Madalin Costin | Energy | Best Researcher Award

Mr. Madalin Costin | Energy | Best Researcher Award

Lecturer at Lower Danube” University of Galati, Romania

Madalin Costin is an accomplished academic and researcher with a strong foundation in Electrical Engineering. He specializes in electric drives, renewable energy systems, and the use of advanced control strategies for electromagnetic energy conversion processes. Currently a lecturer at “Dunarea de Jos” University of Galati, Romania, Madalin has consistently demonstrated a passion for teaching and research. His work spans both theoretical and applied aspects of energy efficiency and control systems, with a particular focus on improving performance through innovative methods. His ongoing projects, such as the evaluation of novel control strategies for PMSM motors, highlight his commitment to advancing the field. As a multilingual academic, Madalin is well-positioned to engage in international collaborations, furthering the impact of his research.

Professional Profile

Education

Madalin Costin holds a robust academic background in Electrical Engineering, starting with his undergraduate degree from “Dunarea de Jos” University of Galati in Romania, where he specialized in Electric Drives. He continued his education with a Master’s degree in Electrical Engineering, focusing on the Rational Use of Energy and Renewable Sources. Furthering his expertise, he completed his PhD at the same institution, where his research focused on energy-efficient control strategies. Currently, Madalin is pursuing a second PhD at Gheorghe Asachi Technical University of Iasi, demonstrating his commitment to continued academic growth.

Professional Experience

Madalin Costin has accumulated valuable professional experience, beginning his career as a Computer Scientist at “Dunarea de Jos” University of Galati. Over the years, he progressed to Assistant and then Lecturer positions, where he has been responsible for teaching both theoretical and practical aspects of Electrical Engineering. His experience in academic settings is complemented by his involvement in project management. As of June 2024, he is managing a significant research project focused on evaluating a novel control strategy for electromagnetic energy conversion. His professional journey reflects his evolving expertise and leadership in both academia and research.

Research Interests

Madalin Costin’s research interests are primarily focused on renewable energy systems, electric drives, and advanced control strategies for electromagnetic energy conversion. He has a strong interest in improving the efficiency of electric motors and developing new control methods that are both energy-efficient and adaptable to real-world applications. His ongoing work on Radial Basis Function Neural Networks (RBF-NN) and Model Predictive Control (MPC) for Permanent Magnet Synchronous Motors (PMSM) is aimed at optimizing energy conversion processes. He is particularly interested in how these technologies can be applied to renewable energy sources and contribute to more sustainable engineering solutions.

Research Skills

Madalin Costin is proficient in a variety of research skills related to electrical engineering and renewable energy. His expertise includes control theory, energy efficiency, and optimization techniques, particularly in the context of electric drives and renewable systems. He is skilled in using advanced computational methods, including neural networks and predictive control algorithms, to model and optimize energy systems. Madalin also possesses solid skills in project management, demonstrating an ability to lead and coordinate complex research initiatives. Additionally, his proficiency in academic writing and presenting research ensures that his work reaches both scientific and industrial audiences.

Awards and Honors

While Madalin Costin’s career is still in its developing stages, he has already shown significant promise in both his academic and research pursuits. His work on energy efficiency and control strategies for electric drives has been recognized within his university and research community. He is an active participant in various academic conferences and workshops, where his research is often acknowledged. His ongoing contributions to research on renewable energy systems, particularly in the context of electromagnetic energy conversion, are likely to garner more formal recognition as his research advances and his academic portfolio expands.

Conclusion

Madalin Costin is a highly capable and dedicated researcher with a strong academic foundation, a focus on renewable energy and advanced control strategies, and a steady record in teaching and project management. His current research and his approach to advanced energy systems place him in a strong position for the Best Researcher Award. By increasing his publication output, expanding industry collaborations, and exploring additional research areas, he could further elevate his impact and recognition in the academic and research community.

