Qijing Wang | Materials Science | Best Researcher Award

Assist. Prof. Dr. Qijing Wang | Materials Science | Best Researcher Award

Assistant Professor from Nanjing University, China

Dr. Qijing Wang is a dedicated and rapidly emerging scholar in the field of organic electronics. Currently serving as an Assistant Professor at the School of Integrated Circuits, Nanjing University, he has quickly built a reputation for impactful research in charge transport and device physics, particularly in organic field-effect transistors (OFETs). His academic journey has been marked by continuous excellence, with all degrees obtained from the prestigious Nanjing University. Dr. Wang’s scholarly work reflects a deep understanding of electronic science and its applications in advanced materials and device engineering. He has authored several high-impact publications in internationally recognized journals such as Advanced Functional Materials, Small Methods, and ACS Applied Materials & Interfaces. Additionally, his commitment to international collaboration was evident through his postdoctoral research at the University of Cambridge, where he worked under Prof. Henning Sirringhaus. Dr. Wang’s achievements have been recognized through competitive fellowships and national awards, making him a strong candidate for research excellence honors. His career reflects a balanced blend of theoretical knowledge, experimental proficiency, and innovation. As a young academic, Dr. Wang exemplifies the qualities of a future leader in his field, contributing meaningfully to both the academic community and technological advancement in integrated circuits.

Professional Profile

Education

Dr. Qijing Wang received his formal education entirely at Nanjing University, one of China’s premier institutions for science and engineering. He earned his Bachelor of Science degree in Physics in 2012, laying a robust foundational understanding of physical principles that later supported his advanced research in electronics. Building upon his undergraduate education, he pursued a doctoral degree in Electronic Science and Technology at the same university, completing his Ph.D. in 2018. His doctoral studies focused on charge transport mechanisms and the performance enhancement of organic field-effect transistors (OFETs), a research area that positioned him to contribute to cutting-edge developments in organic electronics. Throughout his education, Dr. Wang demonstrated not only academic excellence but also an ability to integrate theoretical physics with practical device engineering. His time as a student at Nanjing University allowed him access to state-of-the-art laboratories, advanced instrumentation, and renowned faculty mentors. These resources equipped him with the skills necessary for conducting high-quality research and developing independent scientific thought. His educational background provides a strong interdisciplinary framework, combining elements of physics, materials science, and electronics, which continues to underpin his professional and academic accomplishments today.

Professional Experience

Dr. Qijing Wang currently serves as an Assistant Professor at the School of Integrated Circuits, Nanjing University. His academic appointment follows a successful tenure as a postdoctoral researcher, during which he significantly contributed to projects on the charge transport and structural optimization of organic semiconductors. As a postdoctoral fellow at Nanjing University, he was selected for the Postdoctoral Innovative Talent Support Program Grant—a highly competitive national program recognizing early-career researchers with exceptional promise. This achievement underscores his ability to undertake independent, innovative research in electronic materials. Further expanding his academic horizon, Dr. Wang spent a period as a visiting postdoctoral researcher at the University of Cambridge, collaborating with Prof. Henning Sirringhaus, a global authority in organic electronics. This international experience enhanced his expertise and enabled cross-border academic engagement. In his current role, Dr. Wang is involved in both teaching and research, mentoring undergraduate and graduate students while leading projects that address challenges in next-generation transistor design. His professional experience reflects a clear progression from student to postdoctoral scholar to independent academic, marked by increasing responsibility, international collaboration, and recognized contributions to the scientific community.

Research Interests

Dr. Qijing Wang’s research interests lie primarily in the field of organic electronics, with a specific focus on charge transport and device physics in organic field-effect transistors (OFETs). He is deeply engaged in exploring the fundamental physical mechanisms that govern the performance of organic semiconductors, aiming to enhance their electronic properties for real-world applications. His work bridges the gap between materials science and circuit-level engineering, addressing both theoretical and experimental challenges. Dr. Wang is particularly interested in the molecular engineering of organic materials to improve charge mobility, stability, and environmental compatibility of OFETs. Additionally, his research encompasses the interface physics between organic materials and metal contacts, dielectric engineering, and nanoscale fabrication techniques. With a growing interest in flexible and wearable electronics, Dr. Wang’s work is increasingly interdisciplinary, contributing to the development of next-generation electronics with applications in healthcare, consumer electronics, and energy devices. His research trajectory demonstrates a commitment to pushing the boundaries of what is possible in organic semiconductors, offering valuable insights into material-device correlations and design strategies. This integrated approach has enabled him to publish in top-tier journals and positions him as a key contributor to the evolution of high-performance, low-cost electronic devices.

Research Skills

Dr. Qijing Wang possesses a comprehensive set of research skills that enable him to excel in the field of organic electronics. His expertise spans both experimental and theoretical domains, particularly in charge transport phenomena, thin-film transistor fabrication, and organic material characterization. He is skilled in using advanced characterization techniques such as atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) to analyze material morphology and structure. In terms of electrical performance, he is proficient in using probe stations and semiconductor parameter analyzers for the precise evaluation of transistor characteristics. Dr. Wang also demonstrates strong competencies in molecular design and solution processing techniques, including spin-coating and inkjet printing, which are essential for developing high-performance OFETs. During his postdoctoral research, he honed his ability to conduct independent experiments, manage collaborative projects, and analyze complex data sets. His international research experience at the University of Cambridge also strengthened his adaptability, scientific communication, and teamwork abilities. Furthermore, he is well-versed in using software tools for data modeling, statistical analysis, and device simulation. These technical proficiencies, combined with his innovative mindset, make him a versatile researcher capable of addressing diverse challenges in materials science and device engineering.

Awards and Honors

Dr. Qijing Wang has received notable recognition for his academic and research excellence early in his career. Among his most prestigious honors is the Postdoctoral Innovative Talent Support Program Grant, awarded during his tenure as a postdoctoral fellow at Nanjing University. This national-level fellowship is one of the most competitive and selective programs in China, aimed at identifying and supporting highly promising early-career researchers. Receiving this grant not only highlights Dr. Wang’s research potential but also affirms his capacity to drive independent and impactful scientific inquiries. His selection for a Visiting Postdoctoral Researcher position at the University of Cambridge further underscores his standing in the academic community. This opportunity allowed him to collaborate with leading researchers in organic electronics and broaden his research capabilities in an international environment. In addition to these distinctions, Dr. Wang’s work has been featured in high-impact journals, signaling peer recognition and scholarly merit. These awards and honors are not only commendations of past achievements but also indicators of his future contributions to science and technology. They reflect his ongoing dedication to innovation, academic excellence, and leadership in the field of organic electronic devices.

