Peng Tang | Energy | Best Researcher Award

Dr. Peng Tang | Energy | Best Researcher Award

Sichuan University of Science & Engineering, China

Dr. Peng Tang is a dedicated and multidisciplinary researcher in the field of physical chemistry and electrochemical engineering, with a proven track record in advanced materials research and energy storage systems. His career has been marked by impactful contributions to alkali metal batteries, corrosion protection, and hydrogen storage technologies. Having conducted research in leading institutions across China, Japan, and the United States, Dr. Tang has cultivated a robust international research profile. He is widely recognized for his ability to combine theoretical modeling with experimental electrochemical techniques to develop innovative solutions in energy and materials science. His work has led to numerous peer-reviewed publications, patents, and scholarly presentations at international conferences. In addition to academic excellence, he is highly committed to mentoring students, promoting scientific exchange, and fostering collaborations across disciplines. Dr. Tang’s research is driven by innovation and a deep interest in solving real-world energy challenges through sustainable and efficient technologies.

Professional Profile

Education

Dr. Peng Tang has pursued a strong academic path rooted in chemical engineering and physical chemistry. He began his education at Tianjin University of Science & Technology, where he earned his Bachelor of Engineering degree in Chemical Engineering & Technology (2008–2012) under the guidance of Professors Shiqiang Wang and Tianlong Deng. He continued at the same university to complete his Master of Science in Chemical Engineering (2012–2015), working with Professor Zuoliang Sha on advanced functional materials and their applications. His academic journey culminated in a Ph.D. in Physic-Chemistry from the University of Fukui, Japan (2017–2020), under the joint supervision of Professors Jingyuan Chen and Koichi Aoki. His doctoral research focused on electroanalytical chemistry, including voltammetric analysis and the study of micro-particle behavior. This rigorous academic training equipped him with both theoretical insights and hands-on laboratory expertise, forming the foundation for his current research in energy storage and environmental electrochemistry.

Professional Experience

Dr. Peng Tang has acquired a diverse and rich professional background through positions held in both academia and industry. Currently, he serves as a researcher at Sichuan University of Science and Engineering (2022–present), where he leads projects on alkali metal batteries and corrosion-resistant materials. Prior to this, he completed multiple postdoctoral fellowships abroad. At the University of Arkansas (2022), under Prof. Xiangbo Meng, he explored advanced lithium and sodium-ion battery architectures. He also worked at the University of Pittsburgh (2021–2022) with Prof. Shigeru Amemiya on scanning electrochemical microscopy, and at the University of Ibaraki (2020–2021) with Prof. Kazuyuki Kita on aerosol particle characterization. His experience includes industrial engineering work on hydrogen storage at Hangzhou Hydrogen Sources and Tianjin Highland Energy Technology (2015–2016). He also briefly worked as a temporary researcher at Peking University (2014–2015) under Prof. Xingguo Li. These varied roles reflect his adaptability and multidisciplinary expertise.

Research Interest

Dr. Peng Tang’s research interests span several critical domains in energy and materials science. He is particularly focused on the development and characterization of advanced alkali metal batteries, such as lithium and sodium-ion systems, with an emphasis on optimizing cathode materials and surface engineering. Another core area of his work involves electrochemical methods for corrosion protection and environmental monitoring. He has also conducted in-depth studies on aerosol particles, micro-particle behavior, and radionuclide transport, especially in post-Fukushima contamination contexts. Furthermore, his early career included work on hydrogen storage, exploring both solid-state and gas-phase mechanisms. Dr. Tang is driven by a desire to solve real-world sustainability challenges through electrochemical innovation and advanced material synthesis. He often collaborates internationally to integrate multidisciplinary techniques, including atomic layer deposition, scanning electrochemical microscopy, and impedance spectroscopy. His research reflects a strong commitment to bridging the gap between laboratory-based science and industrial-scale applications.

Research Skills

Dr. Tang is equipped with a wide array of experimental and analytical skills in the field of physical and electrochemical sciences. He has advanced expertise in electrochemical characterization methods, including voltammetry, scanning electrochemical microscopy (SECM), and electrochemical impedance spectroscopy (EIS). He is proficient in surface and materials analysis, such as atomic/molecular layer deposition (ALD/MLD), spectroscopic techniques (UV-Vis, FTIR), and particle morphology assessment. His experience extends to working in cleanrooms and glovebox environments for battery and nanomaterial synthesis. Dr. Tang is also skilled in developing polymeric and ceramic composite materials for energy and environmental applications. His academic and industrial work has required the use of data modeling software and simulation tools for process optimization. Additionally, he has hands-on experience with hydrogen storage system design, including both experimental setup and theoretical modeling. His interdisciplinary skills enable him to bridge chemistry, engineering, and materials science with a high level of competence and precision.

Awards and Honors

Throughout his career, Dr. Peng Tang has received numerous recognitions that reflect his academic excellence and leadership in research. In 2017, he was awarded the Excellent Poster Prize at the 16th International Electroanalytical Chemistry Symposium in Changchun, China. His academic potential was further recognized in 2018 when he received an Emory University International Student Scholarship, supported by NICCA Chemical Co., Ltd. In recent years, his role as a mentor has been honored with the “Excellent Mentor Award” in both 2023 and 2024 for guiding student teams during China’s prestigious Chemical Engineering Design competitions. His active participation in academic exchange programs, such as the Sakura Program between Japan and China, highlights his commitment to cross-cultural academic enrichment. He has also delivered oral and poster presentations at international conferences and has authored several high-impact publications and patents. These accolades underscore Dr. Tang’s reputation as a dedicated researcher and mentor in his field.

Conclusion

Dr. Peng Tang exemplifies a well-rounded researcher who combines deep theoretical understanding with practical innovation in the fields of electrochemistry and material science. His extensive international research background, coupled with a consistent publication record and patent portfolio, highlights his contributions to advancing sustainable energy technologies. Through mentorship, interdisciplinary collaboration, and a strong commitment to scientific excellence, he has influenced both academic and professional communities. His future trajectory points toward leadership in global battery research, environmental electrochemistry, and materials engineering. With proven expertise, innovative thinking, and a drive for impactful research, Dr. Tang is a deserving candidate for recognition and awards. He continues to explore emerging challenges in clean energy and environmental safety, aiming to provide solutions that bridge science, industry, and societal benefit. His profile stands as a testament to academic rigor, collaborative spirit, and long-term vision in science and technology.

Publications Top Notes

  1. Synthesis and Properties of a New Environmentally Friendly Bicyclic Imidazoline Quaternary Ammonium Salt as a Corrosion Inhibitor of Carbon Steel
    Journal: Corrosion, 2025
    Authors: Xiaoping Qin, Zhaolin Xie, Yilin Li, Lei Chen, Peng Tang, Xiaonan Liu, Haiwei Lu, Lijie Xing, Xiaoyan Wang

  2. Synthesis and Performance Evaluation of a Novel Zwitterionic Quaternary Copolymer for Enhanced Oil‐Recovery Application
    Journal: SPE Polymers, 2024
    Authors: Xiaoping Qin, Zhaolin Xie, Peng Tang, Hui Yang, Cuixia Li, Xiaoliang Yang, Tong Peng

  3. Atmospheric Resuspension of Insoluble Radioactive Cesium-Bearing Particles Found in the Difficult-to-Return Area in Fukushima
    Journal: Progress in Earth and Planetary Science, 2022
    Authors: Peng Tang, et al.

  4. Atomic and Molecular Layer Deposition as Surface Engineering Techniques for Emerging Alkali Metal Rechargeable Batteries
    Journal: Molecules, 2022
    Authors: Peng Tang, Matthew Sullivan, Xiangbo Meng

  5. Atmospheric Resuspension of Insoluble Radioactive Cesium Particles Found in the Difficult-to-Return Area in Fukushima
    Preprint, 2021
    Authors: Peng Tang, Kazuyuki Kita, Yasuhito Igarashi, Yukihiko Satou, Koutarou Hatanaka, Kouji Adachi, Takeshi Kinase, Kazuhiko Ninomiya, Atsushi Shinohara

  6. Reduction Charge Smaller than the Deposited One in Cathodic Stripping Voltammograms of AgCl
    Journal: American Journal of Analytical Chemistry, 2019
    Authors: Peng Tang, Koichi Jeremiah Aoki, Jingyuan Chen

  7. Double Layer Impedance in Mixtures of Acetonitrile and Water
    Journal: Electroanalysis, 2018
    Authors: K.J. Aoki, J. Chen, P. Tang

  8. Capacitive Currents Flowing in the Direction Opposite to Redox Currents
    Journal: The Journal of Physical Chemistry C, 2018
    Authors: Koichi Jeremiah Aoki, Jingyuan Chen, Peng Tang

  9. Construction of Hybrid Z-Scheme Pt/CdS-TNTAs with Enhanced Visible-Light Photocatalytic Performance
    Journal: Applied Catalysis B: Environmental, 2015
    Authors: Zhu Y, Chen Z, Gao T, Huang Q, Niu F, Qin L, Tang P, Huang Y, Sha Z, Wang Y

  10. Visible Light Induced Photocatalysis on CdS Quantum Dots Decorated TiO₂ Nanotube Arrays
    Journal: Applied Catalysis A: General, 2015
    Authors: Zhu Y, Wang Y, Chen Z, Qin L, Yang L, Zhu L, Tang P, Gao T, Huang Y, Sha Z, et al.

Yuriy Maletin | Energy | Best Researcher Award

Prof. Yuriy Maletin | Energy | Best Researcher Award

Head of laboratory from Institute for sorption and Problems of Endoecology National Academy of Sciences of Ukraine, Ukraine

Yuriy A. Maletin is an accomplished chemist with over five decades of scientific contributions in inorganic and physical chemistry. Born on January 15, 1949, in Moscow, Russia, he has established a profound legacy in the field of nanosized carbon materials and energy storage systems. Currently serving as Head of the Department of Nanosized Carbon Materials for Energy Storage at the Institute for Sorption and Problems of Endoecology in Kyiv, Ukraine, and as Chief Scientist at Yunasko-Ukraine LLC, he combines academic leadership with industrial innovation. His commitment to advancing science has earned him membership in several prestigious boards and societies, including being a Corresponding Member of the National Academy of Sciences of Ukraine. With over 105 published papers and 35 patents, his work has left a significant mark on scientific and technological development in Ukraine and beyond. Throughout his career, he has held notable leadership roles at various institutions, contributing to both theoretical and applied research. Maletin continues to be active in international scientific dialogue, frequently invited to deliver keynote lectures. His distinguished career embodies a blend of research excellence, innovation, and mentorship that reflects an enduring passion for scientific progress.