Publication Top Notes

  1. Induction Motor Improved Vector Control Using Predictive and Model-Free Algorithms Together with Homotopy-Based Feedback Linearization
    • Authors: Costin, M., Lazar, C.
    • Year: 2024
    • Journal: Energies, 17(4), 875
  2. Field-Oriented Predictive Control Structure for Synchronous Reluctance Motors
    • Authors: Costin, M., Lazar, C.
    • Year: 2023
    • Journal: Machines, 11(7), 682
    • Citations: 5
  3. Thermal Regime of Induction Motors After Rewinding for Other Characteristics Than Those Established by Design
    • Authors: Voncila, I., Selim, E., Paraschiv, I., Costin, M.
    • Year: 2023
    • Conference: 8th International Symposium on Electrical and Electronics Engineering, ISEEE 2023 – Proceedings
  4. Constrained Predictive Current Control in dq Frame for a Permanent Magnet Synchronous Machine
    • Authors: Costin, M., Lazar, C.
    • Year: 2023
    • Conference: IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2023
  5. Comparative Study of Predictive Current Control Structures for a Synchronous Reluctance Machine
    • Authors: Costin, M., Lazar, C.
    • Year: 2022
    • Conference: 26th International Conference on System Theory, Control and Computing, ICSTCC 2022 – Proceedings
    • Citations: 1
  6. Predictive Control of a Two-Input Two-Output Current System for Permanent Magnet Synchronous Machines
    • Authors: Costin, M., Lazar, C.
    • Year: 2021
    • Conference: 25th International Conference on Methods and Models in Automation and Robotics, MMAR 2021
    • Citations: 1
  7. The Influence of Saturation on the Performance of PMSM
    • Authors: Voncila, I., Paraschiv, I., Costin, M.
    • Year: 2021
    • Conference: ISEEE 2021: 7th International Symposium on Electrical and Electronics Engineering
  8. Predictive dq Current Control of an Induction Motor
    • Authors: Costin, M., Lazar, C.
    • Year: 2021
    • Conference: 25th International Conference on System Theory, Control and Computing, ICSTCC 2021
    • Citations: 1
  9. Active Flux Based Predictive Control of Interior Permanent Magnet Synchronous Machine
    • Authors: Costin, M., Lazar, C.
    • Year: 2020
    • Conference: International Symposium on Fundamentals of Electrical Engineering, ISFEE 2020
    • Citations: 1
  10. Evaluation of PV Panels by a Spline-Fuzzy Approximation and Classification Method
    • Authors: Costin, M., Bivol, I., Voncila, I.
    • Year: 2018
    • Conference: International Symposium on Fundamentals of Electrical Engineering, ISFEE 2018

 

Young Il Kim | Energy | Best Researcher Award

Prof. Young Il Kim | Energy | Best Researcher Award

Professor of School of Architecture at Professor of School of Architecture, China.

Professor Young Il Kim is a distinguished academic and researcher in the fields of mechanical engineering and architecture, currently serving as a Professor at the School of Architecture, Seoul National University of Science and Technology. With a career spanning over three decades, he has made significant contributions to HVAC systems, indoor air quality, and building energy simulation. Known for his expertise in sustainable and smart building systems, Professor Kim holds numerous leadership positions in professional societies dedicated to air-conditioning, energy, and smart building innovations. His research has helped advance eco-friendly and energy-efficient technologies in building design. He is currently the Dean of the Graduate School of Housing and Urban Studies, where he is pioneering research on smart urban living. His technical skills and commitment to the integration of environmental considerations into urban design make him a leading figure in sustainable building technologies in Korea and beyond.

Professional Profile

Education

Professor Kim holds a robust academic background in mechanical engineering, with both B.S. and M.S. degrees from Seoul National University, completed in 1984 and 1986, respectively. He further pursued his studies abroad, obtaining a Ph.D. from the University of Michigan in 1993. This blend of education from top institutions in South Korea and the United States provided him with a broad, international perspective and a rigorous foundation in engineering principles, particularly in thermal systems and environmental control. His academic background underpins his research into complex energy systems and building sustainability. The education he received at these esteemed institutions has been instrumental in shaping his approach to urban sustainability and innovative building systems, and continues to support his contributions to academic and professional communities in Korea and internationally.

Professional Experience

Professor Kim has an extensive career that blends academic research with practical applications in building systems and mechanical engineering. Beginning as a researcher at the Korea Advanced Institute of Science and Technology, he further honed his expertise as a student researcher at Ford Motor Company and a post-doctoral fellow at the University of Michigan. His career progressed with his role as Center Head at the Korea Institute of Science and Technology, where he was involved in leading critical projects in environmental and building systems research. Since 2005, he has been a Professor at Seoul National University of Science and Technology, actively contributing to both research and education in sustainable architecture. Currently, he serves as Dean of the Graduate School of Housing and Urban Studies, a role in which he oversees research into eco-friendly and smart housing solutions, further cementing his leadership in the academic field.

