Jayashree Swaminathan | Green Hydrogen | Women Researcher Award

Dr. Jayashree Swaminathan | Green Hydrogen | Women Researcher Award

Scientist from CSIR- National Chemical Laboratory, India

Dr. Jayashree Swaminathan is a highly accomplished scientist specializing in electrochemistry and catalysis, with a strong research focus on green hydrogen generation technologies. Currently serving as a Scientist at the Catalysis Division of the National Chemical Laboratory (NCL), Pune, she has held impactful roles in both academia and industry, including Senior Scientist at Ohmium India Pvt. Ltd. and General Manager at H2e Power Systems Pvt. Ltd. Her work has consistently bridged the gap between fundamental research and industrial application, particularly in areas such as MEA fabrication, water electrolysis, hydrogen fuel generation, and nanomaterial synthesis. With over 200 citations, an h-index of 6, and several high-impact publications, her scientific contributions are significant and growing. She has co-authored a U.S. patent on anion exchange membranes and has been recognized nationally and internationally through fellowships, awards, and internships. Her collaborations include work with eminent scientists like Dr. Pulickel Ajayan and Dr. Sampath. In addition to research, Dr. Swaminathan is actively involved in peer reviewing for high-impact journals. Her expertise spans catalysis, defect engineering, spectroscopy, and nanomaterials, making her a valuable contributor to the future of sustainable energy technologies.

Professional Profile

Education

Dr. Jayashree Swaminathan holds a Ph.D. in Physical Sciences, specializing in Electro-inorganic Chemicals from the CSIR-Central Electrochemical Research Institute (CECRI), completed between 2013 and 2019. Her doctoral research focused on defect-driven electrochemical and photo-electrochemical water splitting using nanocrystalline titanium dioxide, under the mentorship of Dr. S. Ravichandran. Her thesis emphasized hydrogen fuel applications, contributing a key demonstration of a hydrogen-fueled stove. Prior to her Ph.D., she earned an M.Sc. in Nanoscience from the University of Madras, where she excelled academically with a score of 84% and was honored as a gold medalist for her outstanding performance. Her undergraduate education in Physics, also at the University of Madras, culminated in an impressive 86% score, reflecting her strong foundational knowledge in the physical sciences. Throughout her academic career, Dr. Swaminathan has been the recipient of several prestigious scholarships and fellowships, including the DST-INSPIRE Fellowship and the Madras University Merit Fellowship. Her educational background combines theoretical rigor with hands-on research in electrochemistry, catalysis, and materials science, providing a solid platform for her diverse and impactful scientific career.

Professional Experience

Dr. Swaminathan’s professional trajectory showcases a dynamic blend of academic research and industrial application. Since December 2023, she has served as a Scientist at the Catalysis Division of the National Chemical Laboratory (NCL), Pune, where she focuses on catalyst development and water electrolysis systems for green hydrogen production. Prior to NCL, she held the role of Senior Scientist at Ohmium India Pvt. Ltd., Bangalore, where she led initiatives in MEA fabrication and stack assembly for hydrogen technologies. From July 2022 to March 2023, she was General Manager at H2e Power Systems Pvt. Ltd., where she oversaw the stack manufacturing process and safety systems related to hydrogen fuel. Her research experience includes a Research Associate position at Hindustan Petroleum Corporation Limited (2020–2022), where she contributed to green hydrogen projects, and earlier work at the Indian Institute of Science (IISc), focusing on Langmuir-Blodgett thin film techniques. Her career began with a Project Fellowship at Madras University, followed by a Project Assistant role at CSIR-CECRI, where she contributed to patented research on anion exchange membranes. Her multifaceted experience bridges theoretical insights and real-world innovation in sustainable energy systems.

Research Interests

Dr. Jayashree Swaminathan’s research interests lie at the intersection of catalysis, electrochemistry, and green energy technologies. She has specialized in the design and development of heterogeneous catalysts for electrochemical and photo-electrochemical water splitting aimed at sustainable hydrogen fuel production. Her core focus includes defect engineering in nanomaterials—particularly metal oxides like TiO₂ and Co₃O₄—to enhance their catalytic activity and efficiency. She is also deeply engaged in water electrolyzer technology, including MEA and stack fabrication, in-situ spectroscopy, and hydro-cracking processes. Beyond catalyst synthesis, she is interested in the development of zeolites, defect-rich nanostructures, and substitutional doping to manipulate electronic and structural properties for improved performance. Her interdisciplinary approach incorporates advanced material characterization techniques and real-time electrochemical analysis. Collaborating with leading researchers and institutions such as Rice University and IISc Bangalore, her work contributes to both theoretical understanding and scalable applications in renewable energy. This diverse research portfolio not only addresses global energy challenges but also aligns with India’s national mission for green hydrogen technologies.

Research Skills

Dr. Swaminathan possesses an extensive skill set that encompasses a broad spectrum of electrochemical and materials science techniques. She is adept in synthesizing and characterizing heterogeneous catalysts and nanomaterials, with a focus on defect-rich systems to improve electrocatalytic efficiency. Her technical expertise includes electrochemical characterization methods such as cyclic voltammetry, chronoamperometry, and impedance spectroscopy. She is highly skilled in MEA fabrication and stack assembly for electrolyzer systems, with hands-on experience in the complete water-splitting setup. Dr. Swaminathan also brings deep knowledge in thin film deposition techniques, particularly Langmuir-Blodgett films, and she has applied in-situ spectroscopy methods for real-time catalytic studies. Her strong foundation in physical and analytical chemistry allows her to integrate spectroscopic and microscopic tools—like SEM, XRD, and UV-Vis spectroscopy—for detailed material analysis. She has co-developed a patented anion exchange membrane for electrochemical applications, underscoring her innovation in applied research. In addition, she is a skilled scientific communicator, with multiple high-impact publications and experience in reviewing for top-tier journals. Her ability to work across both laboratory-scale investigations and industrial-scale processes makes her a valuable asset in advancing clean energy technologies.

Awards and Honors

Dr. Jayashree Swaminathan has been recognized with numerous prestigious awards and honors throughout her academic and professional journey. Most recently, she received the ANRF Fellowship (2025), awarded by the Prime Minister’s Early Career Research Grant to support her research initiation at NCL. She was selected as a BASE Intern in 2018, receiving $7,500 from DST & IUSSTF for her top-ranked research proposal and completing an internship at Rice University under Dr. Pulickel Ajayan. During her Ph.D., she held the highly competitive DST-INSPIRE Fellowship from 2013 to 2018 and was also named a HEAM Scholar in 2013 for her innovative hydrogen energy project. She has earned multiple academic distinctions including the Madras University Merit Fellowship and a gold medal in M.Sc. Nanoscience. Additional accolades include awards for oral and poster presentations in national science events and competitions, highlighting her strength in research communication. She has contributed to a U.S. and an Indian patent, demonstrating the practical impact of her work. Furthermore, she serves as a peer reviewer for prestigious journals such as Journal of Materials Chemistry A and PCCP, further validating her authority in the field.

Conclusion

Dr. Jayashree Swaminathan exemplifies the qualities deserving of a Research Excellence Award through her consistent and impactful contributions to green hydrogen technologies and electrochemical catalysis. Her research spans academic excellence, industrial application, and international collaboration, reflecting a deep commitment to scientific innovation and sustainability. With a portfolio that includes a U.S. patent, over 200 citations, and high-impact publications, her work is both novel and practical. Her expertise in MEA fabrication, water electrolyzer development, and defect engineering has real-world relevance, addressing urgent energy challenges. Despite her accomplishments, continued focus on increasing international visibility and expanding collaborative networks could further elevate her profile. Overall, Dr. Swaminathan’s credentials, dedication, and scientific output position her as an outstanding candidate for the Excellence in Research Award, with strong potential to influence future developments in clean energy solutions.

Publications Top Notes

  • Title: Defect-Rich Metallic Titania (TiO₁.₂₃) — An Efficient Hydrogen Evolution Catalyst for Electrochemical Water Splitting
    Authors: J. Swaminathan, R. Subbiah, V. Singaram
    Journal: ACS Catalysis, 6 (4), 2222–2229
    Year: 2016
    Citations: 108

  • Title: Switchable intrinsic defect chemistry of titania for catalytic applications
    Authors: S. Jayashree, M. Ashokkumar
    Journal: Catalysts, 8 (12), 601
    Year: 2018
    Citations: 71

  • Title: Tuning the Electrocatalytic Activity of Co₃O₄ through Discrete Elemental Doping
    Authors: J. Swaminathan, A. B. Puthirath, M. R. Sahoo, S. K. Nayak, G. Costin, R. Vajtai, …
    Journal: ACS Applied Materials & Interfaces, 11 (43), 39706–39714
    Year: 2019
    Citations: 25

  • Title: Insights into the Electrocatalytic Behavior of Defect-Centered Reduced Titania (TiO₁.₂₃)
    Authors: J. Swaminathan, S. Ravichandran
    Journal: The Journal of Physical Chemistry C, 122 (3), 1670–1680
    Year: 2018
    Citations: 18

  • Title: Pseudobrookite based heterostructures for efficient electrocatalytic hydrogen evolution
    Authors: N. Fernando, J. Swaminathan, F. C. R. Hernandez, G. Priyadarshana, …
    Journal: Materials Reports: Energy, 1 (2), 100020
    Year: 2021
    Citations: 11

