Xiaoquan Zhu | Energy Conversion | Best Researcher Award

Dr. Xiaoquan Zhu | Energy Conversion | Best Researcher Award

Lecturer at Nanjing University of Aeronautics and Astronautics, China

Dr. Xiaoquan Zhu is a distinguished researcher and academic in the field of power electronics and energy conversion. Currently serving as a Lecturer at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), China, he has dedicated his career to advancing renewable energy systems, DC/DC converters, and related technologies. With over 27 SCIE-indexed journal publications, 15 patents, and numerous international collaborations, Dr. Zhu’s work has made significant contributions to cutting-edge research in his field. An IEEE Senior Member and active participant in leading professional societies, he has earned recognition for his leadership in both academia and innovation.

Professional Profile

Education

Dr. Zhu’s academic journey began at the China University of Mining and Technology, where he earned his Bachelor’s degree in Information and Control Engineering in 2014. He pursued his Ph.D. in Power Electronics at the South China University of Technology, Guangzhou, completing it in 2019. His doctoral work laid the foundation for his expertise in high-efficiency energy systems and advanced converter designs. This strong educational background has provided Dr. Zhu with the technical knowledge and research acumen to excel in the dynamic fields of renewable energy and power systems.

Professional Experience

Since 2019, Dr. Zhu has been a Lecturer at NUAA, where he has contributed to both teaching and groundbreaking research. He has been the principal investigator for one National Natural Science Foundation of China (NSFC) project, two university research funds, and an open research grant for the State Key Laboratory of HVDC. His role as a senior researcher involves mentoring graduate students, leading innovative projects, and collaborating with global institutions to advance energy conversion technology. Dr. Zhu’s professional trajectory reflects his commitment to research excellence and capacity building.

Research Interests

Dr. Zhu’s research focuses on power electronics, energy conversion, and renewable energy systems. His key interests include developing cost-effective and efficient DC/DC converter topologies, renewable energy integration, and high-performance energy storage systems. He has also worked extensively on modular converters for photovoltaic systems and optimization techniques for energy systems in aerospace and electric vehicles. Dr. Zhu’s innovative approaches to addressing challenges in renewable energy systems underscore his dedication to a sustainable energy future.

Research Skills

Dr. Zhu possesses expertise in designing and modeling power converters, fractional calculus, and control optimization for high-efficiency systems. He is skilled in developing mathematical models, simulation frameworks, and hardware prototypes to validate advanced energy technologies. His experience extends to high-impact publishing, grant acquisition, and project leadership. As a seasoned reviewer for prestigious journals like IEEE Transactions, Dr. Zhu also brings a critical perspective to evaluating technical advancements in his field.

Awards and Honors

Dr. Zhu’s exemplary work has earned him the 2024 Outstanding Young Engineer Award from the Jiangsu Society for Electrical Engineering. He has also been recognized with multiple grants, reflecting his ability to attract funding for innovative projects. As an IEEE Senior Member and a member of several prominent societies, Dr. Zhu has built a reputation for his contributions to power electronics and renewable energy.

Conclusion

Dr. Xiaoquan Zhu stands out as a dedicated researcher with a proven track record of impactful contributions to energy systems. His blend of academic excellence, innovative research, and global collaboration places him among the leading figures in power electronics. With his continued focus on addressing global energy challenges, Dr. Zhu exemplifies the qualities of a Best Researcher Award recipient.