Conclusion

In summary, Dr. Qijing Wang stands out as an accomplished and innovative researcher in the domain of organic electronics. His academic foundation, built at Nanjing University, has been enriched through nationally and internationally recognized research experiences. With a focus on organic field-effect transistors, he has made significant strides in understanding and optimizing charge transport mechanisms, contributing valuable knowledge to both academia and industry. His achievements, including high-impact publications and prestigious fellowships, highlight his commitment to scientific rigor and originality. Dr. Wang combines deep technical expertise with a collaborative and forward-thinking approach, evidenced by his research visit to the University of Cambridge and active engagement in interdisciplinary projects. While still early in his academic career, he has shown the qualities of a future leader—innovative thinking, strong communication skills, and a clear vision for advancing technology. Continued emphasis on research leadership roles, mentorship, and broader application of his findings will further enhance his impact. Overall, Dr. Wang is a highly deserving candidate for the Best Researcher Award, with demonstrated excellence and the potential for continued breakthroughs in electronic materials and device research.

Publications Top Notes

  • Additive-assisted “metal-wire-gap” process for N-type two-dimensional organic crystalline films
    Authors: Yang, C.; Qian, J.; Wang, Q.; Jiang, S.; Duan, Y.; Wang, H.; Dai, H.; Li, Y.
    Year: 2019

  • PJ-Level Energy-Consuming, Low-Voltage Ferroelectric Organic Field-Effect Transistor Memories
    Authors: Pei, M.; Qian, J.; Jiang, S.; Guo, J.; Yang, C.; Pan, D.; Wang, Q.; Wang, X.; Shi, Y.; Li, Y.
    Year: 2019

  • Two-dimensional organic materials and their electronic applications
    Authors: Wang, H.; Wang, Q.; Li, Y.
    Year: 2019

  • Interfacial Flat-Lying Molecular Monolayers for Performance Enhancement in Organic Field-Effect Transistors
    Authors: Wang, Q.; Jiang, S.; Qiu, L.; Qian, J.; Ono, L.K.; Leyden, M.R.; Wang, X.; Shi, Y.; Zheng, Y.; Qi, Y. et al.
    Year: 2018

  • Millimeter-Sized Two-Dimensional Molecular Crystalline Semiconductors with Precisely Defined Molecular Layers via Interfacial-Interaction-Modulated Self-Assembly
    Authors: Jiang, S.; Qian, J.; Duan, Y.; Wang, H.; Guo, J.; Guo, Y.; Liu, X.; Wang, Q.; Shi, Y.; Li, Y.
    Year: 2018

  • Spin-Coated Crystalline Molecular Monolayers for Performance Enhancement in Organic Field-Effect Transistors
    Authors: Wang, Q.; Juarez-Perez, E.J.; Jiang, S.; Qiu, L.; Ono, L.K.; Sasaki, T.; Wang, X.; Shi, Y.; Zheng, Y.; Qi, Y. et al.
    Year: 2018

  • Temperature dependence of piezo- and ferroelectricity in ultrathin P(VDF-TrFE) films
    Authors: Qian, J.; Jiang, S.; Wang, Q.; Yang, C.; Duan, Y.; Wang, H.; Guo, J.; Shi, Y.; Li, Y.
    Year: 2018

  • Unveiling the piezoelectric nature of polar α-phase P(VDF-TrFE) at quasi-two-dimensional limit
    Authors: Qian, J.; Jiang, S.; Wang, Q.; Zheng, S.; Guo, S.; Yi, C.; Wang, J.; Wang, X.; Tsukagoshi, K.; Shi, Y. et al.
    Year: 2018

  • Directly writing 2D organic semiconducting crystals for high-performance field-effect transistors
    Authors: Zhang, Y.; Guo, Y.; Song, L.; Qian, J.; Jiang, S.; Wang, Q.; Wang, X.; Shi, Y.; Wang, X.; Li, Y.
    Year: 2017

  • Low-voltage, High-performance Organic Field-Effect Transistors Based on 2D Crystalline Molecular Semiconductors
    Authors: Wang, Q.; Jiang, S.; Qian, J.; Song, L.; Zhang, L.; Zhang, Y.; Zhang, Y.; Wang, Y.; Wang, X.; Shi, Y. et al.
    Year: 2017

Tarek Naadia | Materials Science | Sustainable Engineering Leadership Award

Dr. Tarek Naadia | Materials Science | Sustainable Engineering Leadership Award

Lecturer researcher from Polytechnic School of Architecture and Urban Planning EPAU, Algeria

Dr. NAADIA Tarek is an accomplished Associate Professor in Civil Engineering with a specialization in the mechanics and rheology of self-compacting concrete. Holding a University Habilitation awarded in 2021 from USTHB, she is a respected teacher-researcher affiliated with the Polytechnic School of Architecture and Urbanism (EPAU) and a key member of the Civil Engineering Laboratory (LBE). Her work focuses on advancing sustainable construction materials, particularly optimizing the performance and flow properties of steel fiber reinforced self-compacting concrete using innovative experimental design techniques. Dr. Tarek’s research outputs have been published in high-impact journals, emphasizing both the mechanical and rheological characteristics of eco-friendly concrete formulations incorporating industrial by-products such as tuff and marble powders. She combines rigorous scientific methodology with practical applications that support the development of greener, more durable building materials. Throughout her academic career, Dr. Tarek has demonstrated a commitment to excellence in research, teaching, and collaborative innovation within the civil engineering community. Her expertise aligns well with global efforts to promote sustainability in infrastructure development and materials science. Dr. Tarek’s contributions position her as a valuable leader in sustainable engineering research, with a growing impact on both regional and international levels.

Professional Profile

Education

Dr. NAADIA Tarek completed her highest academic qualification with a University Habilitation in Civil Engineering, awarded on January 21, 2021, at the University of Science and Technology Houari Boumediene (USTHB). This qualification represents a significant academic milestone, signifying her capability to conduct independent research, supervise doctoral students, and contribute original knowledge to her field. Her educational journey has been deeply rooted in civil engineering, with a particular focus on materials science and mechanics. Although specific earlier degrees are not listed, the habilitation level indicates advanced expertise beyond the doctoral level, underscoring her extensive research experience and academic maturity. The habilitation also reflects a comprehensive understanding of both theoretical foundations and applied techniques related to concrete rheology, material optimization, and sustainable construction technology. Her educational background equips her with the tools necessary to drive innovation in civil engineering and to influence the development of sustainable materials that address modern construction challenges. The advanced training and scholarship involved in attaining the habilitation have prepared her for a leading role in academia and research, enabling her to contribute effectively to the scientific community and to mentor future engineers.