Research Interests

Professor Kim’s research interests lie primarily in thermal and environmental control within building systems, focusing on innovations in HVAC systems, indoor air quality management, and energy-efficient building design. He is particularly interested in the development of sustainable technologies that reduce energy consumption and improve air quality in buildings. In recent years, his research has expanded to include the “smartification” of urban spaces, exploring how advanced technologies can create more eco-friendly and resilient cities. He is dedicated to addressing the environmental challenges posed by urban growth through smart building systems that prioritize resource efficiency and sustainable design. His research aligns with the global movement toward greener architecture and reflects his commitment to creating healthy, energy-efficient indoor environments.

Research Skills

Professor Kim is skilled in various research techniques integral to sustainable building and HVAC systems. He has expertise in building energy simulation, allowing him to model and analyze energy flows within buildings to optimize their efficiency. His technical skills extend to indoor air quality assessments, a crucial factor in developing healthier indoor environments. He is also proficient in managing complex research projects, having led teams in various national and international collaborative studies. Furthermore, his role as a professional engineer in air-conditioning and building mechanical systems enables him to apply his research findings to practical implementations. Professor Kim’s combination of simulation, analytical, and project management skills makes him a highly capable researcher in the fields of smart building and sustainable urban design.

Awards and Honors

Throughout his career, Professor Kim has been recognized for his contributions to engineering and sustainable building practices. He has held prestigious roles such as President of the South Korea Chapter of ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) and the Korean Society for Geothermal and Hydrothermal Energy. Additionally, he served as President of the Korea Intelligent Smart Building Association, a position that highlights his influence on the development of smart and energy-efficient building technologies in Korea. These leadership positions, along with various professional recognitions, underscore his commitment to advancing engineering practices in air-conditioning and building energy efficiency. Professor Kim’s accolades reflect his dedication to fostering eco-friendly practices in urban development and his influence as a respected leader in the field of sustainable architecture.

Conclusion

Professor Young Il Kim is a highly accomplished researcher whose work in thermal and environmental control, building energy simulation, and sustainable urban planning is well-aligned with the aims of the Best Researcher Award. His leadership in professional organizations, technical expertise, and dedication to eco-friendly solutions make him a strong candidate for this award. Enhancing his application with more evidence of mentorship, recent research publications, and global collaboration would provide additional support to his already impressive profile. Overall, he is a commendable candidate for the Best Researcher Award.

Publication Top  Notes

  1. “Analysis of in situ performance of rooftop PV system in Seoul, South Korea”
    Authors: Singh, R., Nam, A.Y., Park, J.J., Kim, Y.I.
    Year: 2023
    Journal: International Journal of Air-Conditioning and Refrigeration, 31(1), 10
    Citations: 3
  2. “Model Selection and Verification Approach for Green Remodeling of Non-residential Buildings Using Building Management Information and Energy Simulation”
    Authors: Ji, M.-H., Kim, Y.I.
    Year: 2023
    Journal: Journal of the Architectural Institute of Korea, 39(11), pp. 169–178
    Citations: 0
  3. “Economic Evaluation of Small Public Office Buildings with Class 1 of Zero Energy Building (ZEB) in Korea by Reflecting Life Cycle Assessment (LCA)”
    Authors: Lee, D., Kim, J., Kim, Y.I.
    Year: 2023
    Journal: Buildings, 13(7), 1693
    Citations: 0
  4. “A Proposal for Improvement of Zero Energy Building Certification System through Energy, Environmental and Economic Evaluation of Small-Sized Public Office”
    Authors: Lee, D.H., Kim, Y.I., Kim, J.M.
    Year: 2023
    Journal: Journal of the Architectural Institute of Korea, 39(3), pp. 201–212
    Citations: 1
  5. “Review of Machine Learning for Building Energy Prediction”
    Authors: Kwon, O.I., Kim, Y.I.
    Year: 2023
    Journal: Journal of the Architectural Institute of Korea, 39(5), pp. 133–140
    Citations: 1
  6. “Indoor Air Quality Diagnosis Program for School Multi-Purpose Activity and Office Spaces”
    Authors: Lee, Y.-K., Kim, Y.I., Kim, G.-H.
    Year: 2022
    Journal: Energies, 15(21), 8134
    Citations: 1
  7. “Selection of Energy Improvement Factors and Economic Analysis of Standard MDU Complexes in Korean Metropolitan Regions”
    Authors: Lee, K.-W., Kim, Y.I.
    Year: 2022
    Journal: Energies, 15(11), 4042
    Citations: 1
  8. “Cooling Performance Enhancement of a 20 RT (70 kW) Two-Evaporator Heat Pump with a Vapor–Liquid Separator”
    Authors: Yang, W.-S., Kim, Y.I.
    Year: 2022
    Journal: Energies, 15(11), 3849
    Citations: 0
  9. “Development of CO2 Concentration Prediction Tool for Improving Office Indoor Air Quality Considering Economic Cost”
    Authors: Lee, Y.-K., Kim, Y.I., Lee, W.-S.
    Year: 2022
    Journal: Energies, 15(9), 3232
    Citations: 5
  10. “Analysis of indoor air pollutants and guidelines for space and physical activities in multi‐purpose activity space of elementary schools”
    Authors: Lee, Y.-K., Kim, Y.I.
    Year: 2022
    Journal: Energies, 15(1), 220
    Citations: 15