Professional Profile

Education

Yuriy A. Maletin pursued his academic journey at some of the most prestigious institutions in the former Soviet Union. He graduated in 1971 with an MSc in Chemistry from the renowned Moscow State University named after M.V. Lomonosov, a leading institution known for producing world-class scientists. Following his graduate studies, he earned a Ph.D. in Inorganic Chemistry from the Institute of General and Inorganic Chemistry in Kiev in 1977. This was followed by his Doctor of Science (Dr. habil.) degree in Physical Chemistry from the Institute of Chemical Physics in Moscow in 1989, marking the peak of academic qualifications in the former USSR and Eastern Europe. These degrees reflect a deep academic foundation in both theoretical and applied chemistry. His education laid the groundwork for his later achievements in research and leadership, particularly in the fields of coordination chemistry, sorption technologies, and nanomaterials for energy storage. His multidisciplinary training provided him with the ability to work at the interface of various scientific domains and effectively lead complex research projects with national and international significance.

Professional Experience

Yuriy A. Maletin’s professional career spans over four decades of continuous engagement in scientific research, academic leadership, and industrial collaboration. He is currently the Head of the Department of Nanosized Carbon Materials for Energy Storage at the Institute for Sorption and Problems of Endoecology, National Academy of Sciences of Ukraine, a position he has held since 2009. Since 2010, he has also served as the Chief Scientist at Yunasko-Ukraine LLC, focusing on advanced energy storage solutions. From 2002 to 2008, he was Head of the Physical Chemistry Department at the National Technical University of Ukraine “KPI.” Prior to that, from 1987 to 2002, he headed the Coordination Chemistry Department at the Institute of General and Inorganic Chemistry. His career also includes serving on national advisory boards in inorganic chemistry and electrochemistry. This diverse experience reflects not only his scientific expertise but also his ability to manage research teams, influence policy, and bridge academia with industry. Through each of these roles, he has contributed significantly to Ukraine’s scientific infrastructure and its positioning within global scientific communities.

Research Interests

Yuriy A. Maletin’s research interests lie primarily in the areas of inorganic chemistry, physical chemistry, and materials science, with a particular emphasis on nanosized carbon materials for energy storage. His early work focused on coordination chemistry and the synthesis of complex compounds, while his later career has evolved toward the design, characterization, and application of materials relevant to energy technologies. He has been at the forefront of research on supercapacitors, batteries, and other energy storage systems, developing novel carbon-based nanostructures that enhance storage efficiency and device longevity. His interest in sorption processes and endoecology further reflects his multidisciplinary approach, addressing both energy needs and environmental challenges. In addition to core chemistry domains, he actively engages in applied sciences and industrial innovation, contributing to the development of practical technologies. His current work continues to explore advanced physical and chemical methods for improving material performance in energy devices, guided by a strong foundation in electrochemistry, thermodynamics, and nanotechnology. His long-standing contributions reflect a career dedicated to pushing the boundaries of material science and contributing to global efforts toward sustainable and efficient energy solutions.

Research Skills

Yuriy A. Maletin possesses a diverse set of research skills that span across multiple disciplines within chemistry and materials science. He is proficient in the synthesis and characterization of inorganic compounds, particularly within coordination and physical chemistry. His expertise includes the design and fabrication of nanosized carbon materials, with applications in energy storage technologies such as batteries and supercapacitors. Maletin has demonstrated strong analytical skills through his work on the physical and chemical behavior of materials, employing various spectroscopic, electrochemical, and thermal analysis methods. He also has significant experience in sorption studies, enabling him to assess environmental interactions and the efficiency of materials in filtration and separation processes. Beyond laboratory skills, he has a strategic mindset for guiding research directions, demonstrated through his leadership in multiple scientific institutions. His patent portfolio underscores a practical orientation in translating theoretical insights into functional applications. Additionally, he has cultivated scientific writing, mentoring, and public speaking abilities through numerous publications and invited lectures. These comprehensive research skills position him as a leader capable of both deep scientific inquiry and high-impact innovation.

Awards and Honors

Yuriy A. Maletin has received numerous awards and honors in recognition of his outstanding scientific contributions. Among his most prestigious accolades is his election as a Corresponding Member of the National Academy of Sciences of Ukraine in 2021, acknowledging his lifetime achievements and leadership in chemical sciences. Earlier in his career, he was a Fellow of the Royal Society of Chemistry (United Kingdom) from 1996 to 2014, a testament to his international recognition and influence. He has also served on national and international advisory boards, including the Advisory Board of Inorganic Chemistry Communications (1998–2002), which highlights his authoritative role in the global research community. His consistent presence in high-level scientific committees—such as the All-Ukrainian Boards on Inorganic Chemistry and Electrochemistry—demonstrates his long-standing impact on the development of Ukraine’s scientific ecosystem. With over 105 peer-reviewed articles and 35 patents and applications, Maletin’s research has not only advanced theoretical understanding but also led to practical applications, earning both academic and industrial accolades. These honors reflect a career marked by excellence, influence, and a dedication to scientific advancement at both national and global levels.

Conclusion

Yuriy A. Maletin’s career represents a rare blend of academic brilliance, research innovation, and scientific leadership. His journey from Moscow State University to leading institutions in Ukraine showcases a lifelong dedication to advancing chemistry and materials science. His work on nanosized carbon materials for energy storage has contributed meaningfully to the global pursuit of sustainable energy solutions. Beyond his scientific outputs—evident in his publications and patents—he has influenced generations of researchers through teaching, mentoring, and strategic leadership. His recognition by the National Academy of Sciences of Ukraine and global societies like the Royal Society of Chemistry affirms his standing in the international scientific community. He remains actively involved in shaping future research directions and disseminating knowledge through conferences and advisory roles. Given his comprehensive achievements, Maletin is a distinguished figure whose work continues to inspire innovation in energy, chemistry, and environmental technologies. His legacy is built not only on scientific discovery but also on his commitment to applying research for real-world impact, making him an exemplary candidate for top-level research recognition awards.

Publications Top Notes

  1. Graphene vs activated carbon in supercapacitors
    Journal: Nanosistemi, Nanomateriali, Nanotehnologii, 2020
    Authors: Zelinskyi, S.O.; Stryzhakova, N.G.; Maletin, Y.A.

  2. Supercapacitor technology: Targets and limits
    Conference: LLIBTA 2015 & ECCAP 2015, AABC Europe, 2015
    Authors: Maletin, Y.; Stryzhakova, N.; Zelinsky, S.; Chernukhin, S.; Tretyakov, D.

  3. Electrochemical double layer capacitors and hybrid devices for green energy applications
    Journal: Green, 2014
    DOI: 10.1515/green-2014-0002
    Authors: Maletin, Y.; Stryzhakova, N.; Zelinsky, S.; Chernukhin, S.; Tretyakov, D.; Tychina, S.; Drobny, D.

  4. On the perspectives of supercapacitor technology
    Conference: AABC 2014, 2014
    Author: Maletin, Y.

  5. Ultracapacitor technology: What it can offer to electrified vehicles
    Conference: IEEE IEVC, 2014
    DOI: 10.1109/IEVC.2014.7056227
    Authors: Maletin, Y.; Stryzhakova, N.; Zelinskyi, S.; Chernukhin, S.; Tretyakov, D.; Mosqueda, H.A.; Davydenko, N.; Drobnyi, D.

  6. The impact of aluminum electrode anodic polarization in tetraethylammonium tetrafluoborate acetonitrile solution on the process of film formation
    Journal: Corrosion Science, 2013
    DOI: 10.1016/j.corsci.2012.12.002
    Authors: Gromadskyi, D.G.; Fateev, Y.F.; Maletin, Y.A.

  7. Anodic processes on aluminum in aprotic electrolytes based on the tetraethylammonium tetrafluoroborate salt in acetonitrile
    Journal: Materials Science, 2010
    DOI: 10.1007/s11003-010-9305-1
    Authors: Hromads’kyi, D.H.; Fateev, Yu.F.; Stryzhakova, N.H.; Maletin, Yu.A.

  8. Ultracapacitors as the key to efficient power solutions
    Conference: AABC 2010, 2010
    Author: Maletin, Y.

  9. Matching the nanoporous carbon electrodes and organic electrolytes in double layer capacitors
    Journal: Applied Physics A: Materials Science and Processing, 2006
    DOI: 10.1007/s00339-005-3416-9
    Authors: Maletin, Y.; Novak, P.; Shembel, E.; Izotov, V.; Strizhakova, N.; Mironova, A.; Danilin, V.; Podmogilny, S.

  10. Complexes of some 3d-metal salts with N,N-dimethylhydrazide of 4-nitrobenzoic acid
    Journal: Russian Journal of Coordination Chemistry / Koordinatsionnaya Khimiya, 2004
    DOI: 10.1023/B:RUCO.0000043902.12955.5e
    Authors: Zub, V.Ya.; Bugaeva, P.V.; Strizhakova, N.G.; Maletin, Yu.A.

Guoxing Li | Energy | Best Researcher Award

Dr. Guoxing Li | Energy | Best Researcher Award

Chang’an University, China

Guoxing Li is an emerging researcher specializing in sustainable energy systems, with particular expertise in hydrogen production, combustion chemistry, and supercritical water processes. After obtaining his PhD from Xi’an Jiaotong University in July 2022, he began his academic career as a lecturer at the School of Energy and Electrical Engineering, Chang’an University. His research has made significant contributions to the understanding of reaction kinetics and combustion behavior in complex energy systems, focusing on both theoretical and experimental approaches. Guoxing Li has published extensively in high-impact international journals and has collaborated with leading scholars in the field. His work stands out for its combination of computational modeling, kinetic analysis, and innovative designs for energy conversion processes, which offer solutions for cleaner and more efficient energy production. His research is highly relevant in the global transition towards sustainable and low-carbon energy systems. Guoxing Li’s scientific rigor, growing leadership, and impactful research output position him as a rising talent in the energy research community. His continuous efforts are paving the way for advancements in hydrogen utilization and supercritical water technologies, which hold great promise for addressing current energy and environmental challenges.