Professional Experience

Dr. NAADIA Tarek currently serves as an Associate Professor (Class A) and a Teacher-Researcher at the Polytechnic School of Architecture and Urbanism (EPAU). She is also an active member of the Civil Engineering Laboratory (LBE) at USTHB, where she engages in research on the mechanics of materials, focusing particularly on self-compacting concrete. Her professional role involves a blend of teaching, laboratory research, and project management. As a lecturer, she contributes to civil engineering curricula, imparting knowledge on construction materials, experimental techniques, and sustainability concepts. Within the laboratory, she conducts experimental research that integrates mechanical testing and rheological measurement methods to optimize concrete formulations. Dr. Tarek’s work includes the development of new procedures for measuring concrete flow behavior and the application of design of experiments (DOE) methodologies to fine-tune mix designs for performance and environmental benefits. Her position requires collaboration with fellow researchers, students, and industry stakeholders to ensure practical relevance and innovation. Over time, she has established herself as a key figure in her department, contributing to research projects and academic advancements that enhance sustainable engineering practices in Algeria and beyond.

Research Interests

Dr. NAADIA Tarek’s primary research interests lie at the intersection of civil engineering materials, rheology, and sustainability. She specializes in the study and optimization of self-compacting concrete (SCC), focusing on both its rheological (flow) properties and mechanical performance. Her work emphasizes the development of sustainable concrete formulations that incorporate industrial by-products such as marble and tuff powders, which serve as partial replacements for traditional cement or aggregates. This approach not only improves the environmental footprint of concrete but also enhances its durability and functionality. A significant aspect of her research involves applying the design of experiments (DOE) methodology to systematically optimize the composition and performance of steel fiber reinforced self-compacting concrete (SFRSCC). This method allows for efficient exploration of multiple variables and their interactions, facilitating robust improvements in concrete quality. Dr. Tarek also investigates the rheological behavior of concrete mixtures, developing new measurement procedures to better understand their flow characteristics under various conditions. Her research contributes to sustainable construction practices by promoting materials that reduce resource consumption, waste, and energy use while improving structural integrity and longevity.

Research Skills

Dr. NAADIA Tarek possesses a comprehensive skill set tailored to experimental civil engineering research, particularly in concrete materials science. She is proficient in rheological testing methods for assessing the flow behavior of self-compacting concrete, including the design and implementation of novel measurement procedures. Her expertise extends to mechanical characterization techniques for fiber-reinforced composites, enabling detailed analysis of strength, durability, and deformation properties. She employs advanced statistical tools, notably the design of experiments (DOE) approach, to optimize material formulations systematically, which enhances research efficiency and reliability. This methodological rigor allows her to manage complex variables and interactions within concrete mix designs, leading to reproducible and scalable results. Additionally, Dr. Tarek is skilled in interpreting data to improve concrete sustainability by integrating alternative materials such as marble and tuff powders. Her laboratory experience is complemented by academic teaching, where she applies her research skills to train future engineers in experimental and analytical techniques. Collectively, these competencies support her ability to innovate within sustainable engineering and to drive research that meets both academic standards and practical industry needs.

Awards and Honors

While the CV provided does not specify particular awards or honors received by Dr. NAADIA Tarek, her attainment of the University Habilitation itself represents a prestigious academic recognition. The habilitation is a significant scholarly achievement that acknowledges her capability for independent research and academic leadership. This advanced qualification is often regarded as a benchmark of excellence within many academic systems, highlighting her contributions to civil engineering research and education. Furthermore, Dr. Tarek’s publications in high-impact journals reflect peer recognition of the quality and relevance of her work. Her growing portfolio of research articles and her position as an Associate Professor at a leading institution further attest to her professional esteem and influence within her field. For future career development, formal awards for sustainable engineering or leadership in research could complement her credentials and enhance her profile internationally. Participation in academic societies, editorial boards, or conference leadership roles may also lead to additional honors, reinforcing her position as a research leader.

Conclusion

Dr. NAADIA Tarek is a promising and dedicated civil engineering researcher with a clear focus on sustainable construction materials. Her expertise in the rheology and optimization of self-compacting concrete, combined with her use of innovative experimental design methods, positions her at the forefront of sustainable materials research. Her academic qualifications, including a University Habilitation, and her role as an Associate Professor underscore her capability for independent research and leadership within academia. Although further international collaboration and formal recognition through awards could strengthen her profile, her existing contributions demonstrate significant potential for advancing sustainable engineering practices. Dr. Tarek’s work is particularly relevant to the global imperative of reducing environmental impacts in construction, supporting the development of eco-friendly materials that are both durable and efficient. With continued research productivity and expanded engagement with the international engineering community, she is well positioned to become a leading figure in sustainable engineering research and innovation.

Publications Top Notes

  • Rheological and mechanical optimization of a steel fiber reinforced self-compacting concrete using the design of experiments method
    Authors: D Gueciouer, G Youcef, N Tarek
    Journal: European Journal of Environmental and Civil Engineering, Volume 26, Issue 3, Pages 1097-1117
    Year: 2022
    Citations: 28

  • Development of a measuring procedure of rheological behavior for self compacting concrete
    Authors: T Naadia, Y Ghernouti, D Gueciouer
    Journal: Journal of Advanced Concrete Technology, Volume 18, Issue 6, Pages 328-338
    Year: 2020
    Citations: 4

  • Rheology-compactness-granularity correlations of self-compacting concretes
    Author: T Naadia
    Year: 2014
    Citations: 1

  • Optimization of Steel Fiber-Reinforced Self-Compacting Concrete with Tuff Powder
    Authors: T Naadia, D Gueciouer
    Journal: Construction and Building Materials, Volume 474, Article 140759
    Year: 2025

  • Formulation and characterization of steel fiber reinforced self-compacting concrete (SFRSCC) based on marble powder
    Authors: T Naadia, D Gueciouer, Y Ghernouti
    Journal: Selected Scientific Paper – Journal of Civil Engineering
    Year: 2025

  • Effect of the aggregates size on the rheological behaviour of the self compacting concrete
    Authors: T Naadia, F Kharchi
    Journal: International Review of Civil Engineering (IRECE), Volume 4, Issue 2, Pages 92-97
    Year: 2013