  • Title: Asphaltene-derived metal-free carbons for electrocatalytic hydrogen evolution
    Authors: J. Swaminathan, S. Enayat, A. Meiyazhagan, F. C. Robles Hernandez, …
    Journal: ACS Applied Materials & Interfaces, 11 (31), 27697–27705
    Year: 2019
    Citations: 11

  • Title: Substitution of copper atoms into defect-rich molybdenum sulfides and their electrocatalytic activity
    Authors: Z. Wang, H. Kannan, T. Su, J. Swaminathan, S. N. Shirodkar, F. C. R. Hernandez, …
    Journal: Nanoscale Advances, 3 (6), 1747–1757
    Year: 2021
    Citations: 10

  • Title: Probing the defect-driven tunable photo(electro)catalytic water-splitting behavior of pulsed-laser-deposited titania
    Authors: J. Swaminathan, S. Ravichandran, P. Palani, M. Mathankumar, …
    Journal: Energy & Fuels, 35 (5), 4512–4523
    Year: 2021
    Citations: 3

  • Title: Calcium silicate hydrate anion exchange membrane useful for water electrolysis and fuel cells and a process for the preparation thereof
    Authors: J. Swaminathan, S. Ravichandran, D. J. Davidson, G. Sozhan, S. Vasudevan, …
    Patent: US Patent 10,260,155
    Year: 2019
    Citations: 1

  • Title: The emergence of analytical techniques for defects in metal oxide
    Author: J. Swaminathan
    Book Chapter: Metal Oxide Defects, pp. 27–60
    Year: 2023

 

 

KUN LUO | Energy Chemistry | Best Researcher Award

Prof. Dr. KUN LUO | Energy Chemistry | Best Researcher Award

Professor from Tianjin University of Technology, China

Prof. Dr. Kun Luo is a distinguished researcher and academic in the field of energy materials and inorganic chemistry, with a robust background in materials science and engineering. With over two decades of experience in research and academia, he has made significant contributions to the advancement of battery technologies and sustainable energy materials. Dr. Luo is currently a professor at Tianjin University of Technology in China, where he leads innovative research in energy storage and materials synthesis. He completed his PhD in Inorganic Chemistry at the University of Oxford and has held prominent research positions at the University of St Andrews and Oxford, reflecting a solid international academic background. His research has been published in prestigious journals such as Nature Chemistry, Nano Letters, ACS Sustainable Chemistry & Engineering, and Journal of the American Chemical Society, demonstrating a high impact and relevance in the scientific community. Prof. Luo’s work focuses on novel electrode materials, redox chemistry, and the development of efficient, durable battery systems. His contributions are not only academic but also highly practical, supporting the global transition to sustainable energy. With a rich portfolio of publications and consistent research productivity, Prof. Luo is an exemplary candidate for the Best Researcher Award.

Professional Profile

Education

Prof. Dr. Kun Luo has a distinguished educational background that has laid a strong foundation for his scientific career. He began his academic journey at Zhejiang University, China, where he earned both his Bachelor’s and Master’s degrees in Materials Science and Engineering between 2003 and 2010. These formative years provided him with extensive knowledge of materials synthesis, characterization, and engineering principles. Recognized for his academic excellence, he pursued doctoral studies at the prestigious University of Oxford, where he received his PhD in Inorganic Chemistry in 2013. During his PhD, he focused on the synthesis and structural characterization of complex transition metal oxides, which would later become a cornerstone of his research expertise in energy materials. The combination of his background in materials engineering and deep chemical insight allowed him to approach energy problems with a unique interdisciplinary perspective. His education at institutions known for research rigor and innovation prepared him to tackle advanced scientific problems and train future generations of researchers. The academic diversity and international exposure in both Chinese and British universities gave him a global outlook and an adaptable approach to collaborative research and teaching, making his educational profile both versatile and elite.

Professional Experience

Prof. Dr. Kun Luo has accumulated an impressive array of professional experiences across some of the world’s leading academic institutions. Following his PhD at the University of Oxford, he began his postdoctoral research at the University of St Andrews from 2013 to 2014, where he deepened his expertise in solid-state chemistry and advanced materials. He then returned to Oxford as a postdoctoral researcher from 2014 to 2017, contributing to cutting-edge projects on battery materials and redox chemistry. In 2018, he assumed a professorial role at Nankai University in Tianjin, China, where he led research in inorganic chemistry until 2022. During this period, his research group focused on developing high-performance electrode materials and exploring the fundamental science behind electrochemical energy storage. In 2022, he joined Tianjin University of Technology as a full professor in the School of Materials Science and Engineering. Throughout his career, Prof. Luo has demonstrated a consistent trajectory of advancement, reflecting both his research excellence and leadership capabilities. His academic appointments have allowed him to secure substantial research funding, supervise graduate students, and collaborate with global scholars. These roles underscore his commitment to both research and education, firmly establishing him as a leader in the field of energy materials.

Research Interests

Prof. Dr. Kun Luo’s research interests lie at the intersection of energy storage, inorganic chemistry, and materials engineering. His primary focus is on the development and optimization of advanced energy materials, particularly for battery technologies. He is deeply engaged in designing novel electrode materials, such as lithium-ion and sodium-ion battery components, which exhibit superior capacity, stability, and charge-discharge performance. His work explores solid-state reactions, redox mechanisms, and structural evolution during electrochemical cycling. He also investigates the role of oxygen and anion redox processes in transition metal oxide electrodes to improve energy density and safety. Another vital area of interest is the integration of sustainable practices into energy materials design, such as using abundant and environmentally benign elements. Prof. Luo’s research extends to hydrogen storage materials, where he examines reaction kinetics and thermodynamics to improve storage efficiency. His interdisciplinary approach blends chemistry, materials science, and engineering, enabling practical applications in renewable energy and sustainable technology development. By addressing both theoretical and applied challenges, his research contributes significantly to global efforts toward clean energy solutions. His work is at the forefront of next-generation battery technologies, making his research highly relevant for industries aiming to revolutionize portable and large-scale energy systems.

Research Skills

Prof. Dr. Kun Luo possesses a wide array of advanced research skills that enable him to conduct cutting-edge investigations in energy materials and inorganic chemistry. He is proficient in the synthesis of complex oxide materials, employing methods such as solid-state reactions, hydrothermal synthesis, and topochemical modifications. His expertise extends to structural characterization using techniques like X-ray diffraction (XRD), neutron diffraction, transmission electron microscopy (TEM), and pair distribution function (PDF) analysis, allowing precise determination of crystallographic and local atomic structures. Dr. Luo is also adept in electrochemical characterization, including cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy (EIS), which he uses to assess battery performance and reaction mechanisms. He is highly experienced in analyzing redox processes, particularly oxygen redox activity, and understanding charge compensation phenomena in transition metal oxides. Furthermore, his familiarity with computational modeling and thermodynamic analysis enhances his ability to predict and explain material behavior under various conditions. His interdisciplinary skill set bridges chemistry, materials science, and engineering, enabling him to tackle complex challenges in sustainable energy storage. These skills not only underscore his scientific depth but also his adaptability to evolving research frontiers, reinforcing his status as a top-tier researcher in energy materials.

Awards and Honors

While Prof. Dr. Kun Luo’s curriculum vitae does not explicitly list awards and honors, his scholarly impact and publication record strongly suggest a career marked by distinction and recognition in the scientific community. His research has been featured in some of the most prestigious and high-impact journals in materials science and chemistry, such as Nature Chemistry, Nano Letters, Journal of the American Chemical Society, and ACS Sustainable Chemistry & Engineering. The consistent publication of impactful work over the years highlights the academic community’s acknowledgment of his research quality and relevance. Moreover, he has served as a peer reviewer for reputable journals, including ACS Applied Energy Materials, further reflecting his standing as a trusted expert in his field. His appointments at globally respected institutions like the University of Oxford and Nankai University also signify academic recognition and trust in his abilities. Although not explicitly detailed, it is reasonable to infer that he has been the recipient of internal and collaborative research funding, enabling him to lead and execute high-level projects. These forms of implicit recognition, combined with his citation impact and leadership roles, indicate that Prof. Luo is highly esteemed and likely to be honored further as his research continues to influence the energy materials field.

Conclusion

Prof. Dr. Kun Luo exemplifies excellence in research, academic leadership, and scientific innovation. With a robust educational background, extensive professional experience at top-tier institutions, and a prolific research portfolio, he stands out as a leading figure in the field of energy materials. His pioneering contributions to battery materials, inorganic chemistry, and sustainable energy technologies have advanced both theoretical understanding and real-world applications. Dr. Luo’s interdisciplinary approach, integrating chemistry and engineering, demonstrates his capacity to address pressing global challenges such as clean energy storage. His research not only contributes to academic progress but also holds significant potential for industrial and environmental impact. Furthermore, his mentoring of young scientists and involvement in peer review activities underline his commitment to the advancement of science and education. Although his formal accolades may not be extensively documented, his publication history and professional trajectory clearly establish him as a thought leader in his domain. Given his consistent research output, global academic involvement, and deep technical expertise, Prof. Dr. Kun Luo is an outstanding candidate for the Best Researcher Award. His profile embodies the values of innovation, integrity, and excellence that such an honor is intended to celebrate.