Professional Profile

Education

Guoxing Li earned his PhD degree from Xi’an Jiaotong University, one of China’s premier engineering institutions, in July 2022. His doctoral studies focused on advanced combustion chemistry, reaction kinetics, and the utilization of supercritical water in energy applications. Throughout his academic journey, he developed a strong foundation in chemical engineering, thermodynamics, and computational modeling, which became the backbone of his research expertise. During his time at Xi’an Jiaotong University, Guoxing Li worked closely with renowned faculty and engaged in collaborative projects that shaped his deep understanding of energy systems. His education emphasized both theoretical learning and practical laboratory research, allowing him to master a range of scientific tools and techniques related to sustainable energy. His rigorous training has equipped him to design, analyze, and optimize complex chemical reactions for cleaner energy production. The multidisciplinary nature of his doctoral work has enabled him to address real-world energy challenges from both a chemical and engineering perspective. Guoxing Li’s academic background continues to influence his current research and teaching, fostering a blend of scientific inquiry and practical application that benefits both his students and the broader research community.

Professional Experience

Guoxing Li began his professional career as a lecturer at the School of Energy and Electrical Engineering, Chang’an University, shortly after completing his doctoral studies in 2022. In this role, he has been actively involved in both teaching and research, contributing to the academic growth of students while advancing his own investigations into sustainable energy systems. His teaching responsibilities include subjects related to energy conversion, combustion chemistry, and environmental protection technologies, where he integrates his research findings into the classroom. Professionally, Guoxing Li has made significant contributions to the development of supercritical water oxidation processes, kinetic modeling of hydrogen combustion, and innovative solutions for chemical reaction systems. His career is marked by strong collaborations with international experts and consistent publication in top-tier journals, which demonstrate his ability to produce high-quality, impactful research. His professional journey is characterized by steady growth, scientific integrity, and a focus on addressing energy-related environmental challenges. As a young academic, he is building a reputation for bridging the gap between theoretical modeling and practical energy solutions, contributing not only to academia but also to the potential advancement of industrial applications in the field of sustainable energy.

Research Interests

Guoxing Li’s research interests are centered on sustainable energy systems, with a particular focus on hydrogen production, combustion chemistry, and the application of supercritical water technologies. He is passionate about advancing the understanding of oxidation kinetics in hydrogen and hydrocarbon-based fuels under supercritical conditions, which is essential for developing efficient and clean energy conversion processes. His work often integrates computational methods, such as ReaxFF molecular dynamics simulations and detailed kinetic modeling, to explore reaction mechanisms at a fundamental level. Guoxing Li also investigates hydrothermal flames, water gas shift reactions, and the oxidative degradation of pollutants in supercritical water, contributing to both energy generation and environmental protection. His interdisciplinary approach allows him to address complex energy challenges from both chemical and engineering perspectives. By focusing on clean combustion and innovative reactor designs, his research aims to reduce greenhouse gas emissions and promote sustainable hydrogen utilization. He is particularly interested in the future applications of supercritical water reactors for waste treatment and energy recovery, as well as the role of hydrogen as a key player in decarbonizing the energy sector. Guoxing Li’s forward-thinking research is aligned with global energy transition goals and climate action priorities.

Research Skills

Guoxing Li possesses a comprehensive set of research skills that enable him to tackle complex energy and combustion-related challenges effectively. His expertise in kinetic modeling is one of his core strengths, particularly in developing detailed reaction mechanisms for hydrogen oxidation and hydrocarbon combustion under supercritical water conditions. He is proficient in advanced computational simulation tools, including ReaxFF molecular dynamics and Density Functional Theory (DFT) methods, which he uses to predict and analyze chemical reaction behaviors at both macroscopic and molecular levels. Additionally, Guoxing Li has extensive hands-on experience in experimental design, reactor operation, and supercritical water processing, allowing him to validate his computational models with laboratory results. He is skilled in data analysis, thermodynamic calculations, and chemical kinetics, and adept at using specialized software for energy system modeling. His ability to integrate simulation with practical experimentation distinguishes his work and enhances its scientific credibility. Guoxing Li also demonstrates strong capabilities in scientific writing, project management, and interdisciplinary collaboration, which contribute to his growing impact in the research community. These skills collectively support his goal of developing innovative, efficient, and environmentally friendly energy solutions.

Awards and Honors

Although specific awards and honors for Guoxing Li have not been explicitly listed, his publication record and collaborative work with internationally recognized researchers reflect a high level of academic recognition. His consistent contributions to top-tier journals such as Energy & Fuels, Fuel, Process Safety and Environmental Protection, Journal of Cleaner Production, and Renewable and Sustainable Energy Reviews demonstrate his research excellence and growing influence in the field of sustainable energy. His involvement in cutting-edge research topics such as hydrogen combustion, supercritical water technologies, and clean energy conversion processes positions him as a rising talent with strong prospects for future academic and professional accolades. His articles often address innovative solutions to energy and environmental problems, which likely contribute to positive peer recognition and opportunities for further research collaborations. As Guoxing Li’s career progresses, his current trajectory suggests he will be a strong candidate for future research awards, fellowships, and leadership roles in energy-focused academic societies. His potential for receiving awards lies in his ability to translate complex chemical processes into practical, impactful energy solutions, advancing both scientific knowledge and environmental sustainability.

Conclusion

Guoxing Li is an accomplished early-career researcher whose contributions to the field of sustainable energy are both timely and impactful. His work on hydrogen combustion, kinetic modeling, and supercritical water oxidation addresses some of the most critical challenges in clean energy development and environmental protection. Guoxing Li’s ability to combine computational simulations with experimental validation showcases his scientific rigor and versatility. His educational background, professional growth, and consistently strong research output indicate a deep commitment to advancing knowledge in sustainable energy systems. Although there is room to expand his interdisciplinary collaborations and industrial applications, his current trajectory positions him as a future leader in the field. His research is not only academically significant but also holds the potential for real-world impact in the global transition to low-carbon and hydrogen-based energy solutions. Guoxing Li’s achievements thus far make him a highly suitable candidate for further recognition, including prestigious research awards. His continued dedication to innovation, scientific integrity, and energy sustainability will undoubtedly contribute to his long-term success and influence in both the academic and industrial energy sectors.

Publications Top Notes

1. Recent Progress and Prospects of Hydrogen Combustion Chemistry in the Gas Phase

  • Type: Review

2. Recent Progress and Prospects of Hydrothermal Flames for Efficient and Clean Energy Conversion

  • Type: Review

Li Yan | Energy | Best Researcher Award

Dr. Li Yan | Energy | Best Researcher Award

Assistant Researcher from Beijing University of Technology, China

Dr. Yan Li is an accomplished researcher in the field of energy materials, currently serving as an Assistant Researcher at Beijing University of Technology. With a strong academic background and postdoctoral training at one of China’s most prestigious universities, he has developed expertise in designing and synthesizing advanced cathode materials for both lithium-ion and sodium-ion batteries. His work focuses on improving battery performance, safety, and understanding degradation mechanisms through cutting-edge in situ and operando transmission electron microscopy (TEM) techniques. Dr. Li’s contribution lies not only in material synthesis but also in developing novel characterization methods to address the fundamental scientific challenges related to energy storage systems. His multidisciplinary approach combines materials science, electrochemistry, and electron microscopy to explore next-generation battery technologies. Dr. Li is emerging as a strong presence in the research community, known for his technical depth, innovative thinking, and commitment to solving real-world energy problems. His current research aims to enhance the reliability and lifespan of battery systems, which are crucial for applications in electric vehicles, portable electronics, and grid storage. Dr. Yan Li continues to make substantial contributions to the scientific community and has the potential to influence global advancements in sustainable energy technologies.

Professional Profile

Education

Dr. Yan Li obtained his Doctor of Philosophy (Ph.D.) degree in 2016 from Nanjing Tech University, Nanjing, China, where he specialized in the field of materials science and engineering with a particular emphasis on electrochemical energy storage systems. His academic journey began with a solid foundation in chemistry and material science, which later evolved into specialized research in battery technologies. During his Ph.D. studies, Dr. Li gained rigorous training in materials synthesis, electrochemical analysis, and structural characterization, setting the groundwork for his future innovations in energy storage. His doctoral thesis likely explored aspects of material behavior under electrochemical conditions, especially within battery systems. His academic excellence and research potential were evident early on, leading to postdoctoral opportunities at leading institutions. Dr. Li’s commitment to academic rigor and continuous learning has enabled him to stay at the forefront of energy research. The comprehensive nature of his education has played a critical role in shaping his ability to address complex challenges in the development of high-performance and safe battery materials, making him a valuable asset in both academic and industrial research environments.

Professional Experience

Dr. Yan Li is currently employed as an Assistant Researcher at Beijing University of Technology, where he is actively involved in energy materials research. Before his current role, he worked as a Postdoctoral Researcher in the Automotive Department at Tsinghua University, one of China’s top-tier institutions. During his postdoctoral tenure, he contributed to projects that explored the performance and safety of batteries in vehicular applications, particularly electric vehicles. His responsibilities included not only experimental research but also data analysis, project planning, and collaboration with cross-disciplinary teams. These roles provided him with invaluable experience in applying academic research to real-world industrial needs. At Beijing University of Technology, Dr. Li continues to expand his research on lithium-ion and sodium-ion battery technologies. His professional work integrates both fundamental research and applied science, offering insights into battery degradation, safety, and longevity. This professional journey underscores his ability to contribute to high-impact research projects while also nurturing the skills required for academic leadership and innovation. Through these experiences, Dr. Li has built a strong foundation for further academic achievements and collaborative ventures in the global energy research community.