Dr. Ridha Boudhiaf | Energy | Best Scholar Award

Dr. Ridha Boudhiaf | Energy | Best Scholar Award

Assistant Professor at Higher Institute of Biotechnology of Sfax, Tunisia

Dr. Ridha Boudhiaf is an Assistant Professor of Chemical Engineering at the Higher Institute of Biotechnology of Sfax, Tunisia. He holds a Ph.D. in Chemical Engineering from the National Engineering School of Gabès, specializing in solar energy conversion, storage, and solar pond systems. His research focuses on numerical modeling of thermal, hydrodynamic, and mass transfer phenomena, particularly in solar energy applications such as solar stills and salt-gradient solar ponds. Dr. Boudhiaf has published extensively in reputable scientific journals, including Energy Conversion and Management and Energies, and has presented his work at international conferences. His expertise includes numerical simulation tools like Ansys Fluent and programming languages such as Matlab and Fortran. With a strong academic background, Dr. Boudhiaf has contributed significantly to advancing renewable energy technologies and thermal energy storage systems through both his research and teaching. He is actively involved in mentoring students and collaborating on various research projects.

Profile:

Education

Dr. Ridha Boudhiaf has a strong academic background in Chemical Engineering with a focus on processes and renewable energy. He earned his Doctorate in Chemical Engineering-Processes from the National Engineering School of Gabès, University of Gabès, Tunisia, in November 2013, graduating with high honors and the jury’s commendation. Prior to this, he obtained a Master’s degree in Chemical Engineering-Processes from the same institution in November 2006, where he also achieved a distinction of “Very Good.” His academic journey began with a Bachelor’s degree in Chemical Engineering-Processes in July 1996, following his completion of specialized studies in the field in 2002. Throughout his education, Dr. Boudhiaf demonstrated a consistent focus on energy conversion, thermal processes, and the application of chemical engineering to energy storage systems, specifically in the context of solar energy. His rigorous education laid the foundation for his subsequent research and professional contributions in renewable energy systems.

Professional Experiences 

Dr. Ridha Boudhiaf is a highly experienced academic with a robust background in Chemical Engineering and Process Systems. Currently serving as a Maître-Assistant at the Higher Institute of Biotechnology of Sfax (ISBS) since January 2015, he has held several notable positions throughout his career. He worked as a Maître-Technologue at the Higher Institute of Technological Studies of Sfax in 2014 and as a Technologue at the Higher Institute of Technological Studies of Gafsa from 2003 to 2013. Prior to that, Dr. Boudhiaf served as an Assistant Technologist at the Higher Institute of Technological Studies of Zaghouan in 2002-2003. His industrial experience includes a role as a production engineer at the Tuniso-Algerian White Cement Company (SOTACIB) in Fériana from 1999 to 2000. With a strong focus on solar energy research, Dr. Boudhiaf’s expertise encompasses numerical modeling, thermal performance studies, and energy conversion systems.

Research Interests

Dr. Ridha Boudhiaf’s research interests are primarily centered around the field of solar energy conversion, storage, and its applications in thermal systems. His work focuses on the thermal and hydrodynamic performance of solar thermal collectors and solar distillers with various geometries. Dr. Boudhiaf also explores the use of numerical modeling, particularly employing Navier-Stokes equations for Newtonian and incompressible fluids, to simulate the behavior of solar ponds. His expertise extends to the study of salt-gradient solar ponds, investigating the intricate heat and mass transfer mechanisms, with an emphasis on optimizing solar energy storage. Furthermore, his research delves into the influence of buoyancy and Rayleigh numbers on fluid flow stability within solar ponds. Dr. Boudhiaf also contributes to understanding entropy production in thermosolutal convection systems with Dufour effects, aiming to enhance the efficiency of solar energy systems through improved design and optimization techniques.