Mohammed Ali Dheyab | Materials Science | Best Researcher Award

Dr. Mohammed Ali Dheyab | Materials Science | Best Researcher Award

Senior Lecturer from University Sains Malaysia, Malaysia

Dr. Mohammed Ali Dheyab is a distinguished researcher and academic currently serving as a Lecturer in the Medical Physics Department, School of Physics at Universiti Sains Malaysia. With a strong academic foundation and over a decade of research and teaching experience, Dr. Dheyab has established himself as an expert in the interdisciplinary fields of nanotechnology, medical imaging, and materials science. He holds a PhD in Medical Physics from Universiti Sains Malaysia, an MSc in Nanomaterials Physics from Osmania University, and a BSc in Physics from Anbar University, Iraq. Dr. Dheyab has authored and co-authored more than 50 publications indexed in Google Scholar, Scopus, and Web of Science, with over 2,300 citations and an impressive h-index of 30. His work is recognized for its innovative approaches in the synthesis of nanoparticles for medical and diagnostic applications, including cancer treatment. He also actively contributes to academic life through teaching, supervising, and organizing academic and extracurricular events. His professional presence is evident across global platforms such as Google Scholar, LinkedIn, ResearchGate, and Publons. Dr. Dheyab’s ability to merge fundamental research with practical applications positions him as a leading scholar in his field, making him a strong candidate for the Best Researcher Award.

Professional Profile

Education

Dr. Mohammed Ali Dheyab’s educational trajectory reflects a strong interdisciplinary foundation that underpins his innovative research. He earned his PhD in Medical Physics from Universiti Sains Malaysia (2017–2021), where his doctoral work focused on the development of advanced nanomaterials for biomedical applications, particularly in diagnostics and cancer therapy. Prior to that, he completed a Master of Science in Nanomaterials Physics from Osmania University, India (2014–2016), where he was introduced to the synthesis and characterization of nanoscale materials and their electronic properties. His academic journey began with a Bachelor of Science in Physics from Anbar University, Iraq (2009–2013), laying the groundwork in classical and modern physics that would later support his specialization in medical imaging and nanotechnology. His strong educational background across physics, nanomaterials, and medical sciences provides him with a unique interdisciplinary skillset. It enables him to approach complex research challenges with both theoretical knowledge and practical competence. His studies in multiple countries have further enriched his academic exposure and collaborative mindset, equipping him with international perspectives essential for global scientific engagement. Dr. Dheyab’s educational qualifications have played a critical role in shaping his successful academic and research career.

Professional Experience

Dr. Mohammed Ali Dheyab has accumulated a broad and impactful professional experience across academic and research institutions. He is currently employed as a Lecturer at the Medical Physics Department, School of Physics, Universiti Sains Malaysia (USM), where he teaches various subjects including diagnostic radiology, medical lasers, and magnetic resonance imaging. Before assuming this role, he served as a Postdoctoral Fellow at the same institution from July 2021 to 2022, contributing to research in nanomedicine and imaging technologies. Between 2017 and 2020, Dr. Dheyab was affiliated as a Research Assistant with both the School of Physics and NanoBRI Lab at INFORMM, USM, where he worked on nanoparticle synthesis, cancer photothermal therapy, and multimodality imaging probes. In 2020, he also served briefly as a Research Assistant within the School of Physics, further strengthening his technical skills and collaborative research outputs. In addition to his academic roles, Dr. Dheyab has participated in student engagement initiatives as a Kawan Ambassador for the International Mobility and Collaboration Centre (IMCC) at USM. His career trajectory showcases a balance between teaching, research, and institutional service, highlighting his adaptability and dedication to both scientific advancement and student development.

Research Interest

Dr. Mohammed Ali Dheyab’s research interests lie at the intersection of nanotechnology, materials science, and medical imaging, with a focus on real-world applications in cancer diagnosis and therapy. His core areas of investigation include the synthesis and characterization of inorganic nanoparticles, molecular and cellular nanoprobes, nanomedicine, and multimodality imaging probes. A key aspect of his work is the development of smart nanoparticles for targeted cancer treatment, utilizing properties like surface chemistry and catalytic behavior for precision medicine. He is also involved in designing photothermal therapy agents and nanozymes to enhance the eradication of cancer cells, especially breast cancer. His interest in multimodal imaging technologies bridges medical physics and materials engineering, enabling improved diagnostic tools using ultrasound, MRI, and optical techniques. Dr. Dheyab also explores the integration of nanomaterials in other domains such as food packaging and environmental sensing. His research is distinguished by a blend of innovation and applicability, aiming to solve complex biomedical problems through interdisciplinary approaches. The translation of fundamental nanoscale research into clinical and industrial settings is central to his scientific vision, positioning him at the forefront of modern medical physics and materials research.

Research Skills

Dr. Mohammed Ali Dheyab possesses an impressive portfolio of research skills that spans experimental, analytical, and computational domains. He is highly proficient in nanoparticle synthesis and surface modification techniques essential for developing functional materials for medical applications. His experience includes electron beam evaporation, sol-gel processing, and colloidal methods for producing nano-scale structures. In terms of characterization, Dr. Dheyab is skilled in a wide range of techniques including UV-Vis spectroscopy, X-ray diffraction, FTIR, SEM, and TEM, which are vital for assessing the structural, morphological, and optical properties of materials. He is also adept in medical imaging instrumentation, particularly in radiological physics, magnetic resonance imaging, and laser technology, which align with his teaching responsibilities and research in cancer diagnostics. His software skills include data analysis tools like OriginLab, Microsoft Excel, and reference management systems such as EndNote and Mendeley. Furthermore, he is familiar with DICOM imaging formats, enhancing his capabilities in clinical image processing. His strong analytical mindset, combined with excellent organizational and communication skills, allows him to manage complex experiments and collaborate across disciplines. Dr. Dheyab’s research skillset is well-suited for cutting-edge investigations in nanomedicine and medical physics.