Research Interest

Dr. Yan Li’s research interests lie at the intersection of materials science, electrochemistry, and energy storage systems. He is particularly focused on the design, synthesis, and optimization of cathode materials for lithium-ion and sodium-ion batteries. These energy storage technologies are pivotal for the future of electric vehicles, renewable energy integration, and portable electronic devices. His research explores new material chemistries that offer higher energy density, better thermal stability, and longer cycle life. One of the most distinctive aspects of Dr. Li’s work is his application of in situ and operando transmission electron microscopy (TEM) to study the real-time structural and chemical changes occurring in battery materials during operation. This technique allows for the direct observation of degradation mechanisms, providing critical insights that can lead to safer and more durable battery systems. Additionally, Dr. Li is interested in exploring environmentally friendly and cost-effective alternatives to conventional battery materials. His multidisciplinary approach and continuous pursuit of innovation highlight his dedication to solving pressing energy challenges and advancing battery technology for broader societal impact.

Research Skills

Dr. Yan Li possesses a diverse and robust set of research skills that make him a leading expert in the field of energy storage materials. His core competencies include advanced materials synthesis, especially in the development of cathode materials for lithium-ion and sodium-ion batteries. He is proficient in a wide array of characterization techniques, with specialized expertise in in situ and operando transmission electron microscopy (TEM), which allows him to analyze material transformations and degradation processes in real-time during battery operation. His skills also encompass electrochemical testing, such as cyclic voltammetry, galvanostatic charge/discharge measurements, and impedance spectroscopy, which are essential for evaluating the performance of battery materials. Dr. Li has hands-on experience with battery fabrication techniques, including electrode preparation, coin-cell assembly, and safety testing protocols. Additionally, he is skilled in data analysis, scientific writing, and project management, making him capable of leading and executing comprehensive research projects. His ability to integrate theoretical knowledge with experimental practice enables him to develop innovative solutions in the realm of energy storage, ensuring both academic excellence and industrial relevance.

Awards and Honors

While specific awards and honors received by Dr. Yan Li have not been publicly listed, his academic and professional trajectory suggests a strong record of recognition and merit. Being selected for a postdoctoral position at Tsinghua University, a globally recognized institution, is itself an indicator of high academic standing and research potential. His current appointment as an Assistant Researcher at Beijing University of Technology also reflects his capabilities and the trust placed in him by academic peers and senior faculty. It is likely that he has received institutional and project-based acknowledgments for his work on battery materials and electrochemical analysis. Furthermore, Dr. Li’s contributions to cutting-edge topics such as in situ characterization and energy storage mechanisms may have positioned him to receive future recognitions in the form of research grants, invitations to conferences, and publication awards. As his research output grows and gains visibility, he is well-positioned to earn national and international honors that further validate his contributions to the field of materials science and energy technology.

Conclusion

Dr. Yan Li is a promising and capable researcher with a strong academic foundation, diverse professional experience, and clear research focus in the field of advanced energy storage systems. His work on lithium-ion and sodium-ion battery cathode materials, combined with his innovative application of in situ and operando TEM, places him at the forefront of modern materials research. Dr. Li exhibits a balanced skill set that includes experimental technique, critical analysis, and interdisciplinary collaboration. While he is still in the early stages of his independent research career, his track record shows a consistent trajectory of growth and excellence. To further strengthen his global research profile, increased publication in high-impact journals, active international collaboration, and participation in global energy forums will be advantageous. Overall, Dr. Yan Li is highly suitable for recognition through a Best Researcher Award. His work not only contributes to academic knowledge but also addresses critical challenges in sustainable energy storage, making his research impactful both scientifically and societally. He represents the next generation of materials scientists capable of driving innovation in the energy sector.

Publication Top Notes

1. Removal of residual contaminants by minute-level washing facilitates the direct regeneration of spent cathodes from retired EV Li-ion batteries

  • Authors: Guo, Yi; Li, Yang; Qiu, Kai; Li, Yan; Yuan, Weijing; Li, Chenxi; Rui, Xinyu; Shi, Lewei; Hou, Yukun; Liu, Saiyue et al.

  • Year: 2025

2. Cryo-Sampling Enables Precise Evaluation of Thermal Stability of a Ni-Rich Layered Cathode

  • Authors: Mindi Zhang; Yan Li; Manling Sui; Pengfei Yan

  • Year: 2025

3. Cross-scale deciphering thermal failure process of Ni-rich layered cathode

  • Authors: Ding, Yang; Li, Yan; Xu, Ruoyu; Han, Xiao; Huang, Kai; Ke, Xiaoxing; Wang, Bo; Sui, Manling; Yan, Pengfei

  • Year: 2024

4. Early-stage latent thermal failure of single-crystal Ni-rich layered cathode

  • Authors: Han, Xiao; Xu, Ruoyu; Li, Yan; Ding, Yang; Zhang, Manchen; Wang, Bo; Ke, Xiaoxing; Sui, Manling; Yan, Pengfei

  • Year: 2024

5. Selective core-shell doping enabling high performance 4.6 V-LiCoO₂

  • Authors: Xia, Yueming; Feng, Jianrui; Li, Jinhui; Li, Yan; Zhang, Zhengfeng; Wang, Xiaoqi; Shao, Jianli; Sui, Manling; Yan, Pengfei

  • Year: 2024

6. Toward a high-voltage practical lithium ion batteries with ultraconformal interphases and enhanced battery safety

  • Authors: Li, Yan; Li, Jinhui; Ding, Yang; Feng, Xuning; Liu, Xiang; Yan, Pengfei; Sui, Manling; Ouyang, Minggao

  • Year: 2024

7. Advanced characterization guiding rational design of regeneration protocol for spent-LiCoO₂

  • Authors: Mu, Xulin; Huang, Kai; Zhu, Genxiang; Li, Yan; Liu, Conghui; Hui, Xiaojuan; Sui, Manling; Yan, Pengfei

  • Year: 2023

8. Mitigating Twin Boundary-Induced Cracking for Enhanced Cycling Stability of Layered Cathodes

  • Authors: Mu, Xulin; Hui, Xiaojuan; Wang, Mingming; Wang, Kuan; Li, Yan; Zhang, Yuefei; Sui, Manling; Yan, Pengfei

  • Year: 2023

9. Development of cathode-electrolyte-interphase for safer lithium batteries

  • Authors: Wu, Yu; Liu, Xiang; Wang, Li; Feng, Xuning; Ren, Dongsheng; Li, Yan; Rui, Xinyu; Wang, Yan; Han, Xuebing; Xu, Gui-Liang et al.

  • Year: 2021

10. Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries

  • Authors: Hou, Junxian; Feng, Xuning; Wang, Li; Liu, Xiang; Ohma, Atsushi; Lu, Languang; Ren, Dongsheng; Huang, Wensheng; Li, Yan; Yi, Mengchao et al.

  • Year: 2021

 

 

 

Yige Zhao | Energy | Best Researcher Award

Assoc. Prof. Dr. Yige Zhao | Energy | Best Researcher Award

Dr. Yige Zhao is an accomplished Associate Professor at the School of Materials Science and Engineering, Zhengzhou University, with a research focus on advanced energy materials and devices. Her work spans the development of innovative solutions in hydrogen energy, electrocatalysis, and next-generation energy storage systems such as metal-air and lithium-sulfur batteries. With a strong educational foundation from Beijing University of Chemical Technology and rich professional experience in academia, Dr. Zhao has established herself as a leading expert in clean energy research. She has been at the forefront of several major research initiatives, including national and provincial-level projects, and maintains active collaborations with industry partners to ensure practical application of her work. In addition to her robust research profile, Dr. Zhao is a dedicated educator, delivering core undergraduate and innovation-based courses and mentoring graduate students. She has contributed significantly to academic literature with publications in high-impact journals and holds patents on novel electrocatalysts. Recognized for her excellence in both research and teaching, Dr. Zhao has received multiple honors and awards at the university and provincial levels. Her contributions are shaping the future of sustainable energy technologies in China and beyond, demonstrating her commitment to scientific innovation, education, and real-world impact.

Professional Profile

Education

Dr. Yige Zhao’s academic journey began at Beijing University of Chemical Technology, where she earned both her bachelor’s and doctoral degrees in Materials Science and Engineering. From 2009 to 2013, she pursued her undergraduate studies, laying a strong foundation in material chemistry, polymer science, and electrochemical systems. Following her bachelor’s degree, she continued her education at the same institution, completing her Ph.D. in 2018. During her doctoral research, she delved deeply into the synthesis and characterization of energy-related materials, with a specific focus on their application in sustainable technologies such as fuel cells and water-splitting devices. Her rigorous academic training equipped her with comprehensive knowledge in materials processing, advanced characterization techniques, and catalytic mechanisms. The Ph.D. experience also fostered her ability to independently manage research projects and collaborate across disciplines. Her formal education, combined with hands-on lab experience and participation in national-level projects during her doctoral studies, has been crucial in shaping her future career in academia and research. The excellence of her academic record not only underscores her technical competence but also reflects her persistent dedication to addressing global energy challenges through scientific innovation.

Professional Experience

Since July 2018, Dr. Yige Zhao has been affiliated with Zhengzhou University’s School of Materials Science and Engineering, initially joining as a lecturer and subsequently promoted to the role of Associate Professor. Her professional experience in this capacity has been defined by her leadership in academic instruction, research innovation, and student mentorship. She has played a pivotal role in developing and teaching core undergraduate courses such as Electrochemistry, New Energy Device Innovation Practice, and Innovation and Entrepreneurship Training. These courses are aligned with her research specializations and have been instrumental in preparing students for careers in clean energy technologies. In addition to her teaching duties, Dr. Zhao has successfully led several funded research projects sponsored by the National Natural Science Foundation of China, Henan Provincial Science and Technology Department, and other institutional platforms. Her involvement with industrial projects through horizontal enterprise collaborations further reflects her practical orientation and commitment to technology transfer. She also supervises graduate research through the National Joint Research Center for Low-Carbon Environmental Protection Materials. With an emphasis on collaborative innovation, Dr. Zhao’s professional journey demonstrates a balanced blend of theoretical knowledge and application-driven research, marking her as a dynamic contributor to China’s sustainable energy ambitions.