Research Skills

Dr. Ridha Boudhiaf possesses extensive research skills in the field of chemical engineering, particularly in solar energy conversion, storage, and thermal system optimization. His expertise includes the numerical modeling of thermal, hydrodynamic, and mass transfer phenomena, with a focus on solar ponds and energy storage systems. Dr. Boudhiaf is skilled in the simulation of complex fluid behavior using software tools like Ansys Fluent, Matlab, and Fortran, enabling him to develop precise models for studying convection and thermal diffusion. His research extends to investigating the thermosolutal convection with the Dufour effect, contributing valuable insights into entropy production in thermal systems. Dr. Boudhiaf has a strong foundation in both experimental and theoretical approaches, having published several peer-reviewed articles on fluid mechanics, heat transfer, and renewable energy systems. His ability to integrate numerical analysis with practical applications makes him a proficient researcher in sustainable energy technologies.

Award And Recognition 

Dr. Ridha Boudhiaf is an accomplished researcher and academic, recognized for his significant contributions to the field of Chemical Engineering and Solar Energy Systems. His work on hydrodynamic, heat, and mass transfer in solar ponds has garnered international attention, leading to several publications in esteemed scientific journals, including Energy Conversion and Management and Energies. Dr. Boudhiaf’s innovative research on the optimization of energy storage systems and the numerical modeling of solar ponds has earned him invitations to present at numerous international conferences. His contributions to the scientific community extend beyond research, as he has actively mentored students and collaborated on projects with leading institutions. His dedication to advancing the understanding of solar energy technologies has positioned him as a respected figure in his field, with accolades reflecting his commitment to both academic excellence and practical applications of renewable energy systems.

Conclusion

Dr. Ridha Boudhiaf demonstrates a high level of scholarly achievement, particularly in the fields of chemical engineering and renewable energy. His focus on solar energy systems is timely and important in the context of global energy challenges. To further strengthen his candidacy for the Research for Best Scholar Award, he could explore interdisciplinary research and expand his collaboration efforts. Nonetheless, his contributions to solar energy research are significant, making him a suitable candidate for the award.

Publication Top Notes
  1. Numerical Study of the Air Outlet Effect Inside a Living Room Connected to an Aerovoltaic Solar Air Heater
    Authors: Driss, S., Boudhiaf, R., Hmid, A., Kammoun, I.K., Abid, M.S.
    Year: 2024
  2. Experimental analysis of triangular solar distiller with a new form of absorber
    Authors: Boudhiaf, R., Kessentini, S., Driss, Z., Abid, M.S., Aissa, A.
    Year: 2024
  3. Illizi city sand impact on the output of a conventional solar still
    Authors: Khamaia, D., Boudhiaf, R., Khechekhouche, A., Driss, Z.
    Year: 2022
  4. Transient hydrodynamic, heat and mass transfer in a salinity gradient solar pond: A numerical study
    Authors: Boudhiaf, R., Baccar, M.
    Year: 2014
  5. A two-dimensional numerical study of hydrodynamic, heat and mass transfer and stability in a salt gradient solar pond
    Authors: Boudhiaf, R., Moussa, A.B., Baccar, M.
    Year: 2012

 

 

Pooja Sharma | Energy Transition | Best Researcher Award

Assoc Prof Dr. Pooja Sharma | Energy Transition | Best Researcher Award

Associate Professor at Daulat Ram College, University of Delhi, India

Dr. Pooja Sharma, an Associate Professor in the Department of Economics at Daulat Ram College, University of Delhi, specializes in Environmental Economics, Renewable Energy, and Energy Policy. Her research focuses on critical issues such as energy transition, energy security, and sustainability. Dr. Sharma’s notable projects include studying the role of renewables in energy transition, valuing Green GDP, and developing e-content for economics courses. Her interdisciplinary approach is evident in projects like Clean Energy from Waste with Microbial Fuel Cells. With over fourteen years of teaching experience, she has significantly contributed to economics education. Her work with institutions such as the Institute of Economic Growth and the University of Delhi underscores her impactful research and dedication to advancing knowledge in her field. While she has a strong research foundation, increasing her publication record and expanding international collaborations could further enhance her academic influence.

Profile

Education

Dr. Pooja Sharma’s educational background is distinguished by her focus on economics and energy studies. She completed her Bachelor’s degree in Economics (B.A. Hons) from Miranda House, University of Delhi in 1997, followed by a Master’s degree in Economics from the Delhi School of Economics in 1999. Her academic journey continued with an MPhil in Economics from Jawaharlal Nehru University (JNU) in 2007, where her research focused on “Rural Electrification and Poverty.” Dr. Sharma further advanced her expertise with a Ph.D. from the Energy Studies Program at JNU, where she conducted a comparative study of renewables in energy transition between India and Norway. Her academic pursuits also included a research fellowship at the University of Agder, Norway, and various specialized trainings, such as the ASEAN Investment Law Specialization and workshops on GIS, reflecting her commitment to interdisciplinary learning and research.