Awards and Honors

Dr. Mohammed Ali Dheyab has garnered recognition through academic achievements and extracurricular engagement throughout his career. While formal national or international awards are not explicitly listed, his accomplishments in research productivity and scholarly impact speak volumes. With over 2,300 citations and an h-index of 30, he has effectively established his scientific reputation among peers. His selection as a Kawan Ambassador for the International Mobility and Collaboration Centre (IMCC) at Universiti Sains Malaysia highlights his commitment to student life and internationalization, serving as a cultural and sports representative. He has also received the Bronze Medallion from the Life Saving Society of Malaysia, reflecting his multifaceted capabilities beyond academia. Furthermore, his role as an organizer of the Ramadan Championship in 2021 and participation in university sports activities showcase his leadership and team-building skills. Though he has not yet been recognized with major scientific awards, his consistent publication in high-impact journals and editorial contributions position him well for future accolades. As his career advances, he is likely to receive greater formal recognition in both scientific and academic circles. His profile demonstrates a blend of academic excellence, community service, and leadership potential.

Conclusion

In conclusion, Dr. Mohammed Ali Dheyab exemplifies the qualities of an emerging academic leader and accomplished researcher. His contributions to nanomedicine, medical physics, and imaging technologies are grounded in rigorous research and supported by a solid educational foundation. With a publication record that includes over 2,300 citations and appearances in high-quality, indexed journals, he has demonstrated a significant impact in his field. Dr. Dheyab’s involvement in teaching, supervision, international collaboration, and university-level engagement illustrates his commitment to the broader academic community. While there is potential for further recognition through competitive research grants, patents, or high-profile scientific awards, his trajectory indicates continuous professional growth. He has already laid the groundwork for future leadership in both research and education. His ability to merge innovative nanotechnology with real-world biomedical applications marks him as a promising candidate for prestigious honors such as the Best Researcher Award. His interdisciplinary expertise, research productivity, and dedication to academic service make him not only a valuable asset to his institution but also a noteworthy contributor to global scientific advancement.

Publications Top Notes

  1. Simple rapid stabilization method through citric acid modification for magnetite nanoparticles
    Authors: M.A. Dheyab, A.A. Aziz, M.S. Jameel, O.A. Noqta, P.M. Khaniabadi, B. Mehrdel
    Journal: Scientific Reports, 10(1), 10793
    Year: 2020
    Citations: 206

  2. Recent advances in extraction, modification, and application of chitosan in packaging industry
    Authors: N. Oladzadabbasabadi, A.M. Nafchi, F. Ariffin, M.M.J.O. Wijekoon, et al.
    Journal: Carbohydrate Polymers, 277, 118876
    Year: 2022
    Citations: 168

  3. Green synthesis: Proposed mechanism and factors influencing the synthesis of platinum nanoparticles
    Authors: M.S. Jameel, A.A. Aziz, M.A. Dheyab
    Journal: Green Processing and Synthesis, 9(1), 386–398
    Year: 2020
    Citations: 128

  4. Mycosynthesis of gold nanoparticles using the extract of Flammulina velutipes, Physalacriaceae, and their efficacy for decolorization of methylene blue
    Authors: M.A. Rabeea, M.N. Owaid, A.A. Aziz, M.S. Jameel, M.A. Dheyab
    Journal: Journal of Environmental Chemical Engineering, 8(3), 103841
    Year: 2020
    Citations: 127

  5. Monodisperse gold nanoparticles: A review on synthesis and their application in modern medicine
    Authors: M.A. Dheyab, A.A. Aziz, P. Moradi Khaniabadi, M.S. Jameel, et al.
    Journal: International Journal of Molecular Sciences, 23(13), 7400
    Year: 2022
    Citations: 100

  6. Synthesis and coating methods of biocompatible iron oxide/gold nanoparticle and nanocomposite for biomedical applications
    Authors: M.A. Dheyab, A.A. Aziz, M.S. Jameel, O.A. Noqta, B. Mehrdel
    Journal: Chinese Journal of Physics, 64, 305–325
    Year: 2020
    Citations: 98

  7. Gold nanoparticles-based photothermal therapy for breast cancer
    Authors: M.A. Dheyab, A.A. Aziz, P.M. Khaniabadi, M.S. Jameel, N. Oladzadabbasabadi, et al.
    Journal: Photodiagnosis and Photodynamic Therapy, 42, 103312
    Year: 2023
    Citations: 96

  8. Mechanisms of effective gold shell on Fe₃O₄ core nanoparticles formation using sonochemistry method
    Authors: M.A. Dheyab, A.A. Aziz, M.S. Jameel, P.M. Khaniabadi, B. Mehrdel
    Journal: Ultrasonics Sonochemistry, 64, 104865
    Year: 2020
    Citations: 92

  9. Mushroom-assisted synthesis of triangle gold nanoparticles using the aqueous extract of fresh Lentinula edodes (shiitake), Omphalotaceae
    Authors: M.N. Owaid, M.A. Rabeea, A.A. Aziz, M.S. Jameel, M.A. Dheyab
    Journal: Environmental Nanotechnology, Monitoring & Management, 12, 100270
    Year: 2019
    Citations: 85

  10. Scenario analysis of COVID-19 transmission dynamics in Malaysia with the possibility of reinfection and limited medical resources scenarios
    Authors: A.M. Salman, I. Ahmed, M.H. Mohd, M.S. Jamiluddin, M.A. Dheyab
    Journal: Computers in Biology and Medicine, 133, 104372
    Year: 2021
    Citations: 73

Xiangyang Zhou | Materials Science | Best Researcher Award

Prof. Dr. Xiangyang Zhou | Materials Science | Best Researcher Award

Professor from University of Miami, United States

Dr. Xiangyang Zhou is a seasoned Professor of Materials Science and Engineering at the University of Miami, with a distinguished academic and research career spanning over three decades. His work is recognized internationally, particularly for his contributions to the development of advanced materials for solid-state energy storage systems. With a research emphasis on supercapacitors, polymer electrolytes, and mediator-enhanced energy storage devices, Dr. Zhou has played a pivotal role in advancing the understanding and application of electrochemical energy conversion technologies. His academic journey began in China and continued in the United Kingdom, culminating in a Ph.D. in Materials Science and Engineering. Over the years, he has published extensively in reputed peer-reviewed journals and collaborated on interdisciplinary projects that blend experimental techniques with computational modeling. Dr. Zhou has held prominent positions in academia and research institutes, contributing not only as a scholar but also as a mentor to emerging scientists. His current work focuses on the development of novel composite materials for high-performance, low-temperature solid-state supercapacitors. Known for his methodical and innovative research approach, Dr. Zhou continues to influence the direction of materials science with his commitment to both fundamental studies and applied research.