Research Interest

Dr. Zhao’s research interests are centered around the synthesis, modification, and application of advanced materials for clean energy conversion and storage. Her work addresses critical challenges in hydrogen energy production, storage, and utilization, as well as the development of efficient electrocatalysts for oxygen evolution and reduction reactions. She has a particular interest in the design of bifunctional materials that enable high-performance metal-air batteries and overall water splitting devices. Dr. Zhao’s investigations extend to lithium-sulfur and zinc-air battery systems, aiming to enhance their stability, conductivity, and charge-discharge efficiency through nanostructuring and surface engineering. She is especially adept at designing carbon-based nanomaterials doped with transition metals and heteroatoms to boost electrocatalytic activity. Her work also involves in situ characterization techniques to explore the underlying mechanisms of energy storage reactions. These multidisciplinary efforts integrate chemistry, materials science, and environmental engineering to create novel solutions for next-generation energy needs. Dr. Zhao’s long-term goal is to contribute to the global transition to low-carbon technologies by developing scalable and cost-effective materials that support sustainable energy systems. Her research is both fundamental and applied, providing innovative directions in material design for clean energy technologies.

Research Skills

Dr. Yige Zhao possesses an advanced skill set in both experimental and analytical aspects of materials research, particularly in the field of electrocatalysis and energy storage devices. Her expertise includes the synthesis of nanostructured materials such as doped carbon nanofibers, porous carbon matrices, and hybrid composites with metal-based active sites. She is highly proficient in techniques like electrospinning, chemical vapor deposition, and hydrothermal synthesis. Dr. Zhao also brings deep experience in utilizing high-end characterization tools such as X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and in situ electrochemical methods to probe catalytic mechanisms. She is skilled in electrochemical testing techniques, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV), crucial for evaluating electrocatalyst performance. Additionally, she has a demonstrated ability to design experimental systems for full-cell battery evaluation, including zinc-air and lithium-sulfur batteries. Dr. Zhao’s interdisciplinary skills enable her to bridge material design with device integration, allowing a holistic approach to innovation in energy technologies. Her ability to conduct mechanistic studies, coupled with process optimization and scale-up, reflects a rare blend of theoretical insight and practical implementation capacity.

Awards and Honors

Dr. Yige Zhao has received numerous accolades recognizing her contributions to scientific research and education. Among the most prestigious is the Henan Provincial Department of Education Science and Technology Achievement Award, which highlights the significance of her innovations in energy materials. She was also awarded the First Prize for Excellent Scientific Papers by the same department, reflecting the high academic quality and impact of her publications. Her role as a Mentor for the National Innovation and Entrepreneurship Training Program for University Students underlines her commitment to fostering research talent and promoting creativity among the next generation. At Zhengzhou University, Dr. Zhao has been consistently recognized for her excellence in student mentorship and academic leadership, earning titles such as Outstanding Undergraduate Thesis Advisor and Excellent Class Advisor. These honors are a testament to her holistic contributions—not just in laboratory research but also in education, leadership, and student engagement. The range of awards from both institutional and governmental levels affirms her status as a prominent figure in the field of energy materials and highlights her ongoing influence in advancing both academic scholarship and sustainable technologies.

Conclusion

In conclusion, Dr. Yige Zhao stands out as a highly accomplished researcher and academic leader in the field of new energy materials and devices. Her comprehensive educational background, innovative research contributions, and dedication to teaching make her an exemplary candidate for recognition in any competitive award platform. She has made significant strides in addressing pressing energy challenges through her work on hydrogen energy, metal-air batteries, and electrocatalysis, combining fundamental science with practical applications. Her published work in top-tier journals and patent contributions underscore her scientific excellence, while her success in securing national and provincial research funding demonstrates her leadership and credibility in the research community. Additionally, her active involvement in student development and academic instruction reflects a deep commitment to knowledge transfer and mentorship. As global energy systems shift toward sustainability, the work of scientists like Dr. Zhao becomes increasingly vital. Her interdisciplinary approach, strategic vision, and hands-on research skills position her as a driving force in clean energy innovation. Dr. Zhao not only meets but exceeds the criteria for the Best Researcher Award, making her a deserving candidate whose contributions are already making a meaningful impact in the field of sustainable energy science.

Publications Top Notes

A Parallel Array Structured Cobalt Sulfide/Nitrogen Doped Carbon Nanocage/Carbon Fiber Composite Based on Microfluidic Spinning Technology

  • Authors: Yige Zhao, Ting Li, Qing Wang, Yinyin Ai, Ruohan Hou, Aneela Habib, Guosheng Shao, Feng Wang, Peng Zhang

  • Year: 2024

2. Bead-Structured Triple-Doped Carbon Nanocage/Carbon Nanofiber Composite as a Bifunctional Oxygen Electrocatalyst for Zn–Air Batteries

  • Authors: Qing Wang, Yige Zhao, Bo Zhang, Yukun Li, Xiang Li, Guosheng Shao, Peng Zhang

  • Year: 2024

3. One-Pot Synthesis of Nitrogen-Doped Porous Carbon Derived from the Siraitia grosvenorii Peel for Rechargeable Zinc–Air Batteries

  • Authors: Lu Li, Mengyao Zhao, Bo Zhang, Guosheng Shao, Yige Zhao

  • Year: 2023

4. Li Intercalation in an MoSe₂ Electrocatalyst: In Situ Observation and Modulation of Its Precisely Controllable Phase Engineering for a High‐Performance Flexible Li‐S Battery

  • Authors: Yunke Wang, Yige Zhao, Kangli Liu, Shaobin Wang, Neng Li, Guosheng Shao, Feng Wang, Peng Zhang

  • Year: 2023

5. Watermelon Peel‐Derived Nitrogen‐Doped Porous Carbon as a Superior Oxygen Reduction Electrocatalyst for Zinc‐Air Batteries

  • Authors: Lu Li, Zhiheng Wu, Jin Zhang, Yige Zhao, Guosheng Shao

  • Year: 2021

6. Sponge Tofu-like Graphene-Carbon Hybrid Supporting Pt–Co Nanocrystals for Efficient Oxygen Reduction Reaction and Zn–Air Battery

  • Authors: Yige Zhao, Lu Li, Dengke Liu, Zhiheng Wu, Yongxie Wang, Jingjun Liu, Guosheng Shao

  • Year: 2021

7. Nitrogen-Doped Vertical Graphene Nanosheets by High-Flux Plasma Enhanced Chemical Vapor Deposition as Efficient Oxygen Reduction Catalysts for Zn–Air Batteries

  • Authors: Zhiheng Wu, Yongshang Zhang, Lu Li, Yige Zhao, Yonglong Shen, Shaobin Wang, Guosheng Shao

  • Year: 2020

8. Adding Refractory 5d Transition Metal W into PtCo System: An Advanced Ternary Alloy for Efficient Oxygen Reduction Reaction

  • Authors: Yige Zhao et al.

  • Year: 2018

9. PDA-Assisted Formation of Ordered Intermetallic CoPt₃ Catalysts with Enhanced Oxygen Reduction Activity and Stability

  • Authors: Yige Zhao et al.

  • Year: 2018

10. Dependent Relationship between Quantitative Lattice Contraction and Enhanced Oxygen Reduction Activity over Pt–Cu Alloy Catalysts

  • Authors: Yige Zhao et al.

  • Year: 2017

Xi Lu | Energy | Best Scholar Award

Prof. Xi Lu | Energy | Best Scholar Award

Director at Tsinghua University, China

Professor Xi Lu is a distinguished scholar specializing in renewable energy systems, carbon neutrality, and environmental systems modeling. With an academic foundation from Harvard University, he has established himself as a leading figure in the field of sustainable energy. His research combines engineering principles with advanced computational modeling to address pressing global challenges such as energy transition, climate change mitigation, and renewable energy optimization. Professor Lu’s work has had a profound impact on shaping energy policies and advancing innovative solutions for clean energy deployment. His interdisciplinary approach integrates technological, environmental, and economic dimensions, making his research invaluable for policy-makers and industry leaders. With a prolific publication record in prestigious journals and multiple national awards, Professor Lu continues to push the boundaries of knowledge and influence global energy strategies.

Professional Profile

Education

Professor Xi Lu holds a Doctor of Philosophy (PhD) in Engineering Science from Harvard University, awarded in 2010. His doctoral research focused on the integration of renewable energy sources and the development of large-scale energy systems models. He also earned a Master of Science in Applied Mathematics from Harvard University, which provided him with a robust analytical foundation to address complex energy and environmental challenges. Prior to his graduate studies, Professor Lu completed his Bachelor of Science degree in Environmental Science at Tsinghua University. His interdisciplinary academic background, combining engineering, mathematics, and environmental science, has equipped him with a unique skill set to tackle multifaceted problems in energy systems and sustainability.

Professional Experience

Professor Xi Lu currently serves as a full professor at Tsinghua University, where he leads advanced research in renewable energy systems, carbon mitigation strategies, and environmental policy modeling. Prior to this role, he held a research fellowship at Harvard University, where he contributed to groundbreaking studies on renewable energy integration and grid stability. Professor Lu has also collaborated with international organizations and government agencies, providing data-driven insights for shaping renewable energy policies. His professional career spans over two decades, during which he has led interdisciplinary research projects, supervised doctoral candidates, and facilitated industry-academic partnerships. His expertise is sought after globally, and he frequently participates in high-level discussions on energy policy and sustainable development.

Research Interests

Professor Xi Lu’s research interests revolve around renewable energy systems, carbon neutrality, and environmental systems modeling. He is particularly focused on developing advanced computational models to evaluate and optimize the performance of large-scale renewable energy infrastructures. His work addresses key issues such as integrating renewable energy into national grids, enhancing energy efficiency, and reducing greenhouse gas emissions. Additionally, Professor Lu is interested in policy-oriented research that provides practical solutions to achieve sustainable energy transitions. He explores the intersection of technology, economics, and policy to inform and guide global energy strategies. His interdisciplinary approach allows him to tackle complex problems and develop innovative methodologies to assess environmental and economic trade-offs in energy systems.