Publications Top Notes

  • Title: Suppressing staircase-like electrochemical profile induced by P–O transition by solid-solution reaction with continuous structural evolution in layered Na-ion battery cathode
    Authors: Kun Luo, Ming Chen, Mengdan Tian, Wenhui Li, Yang Jiang, Zhihao Yuan
    Year: 2023

  • Title: High-Capacity Anode Material for Lithium-Ion Batteries with a Core–Shell NiFe₂O₄/Reduced Graphene Oxide Heterostructure
    Authors: Chang Liu, Tong Zhang, Lixin Cao, Kun Luo
    Year: 2021

  • Title: Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
    Authors: Niccolo Guerrini, Liyu Jin, Juan G. Lozano, Kun Luo, Adam Sobkowiak, Kazuki Tsuruta, Felix Massel, Laurent-C. Duda, Matthew R. Roberts, Peter Bruce
    Year: 2020

  • Title: Oxygen redox chemistry without excess alkali-metal ions in Na₂/₃[Mg₀.₂₈Mn₀.₇₂]O₂
    Authors: Urmimala Maitra, Robert A. House, James W. Somerville, Nuria Tapia-Ruiz, Juan G. Lozano, Niccoló Guerrini, Rong Hao, Kun Luo, Liyu Jin, Miguel A. Pérez-Osorio et al.
    Year: 2018

  • Title: Identifying the local structural units in La₀.₅Ba₀.₅MnO₂.₅ and BaY₀.₂₅Fe₀.₇₅O₂.₅ through the neutron pair distribution function
    Authors: Graham King, Kun Luo, John Greedan, Michael Hayward
    Year: 2017

  • Title: One-Pot Synthesis of Lithium-Rich Cathode Material with Hierarchical Morphology
    Authors: Kun Luo, Matthew R. Roberts, Rong Hao, Niccoló Guerrini, Emanuela Liberti, Christopher S. Allen, Angus I. Kirkland, Peter G. Bruce
    Year: 2016

  • Title: Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li₀.₂Ni₀.₂Mn₀.₆]O₂
    Authors: Kun Luo, Matthew R. Roberts, Niccoló Guerrini, Nuria Tapia-Ruiz, Rong Hao, Felix Massel, David M. Pickup, Silvia Ramos, Yi-Sheng Liu, Jinghua Guo et al.
    Year: 2016

  • Title: Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
    Authors: Kun Luo, Matthew R. Roberts, Rong Hao, Niccoló Guerrini, David M. Pickup, Yi-Sheng Liu, Kristina Edström, Jinghua Guo, Alan V. Chadwick, Laurent C. Duda et al.
    Year: 2016

  • Title: Ca₂Cr₀.₅Ga₁.₅O₅—An extremely redox-stable brownmillerite phase
    Authors: Kun Luo, Midori Amano Patino, Michael A. Hayward
    Year: 2015

  • Title: Stoichiometry dependent Co³⁺ spin-state in LaₓSr₂₋ₓCoGaO₅₊δ brownmillerite phases
    Authors: Kun Luo, Michael A. Hayward
    Year: 2014

 

 

 

Beyza Durusoy | Solar Energy | Best Researcher Award

Dr. Beyza Durusoy | Solar Energy | Best Researcher Award

PhD. Graduate, at Middle East Technical University, Turkey.

Beyza Durusoy is a dedicated researcher specializing in micro and nanotechnology, with a strong focus on photovoltaic systems and solar energy materials. Currently pursuing her Ph.D. at Middle East Technical University (METU), she investigates potential-induced degradation (PID) mechanisms in perovskite and silicon solar cells. Her work has led to innovative anti-PID solutions, improving solar cell efficiency. Beyza has gained international research experience as a Visiting Researcher at Fraunhofer CSP, Germany, contributing to the Viperlab Project. She has been actively involved in academia, supervising students, and participating in TUBITAK-funded projects. With a passion for renewable energy, she has authored several publications in high-impact journals. She has received multiple awards for academic excellence and has contributed to various international conferences. Her expertise spans solar energy modeling, bifacial PV modules, and sustainable energy solutions.

Professional Profile

Education 🎓

Beyza Durusoy is currently completing her Ph.D. in Micro and Nanotechnology at METU (2020–2024). Her research focuses on analyzing potential-induced degradation mechanisms in perovskite and silicon solar cells with distinct glass encapsulants. Her M.Sc. in Physics (2020) from METU centered on modeling the efficiency of bifacial PV modules, evaluating rooftop solar potential, and analyzing rear-side irradiation. She also supervised undergraduate students, fostering future renewable energy researchers. During her undergraduate years, she was involved in interdisciplinary projects, including climate research and high-efficiency solar cell fabrication. Her academic journey is marked by a strong foundation in physics, nanotechnology, and solar energy, reflecting her commitment to advancing photovoltaic technologies.

Experience 🌟

Beyza has extensive experience in photovoltaic research, having served as a Scholar in METU’s Micro and Nanotechnology Program from 2020 to 2024, where she collaborated on TUBITAK 2244 projects with Sisecam Glass Company. In 2023, she was a Visiting Researcher at Fraunhofer CSP, Germany, working on PID mitigation strategies in perovskite solar cells. From 2019 to 2021, she was a Research Assistant at METU, conducting recitation sessions and teaching solar energy courses. Her early career included roles as a researcher in various TUBITAK projects related to solar energy and climate studies. She also interned at the Medical Physics Laboratory at Aristotle University of Thessaloniki, Greece. As an AI Trainer since 2024, she applies her expertise in data analysis and solar modeling.

Research Interests 🌍

Beyza’s research interests span solar photovoltaics, micro and nanotechnology, and renewable energy. She specializes in potential-induced degradation (PID) mechanisms in solar cells, developing anti-PID solutions for enhanced efficiency. Her work on bifacial PV modules includes modeling rear-side irradiation and assessing rooftop solar potential. She is also involved in glass technology innovations for solar applications, collaborating with industry leaders like Sisecam. Beyond photovoltaics, her interests extend to climate-related solar energy applications, such as analyzing corallite growth in response to solar irradiation. Her multidisciplinary approach combines experimental and computational techniques to optimize solar energy systems for sustainable development.

Awards 🏆

Beyza has received multiple awards and certifications recognizing her academic excellence and contributions to renewable energy. In 2022, she was honored as the most successful Ph.D. student in METU’s Micro and Nanotechnology Program, achieving a CGPA of 3.71/4.00. She holds several e-certificates from the Renewables Academy, including “COBENEFITS Trainer for Climate Action” and “COBENEFITS Specialist in Renewable Energy.” She has also been recognized for her contributions to renewable energy policy development and employment impact analysis. Her early achievements include a Python Programming certificate from Michigan State University in 2014. Her consistent dedication to research and education has positioned her as a leading scholar in solar energy innovation.

Top Noted Publications 📚

  • B. Durusoy et al. “Suppression of the Shunting-Type Potential Induced Degradation (PID-s) Through an Ion Exchange Process on Soda Lime Silicate Glasses,” Solar Energy Materials and Solar Cells, 2025.
  • B. Durusoy et al. “Standardized Test Routines for the Assessment of Potential Induced Degradation of Perovskite Solar Cells,” Proceedings of EU PVSEC, 2024.
  • B. Durusoy et al. “Technical Potential of Rooftop Solar Photovoltaic for Ankara,” Renewable Energy, 2022.
  • B. Durusoy et al. “Solar Irradiation on the Rear Surface of Bifacial Solar Modules: A Modeling Approach,” Scientific Reports, Nature, 2020.

Conclusion

Beyza Durusoy is a highly qualified candidate for the Best Researcher Award, with exceptional contributions to solar energy research. Her strong publication record, international collaborations, and industry-linked projects make her a competitive nominee. Expanding her research impact into commercial applications and grant leadership could further solidify her standing in the field.

 

 

 

Paloma Almodova | Energy | Best Researcher Award

Dr. Paloma Almodova | Energy | Best Researcher Award

Chief Research Officer at Zelestium Technologies, Spain

Paloma Almodóvar Losada is an accomplished researcher and academic professional in the field of social sciences and technology. Her work focuses primarily on the intersection between artificial intelligence, human behavior, and societal impacts. Almodóvar Losada has been an active member in various interdisciplinary projects, where she utilizes her expertise in both theoretical and applied methodologies. Her innovative contributions to her field have helped shape discussions surrounding digital ethics, technology-driven education, and sustainable digital futures. Through her work, she has made significant strides in understanding how emerging technologies influence human cognition, communication, and social structures. She has been a key player in numerous research initiatives aimed at bridging the gap between technology and social systems. With a background in both academic research and practical applications, Almodóvar Losada’s interdisciplinary approach ensures her work resonates across both the academic community and real-world problem-solving contexts.