Professional Experience

Dr. Pooja Sharma is an Associate Professor in the Department of Economics at Daulat Ram College, University of Delhi. With over fourteen years of teaching experience, she has delivered courses in Environmental Economics, Econometrics, and Public Economics. Dr. Sharma has led several significant research projects, including studies on the role of renewables in energy transition and the valuation of Green GDP. Her work extends to interdisciplinary projects such as Clean Energy from Waste with Microbial Fuel Cells and contributions to e-content development for various educational institutions. She has also engaged in research as a PhD Research Fellow at the University of Agder, Norway, focusing on energy policy and sustainability. Dr. Sharma’s academic and research endeavors reflect her commitment to advancing knowledge in environmental economics and energy policy, making her a prominent figure in her field.

Research Interest

Dr. Pooja Sharma’s research interests are centered around Environmental Economics, Energy Policy, and Renewable Energy. She focuses on the role of renewable energy in energy transition, emphasizing comparative studies between countries like India and Norway. Her work delves into the intersection of energy security and sustainability, exploring how renewable resources can address global energy challenges. Dr. Sharma’s research also encompasses the valuation of Green GDP and the economic impacts of environmental policies, such as reducing air pollution. Additionally, she has investigated innovative approaches to clean energy, including the use of microbial fuel cells. Her interdisciplinary approach, integrating economics with environmental science, reflects her commitment to advancing sustainable development and addressing critical issues in energy and environmental economics. Through her projects and academic contributions, Dr. Sharma aims to contribute to effective energy policies and sustainable economic practices.

Research Skills

Dr. Pooja Sharma’s research skills are distinguished by her profound expertise in environmental economics, energy policy, and econometrics. Her ability to analyze complex data sets, such as those related to energy transition and renewable energy, is demonstrated through her projects on Green GDP valuation and air pollution reduction. Dr. Sharma excels in applying advanced econometric techniques to assess the impacts of environmental policies and energy security. Her interdisciplinary approach is evident in her involvement with projects like Clean Energy from Waste using microbial fuel cells, showcasing her capacity to integrate insights from various fields. Additionally, her experience in e-content development for economics courses highlights her skill in translating complex concepts into accessible educational material. Her proficiency in using statistical tools and software, combined with her practical research experience, positions her as a highly capable and innovative researcher in her domain.

Award and Recognition

Dr. Pooja Sharma has garnered recognition for her impactful contributions to the field of environmental economics and energy policy. Her research, notably on the role of renewables in energy transition and valuation of Green GDP, has been instrumental in advancing understanding in these critical areas. Dr. Sharma’s dedication is also evident in her interdisciplinary projects, such as the Clean Energy from Waste initiative and her extensive work on e-content development for educational institutions. Her efforts in these diverse domains underscore her commitment to sustainability and education. Despite her commendable achievements, further recognition could be bolstered by increasing her publication output in high-impact journals and expanding her international collaborations. Overall, Dr. Sharma’s contributions reflect her exceptional expertise and significant potential for continued influence in her field.

Conclusion

Dr. Pooja Sharma is a strong candidate for the Best Researcher Award due to her substantial contributions to environmental economics and energy policy. Her extensive research experience and interdisciplinary approach are notable strengths. By focusing on increasing her publication record and expanding her collaborative network, she can further enhance her influence and recognition in the field.