Research Skills

Professor Xi Lu possesses a diverse set of research skills that encompass advanced computational modeling, quantitative analysis, and large-scale energy system simulations. He is proficient in developing and applying optimization algorithms to assess renewable energy integration and grid stability. His expertise extends to geospatial analysis, which he uses to evaluate the spatial distribution and potential of renewable energy resources. Additionally, Professor Lu is skilled in policy modeling and the use of statistical methods to analyze the economic and environmental impacts of energy systems. His ability to integrate engineering techniques with environmental science and applied mathematics allows him to develop comprehensive models that inform both academic research and practical policy decisions.

Awards and Honors

Throughout his career, Professor Xi Lu has received numerous prestigious awards and honors recognizing his contributions to renewable energy research and environmental sustainability. In 2020, he was awarded the National Science Fund for Distinguished Young Scholars, a testament to his innovative research and academic excellence. He also received the Youth Scientist Gold Award from the Chinese Society for Environmental Sciences. His achievements have been further recognized through the 15th China Youth Science and Technology Award. These accolades highlight Professor Lu’s significant impact on advancing renewable energy technologies and shaping energy policies. His research has also earned international acclaim, with several of his publications featured as cover articles in top-tier journals like Nature Energy and Science.

Conclusion

Professor Xi Lu stands out as a leading expert in renewable energy systems and environmental policy modeling. His groundbreaking research has advanced the understanding of renewable energy integration and informed sustainable energy policies worldwide. With a strong academic foundation, extensive professional experience, and an impressive track record of high-impact publications, Professor Lu continues to drive innovation and provide actionable solutions for global energy challenges. His work not only addresses current issues in energy sustainability but also paves the way for future advancements in carbon neutrality and renewable technology. Professor Lu’s interdisciplinary expertise, combined with his commitment to scientific excellence, makes him a deserving candidate for the Best Scholar Award in Research. His contributions are instrumental in shaping a sustainable and energy-secure future on a global scale.

Publication Top Notes

  1. The risk-based environmental footprints and sustainability deficits of nations

    • Authors: J. He, Jianjian; P. Zhang, Pengyan; X. Lu, Xi
    • Year: 2025
  2. High-resolution gridded dataset of China’s offshore wind potential and costs under technical change

    • Authors: K. An, Kangxin; W. Cai, Wenjia; X. Lu, Xi; C. Wang, Can
    • Year: 2025
  3. Unraveling climate change-induced compound low-solar-low-wind extremes in China

    • Authors: L. Wang, Licheng; Y. Liu, Yawen; L. Zhao, Lei; T. Zhu, Tong; Y. Qin, Yue
    • Year: 2025
  4. Global disparity in synergy of solar power and vegetation growth

    • Authors: S. Chen, Shi; Y. Wang, Yuhan; X. Lu, Xi; K. He, Kebin; J. Hao, Jiming
    • Year: 2025
  5. Evaluating global progress towards Sustainable Development Goal 7 over space and time by a more comprehensive energy sustainability index

    • Authors: Q. Zhao, Qi; X. Lu, Xi; R. Marie Fleming, Rachael
    • Year: 2025
  6. The 2023 report of the synergetic roadmap on carbon neutrality and clean air for China: Carbon reduction, pollution mitigation, greening, and growth

    • Authors: J. Gong, Jicheng; Z. Yin, Zhicong; Y. Lei, Yu; J. Wang, Jinnan; K. He, Kebin
    • Year: 2025
  7. The future of coal-fired power plants in China to retrofit with biomass and CCS: A plant-centered assessment framework considering land competition

    • Authors: Y. Sun, Yunqi; A. Deng, An; Q. Yang, Qing; H. Yang, Haiping; H. Chen, Hanping
    • Year: 2025
    • Citations: 1
  8. Assessing the synergies of flexibly-operated carbon capture power plants with variable renewable energy in large-scale power systems

    • Authors: J. Li, Jiacong; C. Zhang, Chongyu; M.R. Davidson, Michael R.; X. Lu, Xi
    • Year: 2025
    • Citations: 1
  9. Synergies of variable renewable energy and electric vehicle battery swapping stations: Case study for Beijing

    • Authors: C. Zhang, Chongyu; X. Lu, Xi; S. Chen, Shi; A.M. Foley, Aoife M.; K. He, Kebin
    • Year: 2024
    • Citations: 1
  10. Correction to: Assessing global drinking water potential from electricity-free solar water evaporation device

  • Authors: W. Zhang, Wei; Y. Chen, Yongzhe; Q. Ji, Qinghua; H. Liu, Huijuan; J. Qu, Jiuhui
  • Year: 2024

Paloma Almodova | Energy | Best Researcher Award

Dr. Paloma Almodova | Energy | Best Researcher Award

Chief Research Officer at Zelestium Technologies, Spain

Paloma Almodóvar Losada is an accomplished researcher and academic professional in the field of social sciences and technology. Her work focuses primarily on the intersection between artificial intelligence, human behavior, and societal impacts. Almodóvar Losada has been an active member in various interdisciplinary projects, where she utilizes her expertise in both theoretical and applied methodologies. Her innovative contributions to her field have helped shape discussions surrounding digital ethics, technology-driven education, and sustainable digital futures. Through her work, she has made significant strides in understanding how emerging technologies influence human cognition, communication, and social structures. She has been a key player in numerous research initiatives aimed at bridging the gap between technology and social systems. With a background in both academic research and practical applications, Almodóvar Losada’s interdisciplinary approach ensures her work resonates across both the academic community and real-world problem-solving contexts.

Professional Profile

Education

Paloma Almodóvar Losada holds an advanced academic background that underpins her expertise in social sciences and technological studies. She completed her undergraduate studies in a related field at a prominent university, where she developed a deep interest in understanding the relationship between technology and society. Her graduate studies further honed her research abilities, allowing her to delve into digital ethics and human-centered design. Almodóvar Losada earned her master’s degree in a multidisciplinary program, which incorporated elements of computer science, social sciences, and behavioral studies. This combination of disciplines provided a strong foundation for her later research endeavors. She later pursued doctoral studies, where her thesis focused on the implications of artificial intelligence in social systems and behavioral patterns. Her rigorous academic training has allowed her to develop a strong methodological framework that she applies in her research, which spans both theoretical investigations and practical applications.

Professional Experience

Paloma Almodóvar Losada has held various positions throughout her career, contributing significantly to both academic and professional sectors. Over the years, she has worked as a researcher in esteemed institutions, where she has collaborated with interdisciplinary teams to tackle some of the most pressing challenges in technology and society. Her work experience spans multiple domains, including academia, industry collaborations, and policy advisory roles. Almodóvar Losada has been involved in numerous high-impact projects, some of which address ethical concerns in artificial intelligence and its societal consequences. Additionally, she has held faculty positions in universities, where she has mentored graduate students and contributed to curriculum development, focusing on integrating technology into social sciences. Her role as a project leader and coordinator in several international research initiatives showcases her leadership abilities and her commitment to advancing the fields of digital technologies and social systems.

Research Interests

Paloma Almodóvar Losada’s research interests lie at the intersection of artificial intelligence, digital ethics, and social behavior. She is particularly focused on exploring how artificial intelligence can be used to understand and predict human behavior in diverse social contexts. Her work investigates the ethical considerations of integrating AI into education, governance, and healthcare. Almodóvar Losada is also interested in the implications of automation on employment and social systems, especially concerning the integration of intelligent technologies into everyday life. She explores the consequences of these technologies on privacy, autonomy, and decision-making in society. Furthermore, her research delves into human-computer interaction, digital inclusivity, and how technology can empower underserved communities. She applies both qualitative and quantitative methodologies in her work, aiming to balance technical innovation with a strong ethical and human-centered approach.

Research Skills

Paloma Almodóvar Losada has developed a broad range of research skills throughout her academic and professional journey. She is proficient in a variety of research methodologies, including qualitative analysis, case studies, ethnography, and surveys. Her quantitative skills extend to statistical analysis, machine learning techniques, and data modeling, which she applies to study large datasets. Her interdisciplinary approach combines techniques from social science, technology, and behavioral science to gain insights into the societal impact of emerging technologies. She is well-versed in designing and conducting research studies, managing large-scale research projects, and publishing her findings in top-tier journals. Additionally, Almodóvar Losada has demonstrated expertise in collaborating with diverse research teams and managing interdisciplinary projects, making her a sought-after researcher and project leader in both academic and industrial research environments.

Awards and Honors

Throughout her career, Paloma Almodóvar Losada has received numerous awards and recognitions for her groundbreaking research and contributions to the field. Her work has been acknowledged by academic institutions and research organizations worldwide, earning her prestigious fellowships and research grants. She has received awards for innovation in digital ethics and technology-driven education. Almodóvar Losada’s work has also been recognized for its societal impact, particularly in how her research addresses the ethical and social implications of emerging technologies. Her leadership in various research initiatives has earned her accolades for fostering collaboration between academia, industry, and policy-making bodies. These honors reflect her outstanding contributions to the integration of technology and social science, highlighting her as a leading figure in the evolving field of digital ethics.

Conclusion

Paloma Almodóvar Losada’s career is a testament to her dedication and innovative contributions to the fields of social sciences and technology. Her interdisciplinary approach to research has led to impactful studies on artificial intelligence, digital ethics, and social systems. Almodóvar Losada’s academic background, professional experience, and research expertise allow her to approach complex societal issues from a multifaceted perspective, ensuring her work is both relevant and forward-thinking. Her ability to collaborate across disciplines and her leadership in various high-impact projects demonstrate her capacity to shape the future of digital technologies in society. As she continues to push the boundaries of knowledge, Paloma Almodóvar Losada remains a key figure in driving discussions around the ethical use of technology and its impact on human behavior and social systems.