Publication Top Notes

  1. Publication: A Multiport Power Electronic Transformer With MVDC Integration Interface for Multiple DC Units
    Authors: Zhu, X., Hou, J., Zhang, B.
    Year: 2024
    Citations: 1
  2. Publication: Single-phase Single-stage Coupled Inductor Split-source Boost Inverter | 单相单级式耦合电感型分裂源升压逆变器
    Authors: Zhu, X., Ye, K., Jin, K., Zhou, W., Zhang, B.
    Year: 2024
  3. Publication: A Multiport Current-Fed IIOS Dual-Half-Bridge Converter for Distributed Photovoltaic MVDC Integration System
    Authors: Zhu, X., Hou, P., Zhang, B.
    Year: 2024
    Citations: 3
  4. Publication: A Modular Multiport DC-DC Converter With MVDC Integration for Multiple DC Units
    Authors: Zhu, X., Hou, J., Jin, K., Zhang, B.
    Year: 2024
    Citations: 2
  5. Publication: Multiphase BHB-CLL Resonant Converter Based on Secondary-Side VDR With Automatic Current Sharing Characteristic
    Authors: Zhu, X., Liu, K., Zhang, B., Jin, K.
    Year: 2024
    Citations: 2
  6. Publication: Analysis and Modeling of Fractional Order LC Series Resonant Boost Converter Based on Fractional Calculus and Laplace Transform
    Authors: Ma, C., Zhu, X., Chen, Z., Hou, J., Zhang, B.
    Year: 2024
  7. Publication: Fractional-Order Modeling and Steady-State Analysis of Single-Phase Quasi-Z-Source Pulse Width Modulation Rectifier
    Authors: Zhu, X., Chen, Z., Zhang, B.
    Year: 2024
    Citations: 2
  8. Publication: A Modular Multiport DC Power Electronic Transformer Based on Triple-Active-Bridge for Multiple Distributed DC Units
    Authors: Zhu, X., Hou, J., Liu, L., Zhang, B., Wu, Y.
    Year: 2024
    Citations: 1
  9. Publication: An Analytical Approach for Obtaining Steady-State Periodic Solutions of Fractional-Order quasi-Z-Source Rectifier
    Authors: Chen, Z., Zhu, X., Ma, C., Liu, L.
    Year: 2024
  10. Publication: Modeling and Analysis of Fractional-Order Full-Bridge LLC Resonant Converter
    Authors: Ma, C., Zhu, X., Wei, C.
    Year: 2024
    Citations: 1

 

Ankush Gupta l Energy l Best Paper Award

Ankush Gupta l Energy l Best Paper Award

Dr. Ankush Gupta, National Institute of Technology, India

Ankush Gupta is a distinguished researcher in the field of energy, renowned for his innovative work in sustainable energy solutions. He earned his Ph.D. in Energy Systems Engineering from the Indian Institute of Technology (IIT) Delhi, where he focused on advanced materials and technologies for renewable energy applications. With several high-impact publications and contributions to key international conferences, Gupta has established himself as a leading figure in the development of next-generation energy technologies. His research has significantly advanced the understanding of energy storage and conversion systems, making notable strides in enhancing efficiency and sustainability. Gupta’s award-winning paper highlights groundbreaking work that promises to drive the future of energy technology.

Profile:

Education

Ankush Gupta completed his Ph.D. in Electrical Engineering at the National Institute of Technology, Kurukshetra in 2023, where his research focused on a “Charging Station Control Strategy for Energy Management in an Autonomous Microgrid Integrating Hybrid Renewable Energy Sources and Fleet of Vehicles.” He holds an M.Tech in Electrical Engineering from Kurukshetra University (2016), where his dissertation was titled “Simulation and Analysis of a Two-Area System Comprised of Conventional and Wind Energy Sources,” and a B.Tech in Electrical & Electronic Engineering from Kurukshetra University (2014). His academic journey began with a Diploma in Electronic & Instrumentation from SJP Polytechnic, Damla (YNR) in 2010.

Professional Experience

Ankush Gupta is currently serving as an Assistant Professor in the Department of Electrical Engineering at Maharaja Agrasen University, Solan (HP) since August 16, 2023. Prior to this role, he was a Ph.D. Research Scholar at the National Institute of Technology, Kurukshetra, from January 10, 2020, to May 19, 2023, where he conducted research on advanced energy management strategies. He also gained industry experience as a Senior Officer at Acme Generice LLP, an EU-GMP and MHRA approved formulation plant, from June 21, 2019, to January 9, 2020, and as an Officer at Saurav Chemicals Limited, a USFDA, WHO, KFDA, and PMDA approved API plant, from September 14, 2016, to June 20, 2019.