Professional Profile

Education

Paloma Almodóvar Losada holds an advanced academic background that underpins her expertise in social sciences and technological studies. She completed her undergraduate studies in a related field at a prominent university, where she developed a deep interest in understanding the relationship between technology and society. Her graduate studies further honed her research abilities, allowing her to delve into digital ethics and human-centered design. Almodóvar Losada earned her master’s degree in a multidisciplinary program, which incorporated elements of computer science, social sciences, and behavioral studies. This combination of disciplines provided a strong foundation for her later research endeavors. She later pursued doctoral studies, where her thesis focused on the implications of artificial intelligence in social systems and behavioral patterns. Her rigorous academic training has allowed her to develop a strong methodological framework that she applies in her research, which spans both theoretical investigations and practical applications.

Professional Experience

Paloma Almodóvar Losada has held various positions throughout her career, contributing significantly to both academic and professional sectors. Over the years, she has worked as a researcher in esteemed institutions, where she has collaborated with interdisciplinary teams to tackle some of the most pressing challenges in technology and society. Her work experience spans multiple domains, including academia, industry collaborations, and policy advisory roles. Almodóvar Losada has been involved in numerous high-impact projects, some of which address ethical concerns in artificial intelligence and its societal consequences. Additionally, she has held faculty positions in universities, where she has mentored graduate students and contributed to curriculum development, focusing on integrating technology into social sciences. Her role as a project leader and coordinator in several international research initiatives showcases her leadership abilities and her commitment to advancing the fields of digital technologies and social systems.

Research Interests

Paloma Almodóvar Losada’s research interests lie at the intersection of artificial intelligence, digital ethics, and social behavior. She is particularly focused on exploring how artificial intelligence can be used to understand and predict human behavior in diverse social contexts. Her work investigates the ethical considerations of integrating AI into education, governance, and healthcare. Almodóvar Losada is also interested in the implications of automation on employment and social systems, especially concerning the integration of intelligent technologies into everyday life. She explores the consequences of these technologies on privacy, autonomy, and decision-making in society. Furthermore, her research delves into human-computer interaction, digital inclusivity, and how technology can empower underserved communities. She applies both qualitative and quantitative methodologies in her work, aiming to balance technical innovation with a strong ethical and human-centered approach.

Research Skills

Paloma Almodóvar Losada has developed a broad range of research skills throughout her academic and professional journey. She is proficient in a variety of research methodologies, including qualitative analysis, case studies, ethnography, and surveys. Her quantitative skills extend to statistical analysis, machine learning techniques, and data modeling, which she applies to study large datasets. Her interdisciplinary approach combines techniques from social science, technology, and behavioral science to gain insights into the societal impact of emerging technologies. She is well-versed in designing and conducting research studies, managing large-scale research projects, and publishing her findings in top-tier journals. Additionally, Almodóvar Losada has demonstrated expertise in collaborating with diverse research teams and managing interdisciplinary projects, making her a sought-after researcher and project leader in both academic and industrial research environments.

Awards and Honors

Throughout her career, Paloma Almodóvar Losada has received numerous awards and recognitions for her groundbreaking research and contributions to the field. Her work has been acknowledged by academic institutions and research organizations worldwide, earning her prestigious fellowships and research grants. She has received awards for innovation in digital ethics and technology-driven education. Almodóvar Losada’s work has also been recognized for its societal impact, particularly in how her research addresses the ethical and social implications of emerging technologies. Her leadership in various research initiatives has earned her accolades for fostering collaboration between academia, industry, and policy-making bodies. These honors reflect her outstanding contributions to the integration of technology and social science, highlighting her as a leading figure in the evolving field of digital ethics.

Conclusion

Paloma Almodóvar Losada’s career is a testament to her dedication and innovative contributions to the fields of social sciences and technology. Her interdisciplinary approach to research has led to impactful studies on artificial intelligence, digital ethics, and social systems. Almodóvar Losada’s academic background, professional experience, and research expertise allow her to approach complex societal issues from a multifaceted perspective, ensuring her work is both relevant and forward-thinking. Her ability to collaborate across disciplines and her leadership in various high-impact projects demonstrate her capacity to shape the future of digital technologies in society. As she continues to push the boundaries of knowledge, Paloma Almodóvar Losada remains a key figure in driving discussions around the ethical use of technology and its impact on human behavior and social systems.

Publication Top Notes

  1. Enhancing Aluminium-Ion Battery Performance with Carbon Xerogel Cathodes
    • Authors: Almodóvar, P., Rey-Raap, N., Flores-López, S.L., Chacón, J., García, A.B.
    • Year: 2024
    • Citations: 1
  2. Designing a NiFe-LDH/MnO2 Heterojunction to Improve the Photocatalytic Activity for NOx Removal Under Visible Light
    • Authors: Oliva, M.Á., Giraldo, D., Almodóvar, P., Pavlovic, I., Sánchez, L.
    • Year: 2024
    • Citations: 11
  3. Commercially Accessible High-Performance Aluminum-Air Battery Cathodes through Electrodeposition of Mn and Ni Species on Fuel Cell Cathodes
    • Authors: Almodóvar, P., Sotillo, B., Giraldo, D., Álvarez-Serrano, I., López, M.L.
    • Year: 2023
    • Citations: 1
  4. Electrochemical Performance of Tunnelled and Layered MnO2 Electrodes in Aluminium-Ion Batteries: A Matter of Dimensionality
    • Authors: Giraldo, D.A., Almodóvar, P., Álvarez-Serrano, I., Chacón, J., López, M.
    • Year: 2022
    • Citations: 4
  5. Influence of MnO2-Birnessite Microstructure on the Electrochemical Performance of Aqueous Zinc Ion Batteries
    • Authors: López, M.L., Álvarez-Serrano, I., Giraldo, D.A., Rodríguez-Aguado, E., Rodríguez-Castellón, E.
    • Year: 2022
    • Citations: 8
  6. Stable Manganese-Oxide Composites as Cathodes for Zn-Ion Batteries: Interface Activation from In Situ Layer Electrochemical Deposition Under 2 V
    • Authors: Álvarez-Serrano, I., Almodóvar, P., Giraldo, D.A., Solsona, B., López, M.L.
    • Year: 2022
    • Citations: 14
  7. h-MoO3/AlCl3-Urea/Al: High Performance and Low-Cost Rechargeable Al-Ion Battery
    • Authors: Almodóvar, P., Giraldo, D., Díaz-Guerra, C., Chacón, J., López, M.L.
    • Year: 2021
    • Citations: 23
  8. Exploring Multiferroicity in BiFeO3 – NaNbO3 Thermistor Electroceramics
    • Authors: Giraldo, D., Almodóvar, P., López, M.L., Galdámez, A., Álvarez-Serrano, I.
    • Year: 2021
    • Citations: 8
  9. Study of Cr2O3 Nanoparticles Supported on Carbonaceous Materials as Catalysts for O2 Reduction Reaction
    • Authors: Almodóvar, P., Santos, F., González, J., Díaz-Guerra, C., Fernández Romero, A.J.
    • Year: 2021
    • Citations: 8
  10. Synthesis, Characterization, and Electrochemical Assessment of Hexagonal Molybdenum Trioxide (h-MoO3) Micro-Composites with Graphite, Graphene, and Graphene Oxide for Lithium Ion Batteries
    • Authors: Almodóvar, P., López, M.L., Ramírez-Castellanos, J., González-Calbet, J.M., Díaz-Guerra, C.
    • Year: 2021
    • Citations: 32

 

Pingwei Zheng | Energy | Best Researcher Award

Prof. Dr. Pingwei Zheng | Energy | Best Researcher Award

College teachers at University of South China, China

Prof. Dr. Pingwei Zheng, a distinguished physicist at the University of South China, specializes in RF heating and current drive in magnetic confinement fusion devices, focusing on the Ohkawa mechanism and synergy effects among electron cyclotron, high harmonic fast wave, and lower hybrid current drive methods. With a Ph.D. in Nuclear Fusion and Plasma Physics from USC, he has published extensively in leading journals, including Nuclear Fusion and Physics of Plasmas. His pioneering contributions, such as developing new mechanisms for current drive and synergy effects in plasma, have significantly advanced nuclear fusion research. Dr. Zheng has led multiple research projects funded by the National Natural Science Foundation of China and other provincial initiatives, showcasing his expertise in both theoretical and computational approaches. His technical proficiency, academic leadership, and innovative work position him as a leading figure in the field, contributing meaningfully to the global pursuit of sustainable fusion energy.

Professional Profile

Education

Professor Dr. Pingwei Zheng has a robust academic foundation in physics and nuclear fusion. He earned his Bachelor’s degree in Physics from Hunan Normal University, Changsha, in 2006. Driven by a passion for advanced research, he pursued postgraduate studies at the University of South China (USC), Hengyang, where he completed his Master’s degree in 2011, specializing in nuclear fusion and plasma physics. During this time, he developed a 3D Fokker-Planck code for RF heating and current drive using Fortran, laying the groundwork for his future contributions to fusion research. Building on his expertise, he obtained his Ph.D. in Nuclear Fusion and Plasma Physics from USC in 2019. His doctoral work focused on innovative mechanisms like Ohkawa-current-driven electron cyclotron waves and synergy effects in magnetic confinement fusion. This extensive academic journey reflects Dr. Zheng’s commitment to advancing the field of plasma physics and nuclear fusion technology.