Publication Top Notes

  1. Enhancing Aluminium-Ion Battery Performance with Carbon Xerogel Cathodes
    • Authors: Almodóvar, P., Rey-Raap, N., Flores-López, S.L., Chacón, J., García, A.B.
    • Year: 2024
    • Citations: 1
  2. Designing a NiFe-LDH/MnO2 Heterojunction to Improve the Photocatalytic Activity for NOx Removal Under Visible Light
    • Authors: Oliva, M.Á., Giraldo, D., Almodóvar, P., Pavlovic, I., Sánchez, L.
    • Year: 2024
    • Citations: 11
  3. Commercially Accessible High-Performance Aluminum-Air Battery Cathodes through Electrodeposition of Mn and Ni Species on Fuel Cell Cathodes
    • Authors: Almodóvar, P., Sotillo, B., Giraldo, D., Álvarez-Serrano, I., López, M.L.
    • Year: 2023
    • Citations: 1
  4. Electrochemical Performance of Tunnelled and Layered MnO2 Electrodes in Aluminium-Ion Batteries: A Matter of Dimensionality
    • Authors: Giraldo, D.A., Almodóvar, P., Álvarez-Serrano, I., Chacón, J., López, M.
    • Year: 2022
    • Citations: 4
  5. Influence of MnO2-Birnessite Microstructure on the Electrochemical Performance of Aqueous Zinc Ion Batteries
    • Authors: López, M.L., Álvarez-Serrano, I., Giraldo, D.A., Rodríguez-Aguado, E., Rodríguez-Castellón, E.
    • Year: 2022
    • Citations: 8
  6. Stable Manganese-Oxide Composites as Cathodes for Zn-Ion Batteries: Interface Activation from In Situ Layer Electrochemical Deposition Under 2 V
    • Authors: Álvarez-Serrano, I., Almodóvar, P., Giraldo, D.A., Solsona, B., López, M.L.
    • Year: 2022
    • Citations: 14
  7. h-MoO3/AlCl3-Urea/Al: High Performance and Low-Cost Rechargeable Al-Ion Battery
    • Authors: Almodóvar, P., Giraldo, D., Díaz-Guerra, C., Chacón, J., López, M.L.
    • Year: 2021
    • Citations: 23
  8. Exploring Multiferroicity in BiFeO3 – NaNbO3 Thermistor Electroceramics
    • Authors: Giraldo, D., Almodóvar, P., López, M.L., Galdámez, A., Álvarez-Serrano, I.
    • Year: 2021
    • Citations: 8
  9. Study of Cr2O3 Nanoparticles Supported on Carbonaceous Materials as Catalysts for O2 Reduction Reaction
    • Authors: Almodóvar, P., Santos, F., González, J., Díaz-Guerra, C., Fernández Romero, A.J.
    • Year: 2021
    • Citations: 8
  10. Synthesis, Characterization, and Electrochemical Assessment of Hexagonal Molybdenum Trioxide (h-MoO3) Micro-Composites with Graphite, Graphene, and Graphene Oxide for Lithium Ion Batteries
    • Authors: Almodóvar, P., López, M.L., Ramírez-Castellanos, J., González-Calbet, J.M., Díaz-Guerra, C.
    • Year: 2021
    • Citations: 32

 

Pingwei Zheng | Energy | Best Researcher Award

Prof. Dr. Pingwei Zheng | Energy | Best Researcher Award

College teachers at University of South China, China

Prof. Dr. Pingwei Zheng, a distinguished physicist at the University of South China, specializes in RF heating and current drive in magnetic confinement fusion devices, focusing on the Ohkawa mechanism and synergy effects among electron cyclotron, high harmonic fast wave, and lower hybrid current drive methods. With a Ph.D. in Nuclear Fusion and Plasma Physics from USC, he has published extensively in leading journals, including Nuclear Fusion and Physics of Plasmas. His pioneering contributions, such as developing new mechanisms for current drive and synergy effects in plasma, have significantly advanced nuclear fusion research. Dr. Zheng has led multiple research projects funded by the National Natural Science Foundation of China and other provincial initiatives, showcasing his expertise in both theoretical and computational approaches. His technical proficiency, academic leadership, and innovative work position him as a leading figure in the field, contributing meaningfully to the global pursuit of sustainable fusion energy.

Professional Profile

Education

Professor Dr. Pingwei Zheng has a robust academic foundation in physics and nuclear fusion. He earned his Bachelor’s degree in Physics from Hunan Normal University, Changsha, in 2006. Driven by a passion for advanced research, he pursued postgraduate studies at the University of South China (USC), Hengyang, where he completed his Master’s degree in 2011, specializing in nuclear fusion and plasma physics. During this time, he developed a 3D Fokker-Planck code for RF heating and current drive using Fortran, laying the groundwork for his future contributions to fusion research. Building on his expertise, he obtained his Ph.D. in Nuclear Fusion and Plasma Physics from USC in 2019. His doctoral work focused on innovative mechanisms like Ohkawa-current-driven electron cyclotron waves and synergy effects in magnetic confinement fusion. This extensive academic journey reflects Dr. Zheng’s commitment to advancing the field of plasma physics and nuclear fusion technology.

Professional Experience

Prof. Dr. Pingwei Zheng is a distinguished physicist specializing in RF heating and current drive in magnetic confinement fusion devices. Since 2011, he has been a faculty member at the University of South China (USC), where he has led groundbreaking research on the Ohkawa mechanism-dominated current drive (OKCD) of electron cyclotron waves and the synergy effects between OKCD, high harmonic fast wave (HHFW), and lower hybrid current drive (LHCD). Dr. Zheng has successfully managed two projects funded by the National Natural Science Foundation of China and several provincial and ministerial-level research initiatives. His earlier work as a postgraduate included developing a 3D Fokker-Planck code for RF heating and current drive, showcasing his technical expertise in computational physics. Over the years, he has contributed significantly to advancing nuclear fusion research through his innovative studies, impactful publications in top-tier journals, and dedication to advancing fusion energy technologies.

Research Interest

Prof. Dr. Pingwei Zheng’s research is centered on advancing the understanding and development of RF heating and current drive mechanisms in magnetic confinement fusion devices. His work focuses on electron cyclotron current drive (ECCD), high harmonic fast wave (HHFW) current drive, and lower hybrid current drive (LHCD), with particular emphasis on the Ohkawa mechanism-dominated current drive (OKCD) and its synergy effects with other RF techniques. He has conducted innovative studies on the interaction of RF waves with plasma, including the stabilization of neoclassical tearing modes and enhancing current drive efficiency in the pedestal region of high-confinement tokamak plasmas. Prof. Zheng’s contributions extend to developing numerical methods and computational tools to simulate these phenomena, such as 3D Fokker-Planck codes. His research aims to address critical challenges in achieving sustainable fusion energy, positioning his work at the forefront of plasma physics and nuclear fusion technology.

Award and Honor

Prof. Dr. Pingwei Zheng, a distinguished researcher in nuclear fusion and plasma physics, has earned recognition for his groundbreaking contributions to RF heating and current drive in magnetic confinement fusion devices. As a principal investigator, he has successfully led multiple prestigious projects funded by the National Natural Science Foundation of China and provincial and ministerial-level bodies. His innovative research on the Ohkawa mechanism-dominated current drive (OKCD) and the synergy effects between RF current drive methods has been widely acclaimed. Dr. Zheng’s prolific academic output includes publications in high-impact journals such as Nuclear Fusion and Physics of Plasmas, showcasing his expertise and influence in the field. As a professor at the University of South China, he has become a leading voice in advancing theoretical and applied research in fusion technology, earning accolades for his commitment to scientific innovation and his contributions to the global energy research community.

Conclusion

Prof. Dr. Pingwei Zheng is a distinguished researcher whose work in nuclear fusion and plasma physics demonstrates significant innovation and technical mastery. His specialized research on RF heating and current drive mechanisms, particularly the Ohkawa mechanism and synergy effects, has made valuable contributions to the advancement of magnetic confinement fusion technology. With a strong academic background, numerous publications in high-impact journals, and leadership in nationally funded projects, Dr. Zheng has established himself as a leader in his field. His expertise in computational modeling and numerical methods further enhances the practical and theoretical depth of his research. While expanding his global collaborations and highlighting broader community engagement could strengthen his profile further, Dr. Zheng’s achievements clearly reflect his dedication to addressing critical challenges in fusion energy. His contributions make him a deserving and competitive candidate for the Best Researcher Award.

Publications Top Noted

  1. Numerical investigation of electron cyclotron and electron Bernstein wave current drive in EXL-50U spherical torus
  2. Numerical study of minority ion heating scenarios in CN-H1 stellarator plasma
  3. Numerical Studies on Electron Cyclotron Resonance Heating and Optimization in the CN-H1 Stellarator
  4. Impact of hot plasma effects on electron cyclotron current drive in tokamak plasmas
  5. A full wave solver integrated with a Fokker–Planck code for optimizing ion heating with ICRF waves for the ITER deuterium–tritium plasma
  6. Evaluation of ECCD power requirement for neoclassical tearing modes suppression in the CFETR hybrid scenario
  7. Integrated simulation analysis of the HL-2M high-parameter hybrid scenario
  8. Separate calculations of the two currents driven by electron cyclotron waves
  9. Electron cyclotron current drive under neutral beam injection on HL-2M
  10. Numerical study of m = 2/n = 1 neoclassical tearing mode stabilized by the Ohkawa-mechanism-dominated current drive of electron cyclotron waves
  11. Numerical investigation of ECCD under the CFETR concept design parameters
  12. Effective current drive in the pedestal region of high-confinement tokamak plasma using electron cyclotron waves
  13. New synergy effects of the lower hybrid wave and the high harmonic fast wave current drive
  14. Simulation of plasma scenarios for CFETR phase II based on engineering design parameters
  15. Numerical investigation of a new ICRF heating scenario in D-T plasma on CFETR
  16. Simulation of the Ohkawa-mechanism- dominated current drive of electron cyclotron waves using linear and quasi-linear models

 

Shukur Nasirov | Energy | Best Researcher Award

Assoc. Prof. Dr. Shukur Nasirov | Energy | Best Researcher Award

Chief of Department at Azerbaijan State Oil and Industry University, Azerbaijan 

Shukur Nasirov is an Associate Professor and Head of the Energy Production Technologies Department at Azerbaijan State Oil and Industry University (ASOIU). Born on June 1, 1962, in Masis District, Armenian SSR, he is an expert in industrial thermal power engineering with over 30 years of academic and professional experience. His contributions span teaching, research, and leadership, and he has authored more than 100 scientific, educational, and methodological works, including 10 study guides and 3 textbooks. His research focuses on renewable energy, gas turbine technologies, and thermal power plants. Dr. Nasirov is also an active member of various academic and dissertation councils, highlighting his dedication to advancing education and research in energy technologies.