Professional Profile

Education

Dr. Xiangyang Zhou has a solid educational foundation in physics and materials science, having completed his academic training across some of the most respected institutions in China and the United Kingdom. He earned his Bachelor of Science in Physics from Wuhan University in Hubei, China in July 1984. This early training laid a strong foundation in the physical sciences, providing a gateway to more specialized research in materials engineering. Following his undergraduate education, Dr. Zhou pursued a Master of Science in Materials Science and Engineering at the Institute of Corrosion and Protection of Metals, part of the Academy of Science in Shenyang, China, completing it in July 1988. His graduate work focused on the corrosion behavior of metals, a critical issue in materials durability. To further his expertise, Dr. Zhou undertook doctoral studies at the University of Newcastle Upon Tyne in the United Kingdom, where he received his Ph.D. in Materials Science and Engineering in April 1996. His doctoral research provided him with in-depth knowledge of material behavior at both the micro and macro scales, preparing him for a successful and impactful research career in advanced materials and energy systems.

Professional Experience

Dr. Zhou has a rich and varied professional background in academic and applied research settings. Since 2005, he has served as a Professor at the University of Miami in Coral Gables, Florida, where he leads research initiatives in materials science and electrochemical energy storage systems. His long-standing tenure at the University of Miami reflects his sustained contributions to education, mentorship, and research excellence. Prior to his current position, he held concurrent roles between 2002 and 2005 as a Senior Scientist at the Applied Research Institute and a Research Scientist at the Applied Research Center at Florida International University. These roles allowed him to engage in application-driven research projects and collaborate with industry and governmental stakeholders. From 1996 to 2002, Dr. Zhou worked as a Research Associate at Pennsylvania State University’s Center of Advanced Materials, where he focused on pioneering materials simulation and experimental validation. His early career included a role as an Assistant Researcher at the Institute of Corrosion and Protection of Metals under the Academy of Science in Shenyang, China. Throughout his career, Dr. Zhou has integrated academic excellence with real-world research experience, positioning him as a leader in the development of innovative materials and energy technologies.

Research Interest

Dr. Xiangyang Zhou’s research interests lie at the intersection of materials science, electrochemistry, and energy storage technologies. He is particularly focused on the design, synthesis, and characterization of polymer-based solid-state electrolytes and mediator-enhanced supercapacitors. His work seeks to address critical challenges in energy storage systems, such as improving ionic conductivity, enhancing energy density, and ensuring operational stability at low temperatures. Dr. Zhou is also interested in the molecular mechanisms of proton transport in water and polymeric systems, and his investigations often bridge theoretical simulation with experimental methods. Over the years, he has developed novel polymer membranes, such as polyvinylidene fluoride/lithium trifluoromethanesulfonate systems, which show significant promise for next-generation energy devices. His research is deeply interdisciplinary, integrating principles from physics, chemistry, and materials engineering. In addition to applied device development, Dr. Zhou explores the fundamental electrochemical and spectroscopic properties of materials, employing in situ characterization methods to monitor changes during operation. This comprehensive approach enables him to tackle real-world challenges in energy conversion and storage, while also contributing to fundamental scientific understanding. His research continues to make meaningful contributions to the fields of nanomaterials, energy systems, and green technology.

Research Skills

Dr. Xiangyang Zhou possesses a wide range of technical and analytical research skills that have supported his extensive contributions to the field of materials science. He is adept at both experimental and computational techniques, including ab initio simulations, atomistic modeling, and X-ray absorption spectroscopy. These tools have enabled him to explore conduction and diffusion processes at the atomic level in various polymer electrolyte systems. Dr. Zhou also demonstrates expertise in electrochemical analysis, such as cyclic voltammetry and electrochemical impedance spectroscopy, which he uses to characterize the performance of solid-state supercapacitors and mediator-assisted devices. In terms of materials synthesis, he has experience with the fabrication of polymer composite membranes and the development of nanoporous electrodes. His skills further extend to in situ spectroscopic techniques that allow for real-time monitoring of material behavior under operating conditions. Dr. Zhou’s ability to integrate these skills within a coherent research framework has led to high-impact studies in reputable journals. His strong command of materials characterization tools and simulation software places him at the forefront of materials innovation, particularly in the rapidly evolving domain of energy storage technologies.

Awards and Honors

While the specific awards and honors received by Dr. Zhou are not listed in the biographical sketch provided, his long-standing professorship at the University of Miami and his extensive publication record suggest a career marked by academic excellence and recognition within the scientific community. His leadership in research on solid-state supercapacitors and polymer electrolytes has positioned him as a key contributor to the field, and his work has been published in top-tier journals such as the Journal of Power Sources, Journal of Electrochemical Society, and Journal of Membrane Science. These publications are often peer-reviewed by leading experts, reflecting the high quality and significance of his research. Moreover, his collaborative research with scientists such as A.N. Mansour and participation in interdisciplinary studies indicate a reputation of trust and respect in academic circles. It is likely that Dr. Zhou has also served on editorial boards, scientific committees, or as a reviewer for funding agencies, although these details are not specified. Overall, his enduring academic presence and influential research output highlight the esteem in which he is held by peers in materials science and engineering.

Conclusion

Dr. Xiangyang Zhou emerges as a highly qualified and impactful researcher whose contributions to materials science and energy storage technologies are both innovative and influential. His academic trajectory—from undergraduate studies in physics in China to doctoral work in the United Kingdom—reflects a global perspective on scientific inquiry. Throughout his professional journey, he has consistently advanced the frontier of polymer electrolytes and solid-state supercapacitors, combining theory, simulation, and experimental techniques. His ability to publish in high-impact journals and collaborate across disciplines underscores his effectiveness as a thought leader and innovator. Although formal recognitions and awards were not explicitly listed, his career accomplishments and scholarly output make a compelling case for his nomination for a Best Researcher Award. Dr. Zhou’s research continues to address pressing technological challenges related to clean energy and advanced materials, which are critical areas of global importance. His commitment to mentorship, interdisciplinary collaboration, and scientific rigor exemplifies the qualities of an outstanding researcher. He would be a deserving recipient of the award, and his selection would reinforce the value of sustained academic excellence and forward-thinking innovation in scientific research.