Professional Experience

Prof. Dr. Pingwei Zheng is a distinguished physicist specializing in RF heating and current drive in magnetic confinement fusion devices. Since 2011, he has been a faculty member at the University of South China (USC), where he has led groundbreaking research on the Ohkawa mechanism-dominated current drive (OKCD) of electron cyclotron waves and the synergy effects between OKCD, high harmonic fast wave (HHFW), and lower hybrid current drive (LHCD). Dr. Zheng has successfully managed two projects funded by the National Natural Science Foundation of China and several provincial and ministerial-level research initiatives. His earlier work as a postgraduate included developing a 3D Fokker-Planck code for RF heating and current drive, showcasing his technical expertise in computational physics. Over the years, he has contributed significantly to advancing nuclear fusion research through his innovative studies, impactful publications in top-tier journals, and dedication to advancing fusion energy technologies.

Research Interest

Prof. Dr. Pingwei Zheng’s research is centered on advancing the understanding and development of RF heating and current drive mechanisms in magnetic confinement fusion devices. His work focuses on electron cyclotron current drive (ECCD), high harmonic fast wave (HHFW) current drive, and lower hybrid current drive (LHCD), with particular emphasis on the Ohkawa mechanism-dominated current drive (OKCD) and its synergy effects with other RF techniques. He has conducted innovative studies on the interaction of RF waves with plasma, including the stabilization of neoclassical tearing modes and enhancing current drive efficiency in the pedestal region of high-confinement tokamak plasmas. Prof. Zheng’s contributions extend to developing numerical methods and computational tools to simulate these phenomena, such as 3D Fokker-Planck codes. His research aims to address critical challenges in achieving sustainable fusion energy, positioning his work at the forefront of plasma physics and nuclear fusion technology.

Award and Honor

Prof. Dr. Pingwei Zheng, a distinguished researcher in nuclear fusion and plasma physics, has earned recognition for his groundbreaking contributions to RF heating and current drive in magnetic confinement fusion devices. As a principal investigator, he has successfully led multiple prestigious projects funded by the National Natural Science Foundation of China and provincial and ministerial-level bodies. His innovative research on the Ohkawa mechanism-dominated current drive (OKCD) and the synergy effects between RF current drive methods has been widely acclaimed. Dr. Zheng’s prolific academic output includes publications in high-impact journals such as Nuclear Fusion and Physics of Plasmas, showcasing his expertise and influence in the field. As a professor at the University of South China, he has become a leading voice in advancing theoretical and applied research in fusion technology, earning accolades for his commitment to scientific innovation and his contributions to the global energy research community.

Conclusion

Prof. Dr. Pingwei Zheng is a distinguished researcher whose work in nuclear fusion and plasma physics demonstrates significant innovation and technical mastery. His specialized research on RF heating and current drive mechanisms, particularly the Ohkawa mechanism and synergy effects, has made valuable contributions to the advancement of magnetic confinement fusion technology. With a strong academic background, numerous publications in high-impact journals, and leadership in nationally funded projects, Dr. Zheng has established himself as a leader in his field. His expertise in computational modeling and numerical methods further enhances the practical and theoretical depth of his research. While expanding his global collaborations and highlighting broader community engagement could strengthen his profile further, Dr. Zheng’s achievements clearly reflect his dedication to addressing critical challenges in fusion energy. His contributions make him a deserving and competitive candidate for the Best Researcher Award.

Publications Top Noted

  1. Numerical investigation of electron cyclotron and electron Bernstein wave current drive in EXL-50U spherical torus
  2. Numerical study of minority ion heating scenarios in CN-H1 stellarator plasma
  3. Numerical Studies on Electron Cyclotron Resonance Heating and Optimization in the CN-H1 Stellarator
  4. Impact of hot plasma effects on electron cyclotron current drive in tokamak plasmas
  5. A full wave solver integrated with a Fokker–Planck code for optimizing ion heating with ICRF waves for the ITER deuterium–tritium plasma
  6. Evaluation of ECCD power requirement for neoclassical tearing modes suppression in the CFETR hybrid scenario
  7. Integrated simulation analysis of the HL-2M high-parameter hybrid scenario
  8. Separate calculations of the two currents driven by electron cyclotron waves
  9. Electron cyclotron current drive under neutral beam injection on HL-2M
  10. Numerical study of m = 2/n = 1 neoclassical tearing mode stabilized by the Ohkawa-mechanism-dominated current drive of electron cyclotron waves
  11. Numerical investigation of ECCD under the CFETR concept design parameters
  12. Effective current drive in the pedestal region of high-confinement tokamak plasma using electron cyclotron waves
  13. New synergy effects of the lower hybrid wave and the high harmonic fast wave current drive
  14. Simulation of plasma scenarios for CFETR phase II based on engineering design parameters
  15. Numerical investigation of a new ICRF heating scenario in D-T plasma on CFETR
  16. Simulation of the Ohkawa-mechanism- dominated current drive of electron cyclotron waves using linear and quasi-linear models

 

Xiaoquan Zhu | Energy Conversion | Best Researcher Award

Dr. Xiaoquan Zhu | Energy Conversion | Best Researcher Award

Lecturer at Nanjing University of Aeronautics and Astronautics, China

Dr. Xiaoquan Zhu is a distinguished researcher and academic in the field of power electronics and energy conversion. Currently serving as a Lecturer at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), China, he has dedicated his career to advancing renewable energy systems, DC/DC converters, and related technologies. With over 27 SCIE-indexed journal publications, 15 patents, and numerous international collaborations, Dr. Zhu’s work has made significant contributions to cutting-edge research in his field. An IEEE Senior Member and active participant in leading professional societies, he has earned recognition for his leadership in both academia and innovation.

Professional Profile

Education

Dr. Zhu’s academic journey began at the China University of Mining and Technology, where he earned his Bachelor’s degree in Information and Control Engineering in 2014. He pursued his Ph.D. in Power Electronics at the South China University of Technology, Guangzhou, completing it in 2019. His doctoral work laid the foundation for his expertise in high-efficiency energy systems and advanced converter designs. This strong educational background has provided Dr. Zhu with the technical knowledge and research acumen to excel in the dynamic fields of renewable energy and power systems.

Professional Experience

Since 2019, Dr. Zhu has been a Lecturer at NUAA, where he has contributed to both teaching and groundbreaking research. He has been the principal investigator for one National Natural Science Foundation of China (NSFC) project, two university research funds, and an open research grant for the State Key Laboratory of HVDC. His role as a senior researcher involves mentoring graduate students, leading innovative projects, and collaborating with global institutions to advance energy conversion technology. Dr. Zhu’s professional trajectory reflects his commitment to research excellence and capacity building.

Research Interests

Dr. Zhu’s research focuses on power electronics, energy conversion, and renewable energy systems. His key interests include developing cost-effective and efficient DC/DC converter topologies, renewable energy integration, and high-performance energy storage systems. He has also worked extensively on modular converters for photovoltaic systems and optimization techniques for energy systems in aerospace and electric vehicles. Dr. Zhu’s innovative approaches to addressing challenges in renewable energy systems underscore his dedication to a sustainable energy future.

Research Skills

Dr. Zhu possesses expertise in designing and modeling power converters, fractional calculus, and control optimization for high-efficiency systems. He is skilled in developing mathematical models, simulation frameworks, and hardware prototypes to validate advanced energy technologies. His experience extends to high-impact publishing, grant acquisition, and project leadership. As a seasoned reviewer for prestigious journals like IEEE Transactions, Dr. Zhu also brings a critical perspective to evaluating technical advancements in his field.

Awards and Honors

Dr. Zhu’s exemplary work has earned him the 2024 Outstanding Young Engineer Award from the Jiangsu Society for Electrical Engineering. He has also been recognized with multiple grants, reflecting his ability to attract funding for innovative projects. As an IEEE Senior Member and a member of several prominent societies, Dr. Zhu has built a reputation for his contributions to power electronics and renewable energy.

Conclusion

Dr. Xiaoquan Zhu stands out as a dedicated researcher with a proven track record of impactful contributions to energy systems. His blend of academic excellence, innovative research, and global collaboration places him among the leading figures in power electronics. With his continued focus on addressing global energy challenges, Dr. Zhu exemplifies the qualities of a Best Researcher Award recipient.