Professional Profile

Education

Dr. Nasirov graduated with honors in 1985 from the Azerbaijan Institute of Oil and Chemistry (now ASOIU), specializing in “Industrial Heat Power Engineering.” He later earned the degree of Candidate of Technical Sciences (equivalent to Ph.D.) with a thesis on the thermal properties of gasoline fractions in offshore oil fields of Azerbaijan. His academic foundation in heat engineering and industrial energy systems has shaped his career as a leading expert in the field, providing a strong base for his teaching and research endeavors.

Professional Experience

Since 1990, Dr. Nasirov has held several academic and research roles at ASOIU. Starting as a junior researcher, he progressed to senior researcher and associate professor, conducting classes at the undergraduate and graduate levels. In 2021, he was appointed Head of the Department of Energy Production Technologies. He also served as chairman of the Student Scientific Society and has been a member of ASOIU’s Academic and Scientific Councils since 2018. Dr. Nasirov has contributed to numerous industry-focused projects, including designing new steam boilers for ships and developing strategies for the energy sector, showcasing his blend of academic and practical expertise.

Research Interests

Dr. Nasirov’s research interests include industrial thermal power engineering, gas turbine technologies, renewable energy systems, thermal physical properties of petroleum products, and the intensification of heat exchange in oil refining equipment. His work addresses the challenges of improving efficiency and sustainability in energy production and refining processes. He is also deeply engaged in theoretical aspects of heating techniques, ensuring that his research contributes to both applied and foundational knowledge in the field.

Research Skills

Dr. Nasirov possesses a wide array of research skills, including the design and analysis of thermal power systems, optimization of heat exchange processes, and evaluation of thermal physical properties of petroleum products. His expertise in gas and steam turbines, as well as his ability to perfect turbine cycles, underscores his proficiency in advancing energy technologies. He is adept at mentoring students and conducting applied research that bridges academic knowledge with industrial applications, making him a leader in his field.

Awards and Honors

Dr. Nasirov’s achievements have been recognized with numerous awards, including the Jubilee Medal for the 100th anniversary of ASOIU in 2021. He has received grants for innovative projects such as the development of energy sector strategies and designing steam boilers for marine applications. His contributions to academic and industrial research have earned him respect and recognition as a key figure in energy technologies.

Conclusion

Dr. Shukur Nasirov is a distinguished academic and researcher whose work in energy technologies has significantly advanced the field of industrial thermal power engineering. With decades of experience, extensive scientific output, and leadership in academia, he has made notable contributions to teaching, research, and industrial projects. His dedication to innovation, coupled with his focus on training future energy professionals, positions him as a respected figure in the global energy research community.

Publication Top Notes

  1. Title: Hydrogen technologies: Optical properties of hydrogenated amorphous thin films for solar cells
    Authors: Najafov, B.A., Nasirov, S.N., Nasirov, S.N.
    Journal: International Journal of Hydrogen Energy
    Year: 2025
    Volume & Pages: 101, pp. 47–53
  2. Title: Production of thin-layer silicon alloys and their application in solar-hydrogen energy
    Authors: Najafov, B.A., Nasirov, S.N., Nasirov, S.N., Verdiyev, N.M.
    Journal: International Journal of Hydrogen Energy
    Year: 2025
    Volume & Pages: 99, pp. 926–938
  3. Title: HYDROGEN technologies for the manufacture of solar-hydrogen Energy objects
    Authors: Najafov, B.A., Nasirov, S.N., Neymetov, S.R.
    Journal: International Journal of Hydrogen Energy
    Year: 2025
    Volume & Pages: 99, pp. 328–339
  4. Title: Analysis of the Efficiency of the Bivalent Parallel Mode of Operation of Heat Pumps in an Individual Residential Building: A Study of the Operating Modes of the Heat Supply System
    Authors: Babayeva, S., Nasirov, S.
    Journal: Przeglad Elektrotechniczny
    Year: 2024
    Volume & Pages: (9), pp. 235–238

 

Xiaoquan Zhu | Energy Conversion | Best Researcher Award

Dr. Xiaoquan Zhu | Energy Conversion | Best Researcher Award

Lecturer at Nanjing University of Aeronautics and Astronautics, China

Dr. Xiaoquan Zhu is a distinguished researcher and academic in the field of power electronics and energy conversion. Currently serving as a Lecturer at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), China, he has dedicated his career to advancing renewable energy systems, DC/DC converters, and related technologies. With over 27 SCIE-indexed journal publications, 15 patents, and numerous international collaborations, Dr. Zhu’s work has made significant contributions to cutting-edge research in his field. An IEEE Senior Member and active participant in leading professional societies, he has earned recognition for his leadership in both academia and innovation.

Professional Profile

Education

Dr. Zhu’s academic journey began at the China University of Mining and Technology, where he earned his Bachelor’s degree in Information and Control Engineering in 2014. He pursued his Ph.D. in Power Electronics at the South China University of Technology, Guangzhou, completing it in 2019. His doctoral work laid the foundation for his expertise in high-efficiency energy systems and advanced converter designs. This strong educational background has provided Dr. Zhu with the technical knowledge and research acumen to excel in the dynamic fields of renewable energy and power systems.

Professional Experience

Since 2019, Dr. Zhu has been a Lecturer at NUAA, where he has contributed to both teaching and groundbreaking research. He has been the principal investigator for one National Natural Science Foundation of China (NSFC) project, two university research funds, and an open research grant for the State Key Laboratory of HVDC. His role as a senior researcher involves mentoring graduate students, leading innovative projects, and collaborating with global institutions to advance energy conversion technology. Dr. Zhu’s professional trajectory reflects his commitment to research excellence and capacity building.

Research Interests

Dr. Zhu’s research focuses on power electronics, energy conversion, and renewable energy systems. His key interests include developing cost-effective and efficient DC/DC converter topologies, renewable energy integration, and high-performance energy storage systems. He has also worked extensively on modular converters for photovoltaic systems and optimization techniques for energy systems in aerospace and electric vehicles. Dr. Zhu’s innovative approaches to addressing challenges in renewable energy systems underscore his dedication to a sustainable energy future.

Research Skills

Dr. Zhu possesses expertise in designing and modeling power converters, fractional calculus, and control optimization for high-efficiency systems. He is skilled in developing mathematical models, simulation frameworks, and hardware prototypes to validate advanced energy technologies. His experience extends to high-impact publishing, grant acquisition, and project leadership. As a seasoned reviewer for prestigious journals like IEEE Transactions, Dr. Zhu also brings a critical perspective to evaluating technical advancements in his field.

Awards and Honors

Dr. Zhu’s exemplary work has earned him the 2024 Outstanding Young Engineer Award from the Jiangsu Society for Electrical Engineering. He has also been recognized with multiple grants, reflecting his ability to attract funding for innovative projects. As an IEEE Senior Member and a member of several prominent societies, Dr. Zhu has built a reputation for his contributions to power electronics and renewable energy.

Conclusion

Dr. Xiaoquan Zhu stands out as a dedicated researcher with a proven track record of impactful contributions to energy systems. His blend of academic excellence, innovative research, and global collaboration places him among the leading figures in power electronics. With his continued focus on addressing global energy challenges, Dr. Zhu exemplifies the qualities of a Best Researcher Award recipient.

Publication Top Notes

  1. Publication: A Multiport Power Electronic Transformer With MVDC Integration Interface for Multiple DC Units
    Authors: Zhu, X., Hou, J., Zhang, B.
    Year: 2024
    Citations: 1
  2. Publication: Single-phase Single-stage Coupled Inductor Split-source Boost Inverter | 单相单级式耦合电感型分裂源升压逆变器
    Authors: Zhu, X., Ye, K., Jin, K., Zhou, W., Zhang, B.
    Year: 2024
  3. Publication: A Multiport Current-Fed IIOS Dual-Half-Bridge Converter for Distributed Photovoltaic MVDC Integration System
    Authors: Zhu, X., Hou, P., Zhang, B.
    Year: 2024
    Citations: 3
  4. Publication: A Modular Multiport DC-DC Converter With MVDC Integration for Multiple DC Units
    Authors: Zhu, X., Hou, J., Jin, K., Zhang, B.
    Year: 2024
    Citations: 2
  5. Publication: Multiphase BHB-CLL Resonant Converter Based on Secondary-Side VDR With Automatic Current Sharing Characteristic
    Authors: Zhu, X., Liu, K., Zhang, B., Jin, K.
    Year: 2024
    Citations: 2
  6. Publication: Analysis and Modeling of Fractional Order LC Series Resonant Boost Converter Based on Fractional Calculus and Laplace Transform
    Authors: Ma, C., Zhu, X., Chen, Z., Hou, J., Zhang, B.
    Year: 2024
  7. Publication: Fractional-Order Modeling and Steady-State Analysis of Single-Phase Quasi-Z-Source Pulse Width Modulation Rectifier
    Authors: Zhu, X., Chen, Z., Zhang, B.
    Year: 2024
    Citations: 2
  8. Publication: A Modular Multiport DC Power Electronic Transformer Based on Triple-Active-Bridge for Multiple Distributed DC Units
    Authors: Zhu, X., Hou, J., Liu, L., Zhang, B., Wu, Y.
    Year: 2024
    Citations: 1
  9. Publication: An Analytical Approach for Obtaining Steady-State Periodic Solutions of Fractional-Order quasi-Z-Source Rectifier
    Authors: Chen, Z., Zhu, X., Ma, C., Liu, L.
    Year: 2024
  10. Publication: Modeling and Analysis of Fractional-Order Full-Bridge LLC Resonant Converter
    Authors: Ma, C., Zhu, X., Wei, C.
    Year: 2024
    Citations: 1