Publication Top Notes

  1. Economic performance assessment of building integrated photovoltaic system with battery energy storage under grid constraints
    • Authors: P. Sharma, M. Kolhe, A. Sharma
    • Published in: Renewable Energy
    • Volume: 145, Pages: 1901-1909
    • Year: 2020
    • Citations: 69
  2. Inflation rate and Poverty: Does poor become poorer with inflation?
    • Authors: M. Paul, P. Sharma
    • Available at: SSRN
    • Year: 2019
    • Citations: 15
  3. Role of human capital in economic growth: a comparative study of India and China
    • Author: P. Sharma
    • Available at: SSRN
    • Year: 2019
    • Citations: 12
  4. Economic analysis of a building integrated photovoltaic system without and with energy storage
    • Authors: P. Sharma, M. Kolhe, A. Sharma
    • Published in: IOP Conference Series: Materials Science and Engineering
    • Volume: 605, Issue: 1, Article number: 012013
    • Year: 2019
    • Citations: 8
  5. The impact of oil prices on stock prices and other macroeconomic variables in India: pre‐and post‐2008 crises
    • Authors: V. Gupta, P. Sharma
    • Published in: OPEC Energy Review
    • Volume: 42, Issue: 3, Pages: 212-223
    • Year: 2018
    • Citations: 7
  6. Analyzing the Role of Renewables in Energy Security by Deploying Renewable Energy Security Index
    • Author: P. Sharma
    • Published in: Journal of Sustainable Development of Energy, Water and Environment Systems
    • Year: 2023
    • Citations: 5
  7. A Decentralized Pathway for Energy Security and Energy Transition in Asia and the Pacific Region
    • Author: P. Sharma
    • Available at: SSRN
    • Year: 2018
    • Citations: 5
  8. Evaluating Health Impact of Air Pollution
    • Authors: P. Sharma, P. Jain, D. Pragati, S. Kumar
    • Published in: Environment and Ecology Research
    • Volume: 7, Issue: 1, Pages: 59-72
    • Year: 2019
    • Citations: 4
  9. Health benefits derived by reducing air pollution: An East Delhi analysis
    • Authors: P. Sharma, R. Galhotra, P. Jain, P. A. Goel, B. Aggarwal, D. Narula, C. Singh, …
    • Published in: Journal of Advances in Humanities and Social Sciences
    • Volume: 3, Issue: 3, Pages: 164-181
    • Year: 2017
    • Citations: 4

 

 

Shunchun Yao | Energy | Best Researcher Award

Prof. Shunchun Yao | Energy | Best Researcher Award

Prof . Shunchun Yao, South China University of Technology, China

Prof. Shunchun Yao is a distinguished professor at South China University of Technology in China. He is renowned for his contributions to his field and is an integral part of the university’s academic and research community. His expertise and leadership have significantly advanced the institution’s research capabilities and educational programs.

Profile

Education

Prof. Shunchun Yao holds a Ph.D. in Power Plant System & Control, which he obtained in June 2011 from the School of Electric Power at South China University of Technology. His doctoral research focused on advanced control systems and optimization techniques for power plants, contributing significantly to the field of electric power engineering. Prior to this, Prof. Yao earned his Bachelor’s degree in Thermal and Dynamic Engineering from the School of Physics at Soochow University in June 2006. His undergraduate studies provided a solid foundation in the principles of thermodynamics and fluid mechanics, essential for understanding and improving thermal systems. Throughout his academic journey, Prof. Yao has demonstrated a strong commitment to advancing knowledge in power systems and control engineering, laying the groundwork for his successful career in academia and research. His educational background reflects a blend of theoretical expertise and practical skills, making him a distinguished figure in his field.

Professional Experience

Prof. Shunchun Yao is a distinguished professor at South China University of Technology, China. He earned his Ph.D. in Power Plant System & Control in June 2011 from the School of Electric Power at South China University of Technology and holds a B.D. in Thermal and Dynamic Engineering from the School of Physics at Soochow University, obtained in June 2006. Prof. Yao has made significant contributions to the scientific community, supported by prestigious talent programs such as the Talent Program for Young Scientists of LIBS (2017), Guangdong province’s high-level personnel special support program (2015), the Pearl River S&T Nova Program of Guangzhou (2014), and the Outstanding Youth Innovative Talents of Higher Learning Institutions of Guangdong (2012). He actively serves as a member of the LIBS committee of the Chinese Society for Optical Engineering and the Tanpuhui expert committee in Guangdong, showcasing his dedication to advancing scientific research and innovation.

Project Management (as Project Manager)

Prof. Shunchun Yao has led numerous significant projects, showcasing his expertise in power plant systems, control, and environmental measurement technologies. His notable projects include the National Natural Science Foundation of China-funded studies on spark-induced plasma spectroscopy of particle flow and unburned carbon in fly ash (2017-2020) and laser plasma characteristics for coal particle flow measurement (2013-2015). Additionally, he contributed to the Guangdong province train high-level personnel special support program (2015-2018) and the Science and Technology Project of Guangdong Province, focusing on online measurement technology for PM2.5 and heavy element emissions from stationary sources (2016-2018). His work in the Pearl River S&T Nova Program of Guangzhou (2014-2017) and collaborations with Shunde Inspection Institute (2016-2019) and Zhuhai coal-fired power plant (2017-2019) further emphasize his contributions. Prof. Yao also secured funding from the Guangdong Natural Science Foundation (2012-2014) and the Fundamental Research Funds for the Central Universities for studies on plasma characteristics of coal and NOx distribution optical sensors (2014-2015, 2018-2020). His leadership and dedication have significantly impacted environmental measurement technologies.