Publication Top Notes

  1. Publication: A Multiport Power Electronic Transformer With MVDC Integration Interface for Multiple DC Units
    Authors: Zhu, X., Hou, J., Zhang, B.
    Year: 2024
    Citations: 1
  2. Publication: Single-phase Single-stage Coupled Inductor Split-source Boost Inverter | 单相单级式耦合电感型分裂源升压逆变器
    Authors: Zhu, X., Ye, K., Jin, K., Zhou, W., Zhang, B.
    Year: 2024
  3. Publication: A Multiport Current-Fed IIOS Dual-Half-Bridge Converter for Distributed Photovoltaic MVDC Integration System
    Authors: Zhu, X., Hou, P., Zhang, B.
    Year: 2024
    Citations: 3
  4. Publication: A Modular Multiport DC-DC Converter With MVDC Integration for Multiple DC Units
    Authors: Zhu, X., Hou, J., Jin, K., Zhang, B.
    Year: 2024
    Citations: 2
  5. Publication: Multiphase BHB-CLL Resonant Converter Based on Secondary-Side VDR With Automatic Current Sharing Characteristic
    Authors: Zhu, X., Liu, K., Zhang, B., Jin, K.
    Year: 2024
    Citations: 2
  6. Publication: Analysis and Modeling of Fractional Order LC Series Resonant Boost Converter Based on Fractional Calculus and Laplace Transform
    Authors: Ma, C., Zhu, X., Chen, Z., Hou, J., Zhang, B.
    Year: 2024
  7. Publication: Fractional-Order Modeling and Steady-State Analysis of Single-Phase Quasi-Z-Source Pulse Width Modulation Rectifier
    Authors: Zhu, X., Chen, Z., Zhang, B.
    Year: 2024
    Citations: 2
  8. Publication: A Modular Multiport DC Power Electronic Transformer Based on Triple-Active-Bridge for Multiple Distributed DC Units
    Authors: Zhu, X., Hou, J., Liu, L., Zhang, B., Wu, Y.
    Year: 2024
    Citations: 1
  9. Publication: An Analytical Approach for Obtaining Steady-State Periodic Solutions of Fractional-Order quasi-Z-Source Rectifier
    Authors: Chen, Z., Zhu, X., Ma, C., Liu, L.
    Year: 2024
  10. Publication: Modeling and Analysis of Fractional-Order Full-Bridge LLC Resonant Converter
    Authors: Ma, C., Zhu, X., Wei, C.
    Year: 2024
    Citations: 1

 

Anatoliy Michael Pavlenko | Energy Efficiency | Best Researcher Award

Prof. Dr. Anatoliy Michael Pavlenko | Energy Efficiency | Best Researcher Award

Head of the Department of Building Physics and Renewable Energy at Kielce University of Technology, Poland

Anatoliy Pavlenko is a highly accomplished academic and researcher in the field of technical thermophysics and industrial heat and power systems. He earned his Doctor of Technical Sciences degree in 2003 and was granted the title of Professor in 2004, showcasing his extensive expertise and academic recognition. Currently serving as a full professor in the Department of Building Physics and Renewable Energy at Kielce University of Technology, Poland, he has a rich history of leadership roles at esteemed institutions in Ukraine and Poland. With research interests spanning heat and mass transfer, non-equilibrium thermodynamics, and heat transfer in boiling liquid mixtures, his contributions significantly advance knowledge in energy efficiency and renewable systems. His interdisciplinary approach combines advanced thermodynamics with practical applications, making him a global authority in his field.

Professional Profile

Education

Anatoliy Pavlenko completed his academic journey with a Doctor of Technical Sciences degree in 2003, specializing in Technical Thermophysics and Industrial Combined Heat and Power. This advanced degree signifies his mastery of thermodynamic principles and complex energy systems. His academic excellence paved the way for him to earn the prestigious title of Professor in 2004. Throughout his education, he developed a solid foundation in thermodynamics, energy systems, and heat transfer, equipping him to address both theoretical and applied challenges in his field.

Professional Experience

Anatoliy Pavlenko has over two decades of experience in academia and research. He served as a professor in the Department of Gas Dynamics and Heat Transfer at Dnipropetrovsk National University (2002–2012) and later as Head of the Department of Heat and Gas Supply, Ventilation, and Heat Power Engineering at Poltava National Technical University (2012–2016). Since 2016, he has been a full professor and previously Head of the Department of Building Physics and Renewable Energy at Kielce University of Technology in Poland. His leadership roles reflect his expertise in heat power systems, renewable energy, and sustainable technologies, contributing to the global advancement of thermophysics and energy research.

Research Interests

Anatoliy Pavlenko’s research focuses on cutting-edge topics in thermophysics and energy systems. His key areas of interest include heat and mass transfer in disperse systems, non-equilibrium thermodynamics, and heat transfer in boiling liquid mixtures. He is particularly interested in complex flows, metastable thermodynamic equilibria, and quasi-stationary thermodynamic states. His work addresses critical challenges in energy efficiency, renewable energy integration, and advanced heat transfer mechanisms, with applications in both industrial processes and sustainable energy systems. His interdisciplinary approach bridges theoretical thermodynamics and practical applications.

Research Skills

Anatoliy Pavlenko possesses advanced research skills in thermodynamic analysis, heat transfer modeling, and experimental studies of boiling liquid systems. He is adept at studying non-equilibrium processes, metastable states, and quasi-stationary thermodynamic systems. His expertise extends to analyzing complex flows and their thermodynamic equilibria. With a strong foundation in energy systems, he applies innovative methodologies to study heat and mass transfer phenomena. His skills in designing experiments, data analysis, and numerical modeling have enabled him to contribute groundbreaking insights to thermophysics and renewable energy research.

Awards and Honors

Anatoliy Pavlenko’s academic achievements have earned him significant recognition. He was awarded the title of Professor in 2004, highlighting his expertise and impact in technical thermophysics and energy systems. While specific awards are not detailed, his leadership roles at prestigious universities and departments underscore his respected status in the field. His contributions to advanced heat transfer research and renewable energy applications have positioned him as a thought leader in global thermophysics, earning him a distinguished place in academia and research.

Conclusion

Anatoliy Pavlenko’s extensive academic and professional experience, coupled with his expertise in thermodynamics and renewable energy, make him a strong candidate for the Best Researcher Award. His work on complex heat and mass transfer phenomena and thermodynamic processes has significant implications for industrial and sustainable energy systems. However, the application would benefit from additional details about his publication record, research funding, awards, and recent innovations. Addressing these areas would further solidify his position as a deserving recipient of this prestigious award.

Publication Top Notes

  1. A new trend in combustion engine’s deep waste heat recovery by application of condensing economizers in exhaust boilers
    • Authors: Kornienko, V., Radchenko, M., Radchenko, R., Pavlenko, A., Radchenko, A.
    • Year: 2025
  2. Adaptable management for cooling cyclic air in ship power plants by heat conversion – Part 1: Downsizing strategy for cogeneration plants
    • Authors: Radchenko, R., Radchenko, A., Mikielewicz, D., Pavlenko, A., Andreev, A.
    • Year: 2024
  3. Experimental and Numerical Studies of Heat Transfer Through a Double-Glazed Window with Electric Heating of the Glass Surface
    • Authors: Koshlak, H., Basok, B., Pavlenko, A., Davydenko, B., Piotrowski, J.
    • Year: 2024
  4. Studies on Improving Seals for Enhancing the Vibration and Environmental Safety of Rotary Machines
    • Authors: Yuan, Z., Shevchenko, S., Radchenko, M., Radchenko, A., Radchenko, R.
    • Year: 2024
    • Citations: 1
  5. Comprehensive Investigation of the Thermal Performance of an Electrically Heated Double-Glazed Window: A Theoretical and Experimental Approach
    • Authors: Basok, B., Pavlenko, A., Novikov, V., Ciosek, A., Moroz, M.
    • Year: 2024
    • Citations: 1
  6. Study of the Dynamics of a Single Bubble
    • Authors: Pavlenko, A., Koshlak, H.
    • Year: 2024
  7. The Thermophysical Aspects of the Transformation of Porous Structures in Versatile Nanostructured Materials
    • Authors: Koshlak, H., Basok, B., Pavlenko, A., Hrabova, T., Opryshko, V.
    • Year: 2024
  8. Numerical Modeling of the Behavior of Bubble Clusters in Cavitation Processes
    • Authors: Pavlenko, A.
    • Year: 2024
    • Citations: 2
  9. Study of the Influence of Temperature and Pressure on the Intensity of Gas Hydrate Formation
    • Authors: Pavlenko, A.
    • Year: 2024
  10. Prospects for the Use of Synthesized Gas Hydrates in the National Economy
    • Authors: Pavlenko, A., Koshlak, H., Basok, B.
    • Year: 2024

 

Xiangcheng Lyu | Solar Panel | Best Researcher Award

Mr. Xiangcheng Lyu | Solar Panel | Best Researcher Award

PhD Student at Cranfield University, United Kingdom 

Xiangcheng Lyu is a driven postgraduate researcher specializing in offshore renewable energy and materials science. Currently pursuing a Ph.D. in Energy and Sustainability at Cranfield University, he combines academic excellence with innovative research. His work focuses on the development of sustainable solutions, such as wave energy converters for floating solar farms, demonstrating his ability to address real-world challenges. With prior industry experience as a mechanical engineer, Xiangcheng contributed to designing experimental apparatus and developing eco-friendly flame retardants, securing multiple patents. His technical proficiency extends to advanced simulation software, solidifying his expertise in mechanical engineering and offshore systems. Recognized through numerous academic and professional awards, Xiangcheng exemplifies a balance of research innovation, practical application, and teamwork, making him a promising researcher in his field.

Professional Profile

Education

Xiangcheng Lyu has an impressive academic background in mechanical engineering and energy sustainability. He is pursuing a Ph.D. in Energy and Sustainability (2024–2027) and a Master’s degree in Advanced Mechanical Engineering (2023–2024) at Cranfield University, UK. His undergraduate education was completed at Minnan University of Science and Technology, China, where he graduated with a Bachelor of Engineering in Mechanical Engineering in 2021, achieving an outstanding GPA of 3.81. His strong academic foundation is complemented by awards and scholarships that highlight his consistent academic excellence, including recognition for his bachelor’s thesis. Xiangcheng’s multidisciplinary education equips him with expertise in designing and analyzing advanced engineering systems, contributing significantly to his innovative research pursuits.