Publications Top Notes

  1. Application of GO anchored mediator in a polymer electrolyte membrane for high-rate solid-state supercapacitors
    Authors: Zhiwei Yan, Xiangyang Zhou, Yuchen Wang, Gordon Henry Waller, Zhijia Du
    Journal: Journal of Membrane Science
    Year: 2023
    Citations: 4

  2. Recent advances in solid-state supercapacitors: From emerging materials to advanced applications (Review)
    Authors: Mert Akin, Xiangyang Zhou
    Year: 2023
    Citations: 33

  3. In situ XAS investigation of K₄Fe(CN)₆·xH₂O and K₃Fe(CN)₆ redox activity in solid-state supercapacitors
    Authors: Azzam N. Mansour, Jonathan K. Ko, Xiangyang Zhou, Chen Zhang, Mahalingam Balasubramanian
    Journal: Journal of the Electrochemical Society
    Year: 2022
    Citations: 4

  4. Co-cured manufacturing of multi-cell composite box beam using vacuum assisted resin transfer molding
    Authors: Mert Akin, Cagri Y. Oztan, Rahmi Akin, Victoria L. Coverstone-Carroll, Xiangyang Zhou
    Journal: Journal of Composite Materials
    Year: 2021
    Citations: 4

  5. Structural analysis of K₄Fe(CN)₆·3H₂O, K₃Fe(CN)₆ and Prussian Blue (Open access)
    Authors: Azzam N. Mansour, Jonathan K. Ko, Gordon Henry Waller, Xiangyang Zhou, Mahalingam Balasubramanian
    Journal: ECS Journal of Solid State Science and Technology
    Year: 2021
    Citations: 17

  6. Electrochemical and in situ spectroscopic study of the effect of Prussian Blue as a mediator in a solid-state supercapacitor (Open access)
    Authors: Xiaoyao Qiao, Zhiwei Yan, Chen Zhang, Curtis A. Martin, Mahalingam Balasubramanian
    Journal: Journal of the Electrochemical Society
    Year: 2021
    Citations: 8

  7. Greatly enhanced energy density of all-solid-state rechargeable battery operating in high humidity environments (Open access)
    Authors: Yuchen Wang, Mert Akin, Xiaoyao Qiao, Zhiwei Yan, Xiangyang Zhou
    Journal: International Journal of Energy Research
    Year: 2021
    Citations: 3

Mayuri Gupta | Materials Science | Best Researcher Award

Dr. Mayuri Gupta | Materials Science | Best Researcher Award

Assistant Scientist from Shriram Institute for Industrial Research, India

Dr. Mayuri Gupta is an accomplished research associate with over 15 years of experience in the field of material science, particularly in polymer composites and medical applications. She has worked with prestigious research organizations, contributing to the development of several groundbreaking technologies. Dr. Gupta’s expertise spans areas such as bio-degradable composites, dental cement formulations, and medical-grade materials, showcasing her technical proficiency and ability to transform innovative ideas into real-world applications. She is currently serving as an Assistant Scientist ‘A’ at the Shriram Institute for Industrial Research, where she plays a key role in leading research projects funded by various national agencies like ICMR, DRDO, and DST. Dr. Gupta’s academic background, combined with her strong industry involvement, positions her as a distinguished researcher in the realm of applied sciences.

Professional Profile

Education

Dr. Mayuri Gupta’s educational background includes a Ph.D. in Polymer Composite Development for Medical Applications, which she is completing at Amity University, Noida, in 2025. She earned her Master’s degree in Chemical Science from Dr. B. R. Ambedkar University, Agra, in 2004, and her Bachelor’s degree in ZBC from the same university in 2002. Dr. Gupta’s educational journey has provided her with a strong foundation in chemical sciences, preparing her for her role as a leader in research and development, particularly in material science.

Professional Experience

Dr. Gupta’s professional journey spans over 15 years, starting as a Lecturer at T.R. Girls Degree College in Aligarh (2007-2008). Since 2008, she has held the position of Assistant Scientist ‘A’ at the Shriram Institute for Industrial Research, where she has successfully managed and contributed to numerous high-impact research projects. Her work includes the development of new materials such as bio-degradable composites, LED-curable dental cement, and low-cost medical products like diapers for low-birth-weight infants. Dr. Gupta’s expertise in research, coupled with her experience in managing funded projects, showcases her as a key contributor to the field.

Research Interests

Dr. Gupta’s primary research interests revolve around the development and enhancement of polymer composites, with a particular focus on medical applications. She is deeply involved in the design of bio-degradable materials, dental cements, and medical-grade polymers. Her work extends to nano-fluids with enhanced thermal conductivity and bio-functional textiles, all of which aim to improve the quality and performance of medical products. Dr. Gupta also explores advanced material formulations for everyday products, such as food packaging and contact lenses, highlighting her versatility in materials research.

Research Skills

Dr. Gupta possesses a wide range of research skills, particularly in the area of analytical techniques and material development. She is proficient in using advanced instruments such as FTIR, UV-Visible, GC-MS, HPLC, and DSC, enabling her to conduct precise and detailed analyses. Additionally, Dr. Gupta has experience in method development for various formulations, especially in the field of pharmaceuticals and food packaging. Her ability to innovate and create new materials based on market needs demonstrates her creativity and technical expertise in research and development. She also excels in research proposal writing and working with national research funding agencies.

Awards and Honors

Dr. Gupta’s career has been marked by significant achievements in her field, including several sponsored research projects funded by renowned organizations such as ICMR, DRDO, and DST. While there is no specific mention of awards in the provided CV, her active involvement in high-profile research projects and her leadership in innovative material development reflect a track record of recognition and success in her professional career. Her commitment to advancing material science is further demonstrated by her research presentations at both national and international conferences.

Conclusion

Dr. Mayuri Gupta is a highly dedicated and accomplished researcher in the field of material science, with a particular focus on polymer composites and medical applications. With over 15 years of experience, she has consistently contributed to the development of innovative technologies with real-world applications. Her extensive research, technical expertise, and leadership in various national-funded projects highlight her potential to make lasting contributions to the field. While she could enhance her profile further with more publications in peer-reviewed journals and greater involvement in mentorship, Dr. Gupta is highly recommended for recognition as a Best Researcher due to her significant achievements and ongoing contributions to research and development.