Research Focus

Professor Shunchun Yao is a leading expert in the field of clean energy utilization and thermal systems optimization. His work focuses on developing innovative solutions to improve energy efficiency and reduce emissions in various thermal systems. By leveraging advanced combustion diagnosis techniques, Professor Yao is able to identify and address inefficiencies in combustion processes, leading to more sustainable and environmentally friendly energy use. His research also includes emission monitoring, where he develops and implements cutting-edge technologies to accurately measure and control pollutants released from combustion systems. Through his comprehensive approach, Professor Yao contributes significantly to the advancement of clean energy technologies, ensuring that thermal systems operate at optimal performance while minimizing their environmental impact. His work is instrumental in the global effort to transition towards sustainable energy solutions, making him a prominent figure in the field of energy research and environmental protection.

Award

Prof. Shunchun Yao has garnered numerous accolades for his exceptional contributions to science and technology. In 2017, he was honored with the Young Scientist of LIBS award under the Talent Program for Young Scientists, recognizing his groundbreaking work in the field. His remarkable contributions to high-level personnel training earned him a spot in the Guangdong Province High-Level Personnel Special Support Program in 2015. Further cementing his status as a leading scientist, Prof. Yao was awarded the Pearl River S&T Nova Program of Guangzhou in 2014, acknowledging his significant scientific and technological achievements. His commitment to innovation and higher education was recognized early on when he was named one of the Outstanding Youth Innovative Talents of Higher Learning Institutions of Guangdong in 2012. These prestigious awards reflect Prof. Yao’s sustained dedication to advancing scientific research and fostering innovation, underscoring his influential role in the academic and scientific communities.

Publication Top Notes

  1. “Multi-parameter co-optimization for NOx emissions control from waste incinerators based on data-driven model and improved particle swarm optimization”
    • Authors: Li, Z., Yao, S., Chen, D., Liu, W., Yu, Z.
    • Year: 2024
    • Citations: 0
  2. “Development of laser-induced breakdown spectroscopy based spectral tandem technology: A topical review”
    • Authors: Yao, S., Yu, Z., Hou, Z., Wang, Q., Wang, Z.
    • Year: 2024
    • Citations: 0
  3. “Simultaneous measurement of NH3 and NO by mid-infrared tunable diode laser absorption spectroscopy based on machine-learning algorithms”
    • Authors: Guo, S., Li, Z., Liu, Z., Ren, W., Yao, S.
    • Year: 2024
    • Citations: 0
  4. “Research of Plasma Spectrum Diagnosis and Quantitative Analysis for Coal Powder Flow”
    • Authors: Qin, H., Yao, S., Yu, Z., Dong, M., Lu, J.
    • Year: 2024
    • Citations: 0
  5. “Defect Engineering of Nanocrystal-In-Glass Composites for Ultrashort Optical Pulse Monitoring”
    • Authors: Lin, Q., Lin, X., Feng, X., Qiu, J., Zhou, S.
    • Year: 2024
    • Citations: 0
  6. “Research on etalon-free CO2 measurement based on direct absorption signal fitting”
    • Authors: Yang, Y., Guo, S., Li, J., Zhang, X., Yao, S.
    • Year: 2024
    • Citations: 0
  7. “Quantum cascade laser absorption sensor for in-situ, real-time and sensitive measurement of high-temperature SO2 and SO3”
    • Authors: Duan, K., Wen, D., Ji, Y., Yao, S., Ren, W.
    • Year: 2024
    • Citations: 1
  8. “Application and Analysis of Multi-Component Simultaneous Measurement of Forest Combustibles Pyrolysis Gas Based on TDLAS”
    • Authors: Guo, S.-J., Wang, L.-P., Chen, J.-Z., Lu, Z.-M., Yao, S.-C.
    • Year: 2024
    • Citations: 0
  9. “Modelling nitrogen oxide emission trends from the municipal solid waste incineration process using an adaptive bi-directional long and short-term memory network”
    • Authors: Li, Z., Yao, S., Chen, D., Lu, Z., Yu, Z.
    • Year: 2024
    • Citations: 1
  10. “Current situation and prospect of machine learning-driven boiler combustion optimization technology”
    • Authors: Yao, S., Li, L., Lu, Z., Li, Z.
    • Year: 2024
    • Citations: 0