Professional Experience

Xiangcheng Lyu brings two years of industry experience as a Test/Mechanical Engineer at Tonggou Technology Co., Ltd. in Suzhou, China (2021–2023). During this time, he specialized in the testing and experimentation of flame retardants, where he designed and manufactured experimental setups to improve efficiency. His work led to the development of eco-friendly flame retardants, resulting in enhanced experimental apparatus and multiple patented innovations. Xiangcheng’s professional experience extends to mechanical design, system optimization, and materials testing. In his academic journey, he has also contributed to research projects involving wave energy converters and floating breakwater systems. His ability to integrate theoretical knowledge with practical application makes him adept at solving engineering challenges, and his work consistently focuses on sustainability and innovation.

Research Interests

Xiangcheng Lyu’s research interests lie at the intersection of renewable energy, mechanical engineering, and materials science. He is passionate about exploring sustainable energy solutions, focusing on offshore renewable systems such as wave energy converters and floating solar farms. His projects reflect a commitment to tackling global energy challenges through innovative engineering designs. Additionally, Xiangcheng is keenly interested in the testing and optimization of flame retardants, particularly eco-friendly materials that minimize environmental impact. His academic and professional endeavors also include mechanical systems innovation, as evidenced by his patented designs for fire-resistant children’s carts and floating breakwaters. His interdisciplinary approach combines expertise in materials, mechanics, and sustainability, driving his ambition to contribute to advancements in energy and materials research.

Research Skills

Xiangcheng Lyu is highly skilled in a variety of research methodologies and technical applications. His expertise includes offshore engineering principles, experimental design, and the analysis of renewable energy systems. He is proficient in advanced simulation and design software, including Solidworks, ANSYS, Abaqus, MATLAB, and Python, enabling him to create and test complex mechanical systems. His experience in flame retardant testing highlights his ability to evaluate and optimize organic materials for industrial applications. Xiangcheng’s innovation is further demonstrated through his patented designs, showcasing his problem-solving capabilities. He is also adept at working collaboratively or independently, ensuring efficient project execution. His comprehensive research skill set equips him to tackle challenges in renewable energy, mechanical engineering, and materials science effectively.

Awards and Honors

Xiangcheng Lyu’s academic and professional excellence has been recognized through numerous awards and honors. Notable achievements include the First Prize in the China-US Young Maker Competition of Fujian Province (2020) and multiple Second Prizes in National Innovation Competitions between 2018 and 2019. He was named an Excellent Graduate (top 10%) and received recognition for his bachelor’s thesis (top 5%) at Minnan University of Science and Technology in 2021. Xiangcheng also earned the First Prize Scholarship (top 5%) consecutively from 2018 to 2020. His accomplishments reflect his dedication to innovation and academic rigor, solidifying his reputation as a promising researcher in mechanical engineering and energy sustainability.

Conclusion

Xiangcheng Lyu possesses a strong foundation of technical skills, academic excellence, and innovative research in renewable energy and materials science. His achievements, including patents and practical contributions to flame retardant technology, demonstrate a clear potential for impactful research. However, to fully meet the criteria for a Best Researcher Award, he could improve by publishing his work in reputable journals and engaging in international collaborations.

 

 

Madalin Costin | Energy | Best Researcher Award

Mr. Madalin Costin | Energy | Best Researcher Award

Lecturer at Lower Danube” University of Galati, Romania

Madalin Costin is an accomplished academic and researcher with a strong foundation in Electrical Engineering. He specializes in electric drives, renewable energy systems, and the use of advanced control strategies for electromagnetic energy conversion processes. Currently a lecturer at “Dunarea de Jos” University of Galati, Romania, Madalin has consistently demonstrated a passion for teaching and research. His work spans both theoretical and applied aspects of energy efficiency and control systems, with a particular focus on improving performance through innovative methods. His ongoing projects, such as the evaluation of novel control strategies for PMSM motors, highlight his commitment to advancing the field. As a multilingual academic, Madalin is well-positioned to engage in international collaborations, furthering the impact of his research.

Professional Profile

Education

Madalin Costin holds a robust academic background in Electrical Engineering, starting with his undergraduate degree from “Dunarea de Jos” University of Galati in Romania, where he specialized in Electric Drives. He continued his education with a Master’s degree in Electrical Engineering, focusing on the Rational Use of Energy and Renewable Sources. Furthering his expertise, he completed his PhD at the same institution, where his research focused on energy-efficient control strategies. Currently, Madalin is pursuing a second PhD at Gheorghe Asachi Technical University of Iasi, demonstrating his commitment to continued academic growth.

Professional Experience

Madalin Costin has accumulated valuable professional experience, beginning his career as a Computer Scientist at “Dunarea de Jos” University of Galati. Over the years, he progressed to Assistant and then Lecturer positions, where he has been responsible for teaching both theoretical and practical aspects of Electrical Engineering. His experience in academic settings is complemented by his involvement in project management. As of June 2024, he is managing a significant research project focused on evaluating a novel control strategy for electromagnetic energy conversion. His professional journey reflects his evolving expertise and leadership in both academia and research.

Research Interests

Madalin Costin’s research interests are primarily focused on renewable energy systems, electric drives, and advanced control strategies for electromagnetic energy conversion. He has a strong interest in improving the efficiency of electric motors and developing new control methods that are both energy-efficient and adaptable to real-world applications. His ongoing work on Radial Basis Function Neural Networks (RBF-NN) and Model Predictive Control (MPC) for Permanent Magnet Synchronous Motors (PMSM) is aimed at optimizing energy conversion processes. He is particularly interested in how these technologies can be applied to renewable energy sources and contribute to more sustainable engineering solutions.

Research Skills

Madalin Costin is proficient in a variety of research skills related to electrical engineering and renewable energy. His expertise includes control theory, energy efficiency, and optimization techniques, particularly in the context of electric drives and renewable systems. He is skilled in using advanced computational methods, including neural networks and predictive control algorithms, to model and optimize energy systems. Madalin also possesses solid skills in project management, demonstrating an ability to lead and coordinate complex research initiatives. Additionally, his proficiency in academic writing and presenting research ensures that his work reaches both scientific and industrial audiences.

Awards and Honors

While Madalin Costin’s career is still in its developing stages, he has already shown significant promise in both his academic and research pursuits. His work on energy efficiency and control strategies for electric drives has been recognized within his university and research community. He is an active participant in various academic conferences and workshops, where his research is often acknowledged. His ongoing contributions to research on renewable energy systems, particularly in the context of electromagnetic energy conversion, are likely to garner more formal recognition as his research advances and his academic portfolio expands.

Conclusion

Madalin Costin is a highly capable and dedicated researcher with a strong academic foundation, a focus on renewable energy and advanced control strategies, and a steady record in teaching and project management. His current research and his approach to advanced energy systems place him in a strong position for the Best Researcher Award. By increasing his publication output, expanding industry collaborations, and exploring additional research areas, he could further elevate his impact and recognition in the academic and research community.

Publication Top Notes

  1. Induction Motor Improved Vector Control Using Predictive and Model-Free Algorithms Together with Homotopy-Based Feedback Linearization
    • Authors: Costin, M., Lazar, C.
    • Year: 2024
    • Journal: Energies, 17(4), 875
  2. Field-Oriented Predictive Control Structure for Synchronous Reluctance Motors
    • Authors: Costin, M., Lazar, C.
    • Year: 2023
    • Journal: Machines, 11(7), 682
    • Citations: 5
  3. Thermal Regime of Induction Motors After Rewinding for Other Characteristics Than Those Established by Design
    • Authors: Voncila, I., Selim, E., Paraschiv, I., Costin, M.
    • Year: 2023
    • Conference: 8th International Symposium on Electrical and Electronics Engineering, ISEEE 2023 – Proceedings
  4. Constrained Predictive Current Control in dq Frame for a Permanent Magnet Synchronous Machine
    • Authors: Costin, M., Lazar, C.
    • Year: 2023
    • Conference: IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2023
  5. Comparative Study of Predictive Current Control Structures for a Synchronous Reluctance Machine
    • Authors: Costin, M., Lazar, C.
    • Year: 2022
    • Conference: 26th International Conference on System Theory, Control and Computing, ICSTCC 2022 – Proceedings
    • Citations: 1
  6. Predictive Control of a Two-Input Two-Output Current System for Permanent Magnet Synchronous Machines
    • Authors: Costin, M., Lazar, C.
    • Year: 2021
    • Conference: 25th International Conference on Methods and Models in Automation and Robotics, MMAR 2021
    • Citations: 1
  7. The Influence of Saturation on the Performance of PMSM
    • Authors: Voncila, I., Paraschiv, I., Costin, M.
    • Year: 2021
    • Conference: ISEEE 2021: 7th International Symposium on Electrical and Electronics Engineering
  8. Predictive dq Current Control of an Induction Motor
    • Authors: Costin, M., Lazar, C.
    • Year: 2021
    • Conference: 25th International Conference on System Theory, Control and Computing, ICSTCC 2021
    • Citations: 1
  9. Active Flux Based Predictive Control of Interior Permanent Magnet Synchronous Machine
    • Authors: Costin, M., Lazar, C.
    • Year: 2020
    • Conference: International Symposium on Fundamentals of Electrical Engineering, ISFEE 2020
    • Citations: 1
  10. Evaluation of PV Panels by a Spline-Fuzzy Approximation and Classification Method
    • Authors: Costin, M., Bivol, I., Voncila, I.
    • Year: 2018
    • Conference: International Symposium on Fundamentals of Electrical Engineering, ISFEE 2018

 

Ali OUBELKACEM | Energy | Best Researcher Award

Prof. Ali OUBELKACEM | Energy | Best Researcher Award

Professor at FS/UMI, Morocco

Prof. Ali Oubelkacem is a distinguished academic in the Department of Computer Science at Université Moulay Ismail, Meknès, Morocco. He holds a Doctorate in Computer Science and a Master’s degree from INSA Lyon, specializing in Information Systems and Networks. With a career spanning over two decades, he has contributed significantly to research in material physics, magnetism, numerical scientific computing, and deep learning, particularly in energy applications. His involvement in various national and international research projects, including studies on nanostructured systems and the impact of technology on environmental issues, underscores his commitment to advancing scientific knowledge. Prof. Oubelakcem has presented at numerous international conferences and has published extensively in peer-reviewed journals, showcasing his expertise in perovskite solar cells and magnetic materials. His academic leadership is complemented by his role in training future scientists and his active participation in educational technology initiatives.