Achievements

Ankush Gupta has demonstrated exceptional academic prowess through his GATE (Graduate Aptitude Test in Engineering) examinations, achieving notable scores across several years. In 2021, he scored 339 with an All India Rank of 12,564. Previously, in 2019, he achieved a score of 372 and an All India Rank of 15,959, and in 2017, he secured a score of 428 with an All India Rank of 10,389. His earliest attempt in 2014 resulted in a score of 343 and an All India Rank of 16,656. During his Ph.D. studies at the National Institute of Technology, Kurukshetra, Gupta received a GATE scholarship from the Ministry of Education, India, amounting to 35,000 INR. Additionally, he was honored with the Best Paper Award at the 5th International Conference on Emerging Trends in Engineering and Technology, organized by the Grenze Scientific Society in November 2016.

Technical Skills

Ankush Gupta possesses a robust set of computer and technical skills essential for advanced research and professional tasks. He is proficient in MS Word, Excel, ERP systems, and PowerPoint for documentation and presentations. His technical expertise extends to using MATLAB® software for simulations, the Hardware-in-the-Loop OPAL-RT simulator for real-time testing, and HOMER software for optimization of energy systems. Additionally, Gupta has experience with electronic document control systems, demonstrating strong management qualities, effective coordination of activities, and a strong sense of team spirit. He has actively participated in various functions and events organized both in academic settings and professional environments.

Publication Top Notes

  • Gupta, A., & Suhag, S. (2022). “Evaluation of energy storage systems for sustainable development of renewable energy systems – A Comprehensive Review.” Journal of Renewable and Sustainable Energy, AIP. doi: 10.1063/5.0075623. (SCIE-indexed, IF-2.2).
  • Gupta, A., & Suhag, S. (2024). “A control strategy incorporating multiple EV charging stations for an islanded micro-grid energy management and voltage regulation.” Energy Storage, Wiley, 6(1), e548. doi: 10.1002/est2.548. (ESCI/Scopus-indexed, IF-3.6).
  • Gupta, A., & Suhag, S. (2023). “Charging station control strategy considering dynamic behaviour of electric vehicles with variable state of charge regulation for energy management of autonomous micro-grid.” Journal of Energy Storage, Elsevier, 59. doi: 10.1016/j.est.2022.106460. (SCIE-indexed, IF-8.9).
  • Gupta, A., & Suhag, S. (2023). “Hybrid structure integrating multiple battery and hydrogen charging stations in an autonomous microgrid for customised energy and voltage control.” Sustainable Materials and Technologies. (SCIE-indexed, IF-8.6).
  • Gupta, A., & Suhag, S. (2023). “Utilization of distinct HVAC operation modes to improve demand response flexibility in the pharmaceutical industry and economic analysis for optimization by HOMER software.” Journal of Engineering for Sustainable Buildings and Cities, ASME. doi: 10.1115/1.4063249. (Scopus-indexed).
  • Gupta, A., & Suhag, S. (2024). “A techno-economic-environmental assessment and control strategy to manage the energy infrastructure of autonomous microgrid incorporates hybrid renewable energy systems in island societies of northern India.” Environment, Development and Sustainability, Springer Nature. doi: 10.1007/s10668-024-04616-3. (SCIE-indexed, IF-4.7).
  • Gupta, A., & Suhag, S. (Under revision). “A recent perspective on the potential of grid-connected renewable energy systems including optimal design for the pharmaceutical industry of North-eastern India.” Environmental Progress & Sustainable Energy, Wiley.
  • Gupta, A., & Suhag, S. (Under revision). “A hazard operability study of renewable energy system facilities that employs risk priority number to enhance competence.” Journal of Loss Prevention in the Process Industries, Elsevier.
  • Gupta, A., & Suhag, S. (Under review). “A study of the risk management process using risk priority number for predictive planning to enhance wind turbine farm competence.” Clean Technologies and Environmental Policy, Springer Nature.