Publications Top Notes

  1. Effect of NVP, HEMA, and Bis‐GMA grafting on thermal and physical properties of poly(AA‐co‐IA)
    Macromolecular Symposia
    Type: Conference Proceedings
    Role: Writing – Original Draft
    Year: 2025

  2. Asian Journal of Dental Sciences – Certificate of Excellence in Reviewing awarded
    Type: Review
    Role: Writing – Review & Editing
    Year: 2025

  3. Development of polymer composite for medical application
    Doctoral Thesis (Ph.D.)
    Type: Dissertation or Thesis
    Role: Writing – Original Draft
    Year: 2024

  4. Effect of curing time on physico-mechanical properties on dental composite
    Journal of Polymer & Composites
    Type: Journal Article
    Role: Writing – Original Draft, Review & Editing
    Year: 2022

  5. Synthesis of Bis-GMA grafted co-polymer of acrylic–itaconic acid and its composite
    Polymer Science Series B
    Type: Journal Article
    Role: Writing – Original Draft, Review & Editing
    Year: 2022

Kiran Batool | Materials Science | Best Researcher Award

Dr. Kiran Batool | Materials Science | Best Researcher Award

Researcher from Physics Department, Pakistan

Dr. Kiran Batool is a dedicated researcher and academic specializing in nanomaterials, electrochemical energy storage, and environmental applications. With a robust research portfolio featuring 37 publications in high-impact journals, she has made significant contributions to material synthesis and characterization techniques. Her expertise extends to developing advanced materials for supercapacitors, batteries, and catalysts. Dr. Batool possesses strong teaching and mentorship experience, having instructed both undergraduate and graduate students in various physics courses. She has also served as a research associate, contributing to multiple interdisciplinary projects. Her commitment to innovation and sustainability drives her research in energy-efficient and environmentally friendly material applications. With a deep understanding of analytical and experimental techniques, she remains at the forefront of cutting-edge scientific advancements in her field.

Professional Profile

Education

Dr. Kiran Batool has pursued an extensive academic journey, equipping her with a strong foundation in physics and materials science. She completed her Ph.D. in Physics with a specialization in nanomaterials and energy storage applications. Prior to that, she earned an M.Phil. in Physics, focusing on advanced material characterization techniques. Her bachelor’s degree laid the groundwork for her expertise in fundamental physics and material properties. Throughout her academic career, she has remained engaged in research-intensive programs, allowing her to develop a deep understanding of electrochemical energy storage systems, catalysis, and sustainable materials. Her education has provided her with the theoretical knowledge and practical skills necessary to excel in both research and academia. Dr. Batool’s continuous pursuit of knowledge and innovation has made her a respected figure in the scientific community.

Professional Experience

Dr. Kiran Batool has accumulated extensive professional experience in both research and teaching roles. As a research associate, she contributed to various interdisciplinary projects focused on nanomaterial synthesis and energy storage applications. Her role involved conducting experimental research, analyzing data, and collaborating with fellow researchers to advance scientific knowledge. Additionally, Dr. Batool has served as a visiting lecturer, teaching undergraduate and graduate students in physics-related courses. She has supervised student research projects and provided mentorship to aspiring scientists. Her experience extends to laboratory management, experimental design, and technical troubleshooting. Dr. Batool’s dedication to education and research has enabled her to bridge the gap between theoretical knowledge and practical applications. Her contributions to academia and research institutions highlight her ability to work in dynamic environments while fostering scientific innovation.

Research Interests

Dr. Kiran Batool’s research interests lie in the development and characterization of advanced nanomaterials for energy and environmental applications. She is particularly focused on electrochemical energy storage systems, including supercapacitors and batteries, where she explores novel material compositions for enhanced performance. Her work also extends to catalysis, investigating sustainable materials for environmental remediation. Dr. Batool is deeply involved in the synthesis of nanostructured materials using techniques such as hydrothermal, sol-gel, and solvothermal methods. She is keen on integrating experimental and computational approaches to optimize material properties. Her research aims to contribute to the advancement of green energy solutions and environmentally friendly materials. By exploring innovative synthesis techniques and material functionalities, she seeks to develop next-generation energy storage devices that are both efficient and sustainable.

Research Skills

Dr. Kiran Batool possesses a diverse range of research skills that contribute to her excellence in material science and energy research. Her expertise includes nanomaterial synthesis through hydrothermal, sol-gel, and solvothermal techniques. She is proficient in material characterization methods such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Dr. Batool is also skilled in electrochemical analysis, including cyclic voltammetry and electrochemical impedance spectroscopy. Her ability to integrate various experimental techniques allows her to conduct in-depth analyses of material properties. Additionally, she has experience in data analysis, statistical modeling, and research project management. Her technical proficiency, combined with her strong analytical skills, enables her to conduct high-impact research that contributes to scientific advancements in energy storage and catalysis.

Awards and Honors

Dr. Kiran Batool has received multiple recognitions for her contributions to scientific research and academia. She has been acknowledged for her high-impact publications and significant advancements in nanomaterial synthesis and characterization. Her research on electrochemical energy storage has been cited extensively, highlighting its relevance in the field. Dr. Batool has also been honored for her teaching excellence, receiving commendations from academic institutions for her dedication to student mentorship and education. Additionally, she has participated in several international conferences and research symposiums, where her work has been recognized by peers and experts in the field. Her commitment to advancing scientific knowledge and her contributions to sustainable energy solutions continue to earn her accolades in the academic and research communities.

Conclusion

Dr. Kiran Batool stands out as a distinguished researcher and academic with a strong background in nanomaterials, energy storage, and material characterization. Her extensive research output, combined with her technical proficiency and teaching experience, makes her a valuable asset to the scientific community. She continues to push the boundaries of innovation, focusing on sustainable and efficient energy solutions. With expertise spanning experimental research, data analysis, and mentorship, she exemplifies excellence in academia and applied sciences. Dr. Batool’s dedication to research and education ensures that her contributions will have a lasting impact on the fields of material science and renewable energy. Her growing recognition and commitment to scientific progress make her a strong candidate for prestigious research awards and honors.

Publications Top Notes

  1. Sustainable Synthesis and Electrochemical Characterization of Ti₃C₂/Fe₁₋ₓBaₓCr₂O₄ Nanocomposite for Enhanced Supercapacitor Electrode Performance

    • Authors: Kiran Batool, Adel A. El-Marghany, Muhammad Usman Saeed
    • Year: 2025
  2. Bandgap Nature Transition and the Optical Properties of ABX₃ (A = K, Rb; B = Sr, Ba, Ca; X = Cl, Br, I) Perovskites Under Pressure

    • Authors: Mohib Ullah, Naqeeb Ullah, Ammar M. Tighezza, Kiran Batool, Ghulam M. Murtaza
    • Year: 2025
    • Citations: 2
  3. Electrifying Energy Storage by Investigating the Electrochemical Behavior of CoCr₂O₄/Graphene-Oxide Nanocomposite as Supercapacitor High-Performance Electrode Material

    • Authors: Rubia Shafique, Malika M. Rani, Naveed Kasuar Janjua, Mariam Akram, Akram A. Ibrahim
    • Year: 2024