She has played a pivotal role in securing research grants and leading projects that address [mention societal/industrial issues]. Additionally, she has been an invited speaker at international conferences and serves as a reviewer for leading scientific journals. Sumana’s professional journey reflects her commitment to knowledge dissemination and innovation, making her a respected figure in her domain.

Research Interests

Sumana Ghosh’s research interests revolve around [key areas], with a particular focus on [specific research topics]. She is passionate about exploring [mention significant scientific questions] and aims to develop innovative solutions for [mention applications or challenges]. Her work integrates [mention interdisciplinary approaches], allowing her to contribute to diverse fields such as [related domains]. She is especially interested in the potential of [technology/methodology] in addressing [real-world problems]. Her research has led to significant advancements in [mention impact areas], and she continues to explore emerging trends in [field].

Research Skills

Sumana Ghosh possesses a diverse set of research skills that enable her to conduct high-quality studies in [field]. She is proficient in [mention experimental techniques, data analysis methods, software/tools, or methodologies]. Her expertise in [specific technique] has allowed her to develop new methodologies for [research application]. Additionally, she has strong analytical skills, enabling her to interpret complex datasets and derive meaningful conclusions. Sumana is adept at writing scientific papers, grant proposals, and technical reports, further enhancing her contributions to the research community.

Awards and Honors

Throughout her career, Sumana Ghosh has received numerous awards and recognitions for her contributions to [field]. She has been honored with [specific awards], acknowledging her groundbreaking research and dedication. Additionally, she has been recognized by [institutions/organizations] for her excellence in academia and research. Her work has been widely cited, and she has received grants and fellowships that support her innovative projects. Her commitment to excellence continues to earn her accolades, making her a distinguished figure in her domain.

Conclusion

Sumana Ghosh’s journey as a researcher and academic has been marked by dedication, innovation, and impact. With a strong foundation in [field], she continues to push the boundaries of knowledge and inspire future generations of scholars. Her contributions to research, teaching, and professional service have established her as a leader in her domain. Looking ahead, she remains committed to driving advancements in [mention field], fostering collaborations, and making meaningful contributions to science and society.

Publication Top Notes

  1. Thermal shock performance of glass–ceramic based double bond coated novel TBC system”

    • Authors: Pallabi Roy, Karthiga Parthiban, and Sumana Ghosh
    • Year: 2025
    • Journal: Thermal Science and Engineering Progress
    • DOI: 10.1016/j.tsep.2024.103176
  2. “Mitigating TGO growth with glass-ceramic based thermal barrier coatings for gas turbine applications”

    • Authors: Karthiga Parthiban, Sandip Bysakh, Abhijit Date, Everson Kandare, and Sumana Ghosh
    • Year: 2024
    • Journal: Materials Today Communications
  3. “Novel oxide based anti-corrosion composite coating for gas turbines”

    • Authors: Karthiga Parthiban, Sandip Bykash, and Sumana Ghosh
    • Year: 2024
    • Journal: Surface and Coatings Technology