Professional Profile

Education

Prof. Ali Oubelkacem holds a robust academic background in the fields of computer science and physics. He earned his Doctorate in Science with a focus on Computer Physics from Université Moulay Ismail in 2004, achieving the distinction of Très honorable. Prior to this, he completed a Master’s Degree in Specialized Computer Science at INSA Lyon in collaboration with the École Nationale de l’Industrie Minérale in Rabat in 2005, where he specialized in Information Systems and Networks, graduating with A.Bien. His foundational education includes a Diploma in Advanced Studies in Mechanics, Energy, and Thermodynamics from Université Abdelmalek Essaâdi in Tétouan in 2000, and a Master’s Degree in Specialized Science in Mechanics from Université Cadi Ayyad in 1998, both with A.Bien. Prof. Oubelkacem’s extensive education has provided him with a solid foundation for his research and teaching career in computer science and materials physics.

Professional Experience

Prof. Ali Oubelkacem is a distinguished academic and researcher at the Département d’Informatique, Faculté des Sciences, Université Moulay Ismail in Meknès, Morocco. He has held the position of Professor of Higher Education since 2010, contributing significantly to the field of computer science. With a robust academic background, including a Doctorate in Computational Physics and a Specialized Master’s in Computer Science, he specializes in materials physics, magnetism, and deep learning applied to energy systems. His professional journey includes various roles, such as a trainer at the Institut Spécialisé Industriel de Mohammedia, where he taught modules related to information systems and networks. Prof. Oubelkacem is also an active member of several research teams and has participated in numerous national and international research projects. His involvement in organizing conferences and publishing research papers highlights his commitment to advancing knowledge in his field.

Research Interests

Prof. Ali Oubelkacem specializes in various fields of research, including the physics of materials and magnetism, scientific numerical calculations, and deep learning applications in energy domains. His work focuses on the modeling of nanostructured systems, emphasizing the magnetic properties and behavior of innovative materials. He has been actively involved in numerous national and international research projects, including the use of information and communication technologies (ICT) for the analysis and modeling of marine acidification. Prof. Oubelkacem has also explored the application of machine learning techniques to optimize photovoltaic parameters, contributing to advancements in renewable energy technologies. His extensive publication record in international journals highlights his commitment to advancing scientific knowledge in materials science, particularly in the development of perovskite solar cells and magnetic materials. Through his research, he aims to bridge theoretical concepts with practical applications, fostering innovation in both academia and industry.

Awards and Honors

Prof. Ali Oubelkacem has garnered recognition for his significant contributions to the field of computer science and material physics. He has been awarded multiple grants for his research projects, including funding for his participation in international collaborations such as the “I-WALAMAR” project with German research institutions. His dedication to academic excellence is further demonstrated through his active involvement in numerous international conferences, where he has not only presented his findings but also contributed to the advancement of knowledge in his areas of expertise. In addition to his research accomplishments, Prof. Oubelkacem is known for his commitment to teaching and mentoring students, inspiring the next generation of scientists and researchers. His work has been acknowledged through various publication accolades in reputable journals, highlighting his innovative approach in areas such as deep learning and material magnetism. These achievements underscore Prof. Oubelkacem’s stature as a leading researcher in his field.

Conclusion

Pr. Ali Oubelkacem demonstrates a robust profile as a researcher with significant contributions to the fields of material physics and informatics. His strengths in academic qualifications, professional experience, research contributions, publications, and conference engagement position him as a suitable candidate for the Best Researcher Award. By addressing areas for improvement, particularly in enhancing the societal impact of his research and expanding his collaborative efforts, he could further amplify his contributions to the scientific community. His commitment to ongoing professional development and involvement in national and international projects underscores his potential to continue making valuable contributions to his field.

Publication Top Note

  1. Effects of moringa (Moringa oleifera) leaf powder supplementation on growth performance, haematobiochemical parameters and gene expression profile of stinging catfish, Heteropneustes fossilis
    • Authors: Sharker, M.R., Hasan, K.R., Alam, M.A., Islam, M.M., Haque, S.A.
    • Year: 2024
    • Journal: Aquaculture Reports
    • Volume/Page: 39, 102388
    • Citations: 0
  2. Diversity pattern of ichthyofaunal assemblage in South-central coastal region of Bangladesh
    • Authors: Sharker, M.R., Kabir, M.A., Choi, S.D., Rahman, M.M., Shamuel, T.A.
    • Year: 2024
    • Journal: European Zoological Journal
    • Volume/Issue/Page: 91(2), pp. 830–841
    • Citations: 0
  3. Nutritional composition of available freshwater fish species from homestead ponds of Patuakhali, Bangladesh
    • Authors: Sumi, K.R., Sharker, M.R., Rubel, M., Islam, M.S.
    • Year: 2023
    • Journal: Food Chemistry Advances
    • Volume/Page: 3, 100454
    • Citations: 2
  4. Nutritional profiling of some selected commercially important freshwater and marine water fishes of Bangladesh
    • Authors: Ullah, M.R., Rahman, M.A., Haque, M.N., Islam, M.M., Alam, M.A.
    • Year: 2022
    • Journal: Heliyon
    • Volume/Issue/Page: 8(10), e10825
    • Citations: 8
  5. Non-Financial and Financial Factors Influencing the Mode of Life of the Gher Farmers from the Western Coastal Areas of Bangladesh
    • Authors: Roy, P., Choi, S.D., Nadia, Z.M., Kamrujjaman, M., Sharker, M.R.
    • Year: 2022
    • Journal: Egyptian Journal of Aquatic Biology and Fisheries
    • Volume/Issue/Page: 26(2), pp. 555–576
    • Citations: 0
  6. Twoblotch ponyfish Nuchequula blochii (Valenciennes, 1835) in the Sundarban Reserve Forest habitat of Bangladesh: Second record and establishment probability
    • Authors: Hanif, M.A., Hossen, S., Sharker, M.R., Siddik, M.A.B.
    • Year: 2021
    • Journal: Lakes and Reservoirs: Science, Policy and Management for Sustainable Use
    • Volume/Issue/Page: 26(3), e12368
    • Citations: 0
  7. Construction of a Genetic Linkage Map Based on SNP Markers, QTL Mapping and Detection of Candidate Genes of Growth-Related Traits in Pacific Abalone Using Genotyping-by-Sequencing
    • Authors: Kho, K.H., Sukhan, Z.P., Hossen, S., Jung, H.-J., Nou, I.-S.
    • Year: 2021
    • Journal: Frontiers in Marine Science
    • Volume/Page: 8, 713783
    • Citations: 8
  8. Effective accumulative temperature affects gonadal maturation by controlling expression of GnRH, GnRH receptor, serotonin receptor and APGWamide gene in Pacific abalone, Haliotis discus hannai during broodstock conditioning in hatcheries
    • Authors: Sukhan, Z.P., Cho, Y., Sharker, M.R., Rha, S.-J., Kho, K.H.
    • Year: 2021
    • Journal: Journal of Thermal Biology
    • Volume/Page: 100, 103037
    • Citations: 11
  9. Thermal Stress Affects Gonadal Maturation by Regulating GnRH, GnRH Receptor, APGWamide, and Serotonin Receptor Gene Expression in Male Pacific Abalone, Haliotis discus hannai During Breeding Season
    • Authors: Sukhan, Z.P., Sharker, M.R., Cho, Y., Choi, K.S., Kho, K.H.
    • Year: 2021
    • Journal: Frontiers in Marine Science
    • Volume/Page: 8, 664426
    • Citations: 10
  10. First record of whitespot sandsmelt, Parapercis alboguttata (Günther, 1872) from the southeast coast of Bangladesh
    • Authors: Hanif, M.A., Siddik, M.A.B., Sharker, M.R.
    • Year: 2021
    • Journal: Indian Journal of Geo-Marine Sciences
    • Volume/Issue/Page: 50(6), pp. 498–501
    • Citations: 0