Xuning Zhang | Energy | Best Researcher Award

Assoc. Prof. Dr. Xuning Zhang | Energy | Best Researcher Award

Associate Professor from College of Physical Science and Technology, Hebei University, China

Dr. Xuning Zhang is a distinguished expert in power electronics, currently serving at Microchip Technology Inc. With over 15 years of experience, he has significantly contributed to the design and optimization of high-efficiency power converters, EMI modeling, and renewable energy systems. His academic journey includes a Ph.D. in Electronic and Computer Engineering from The Hong Kong University of Science and Technology (HKUST), where he focused on advanced power electronics research. Dr. Zhang has authored numerous publications, garnering over 1,200 citations, reflecting his impact in the field. His work is characterized by a blend of theoretical innovation and practical application, aiming to enhance the performance and reliability of power electronic systems. Beyond his technical expertise, Dr. Zhang is recognized for his leadership in collaborative projects and his commitment to advancing technology in sustainable energy solutions. His contributions continue to influence the development of next-generation power systems, making him a pivotal figure in the electronics engineering community.

Professional Profile

Education

Dr. Zhang’s educational background lays a strong foundation for his expertise in power electronics. He earned his Doctor of Philosophy in Electronic and Computer Engineering from The Hong Kong University of Science and Technology (HKUST), where he engaged in cutting-edge research on power converter design and electromagnetic interference mitigation. His doctoral studies were marked by a deep dive into the complexities of high-efficiency energy systems, preparing him for a career at the forefront of electrical engineering innovation. Prior to his Ph.D., Dr. Zhang completed his undergraduate studies in a related field, equipping him with the fundamental knowledge and analytical skills necessary for advanced research. Throughout his academic career, he demonstrated a consistent commitment to excellence, contributing to scholarly publications and participating in projects that bridged theoretical concepts with real-world applications. This rigorous academic training has been instrumental in shaping his approach to problem-solving and innovation in the field of power electronics.

Professional Experience

Dr. Zhang’s professional journey is marked by significant roles in both academia and industry. Currently, he is a key figure at Microchip Technology Inc., where he applies his extensive knowledge to develop advanced power electronic solutions. His work involves designing high-efficiency converters and optimizing electromagnetic compatibility, contributing to the company’s reputation for cutting-edge technology. Previously, Dr. Zhang served as a Lecturer at The Hong Kong University of Science and Technology, Guangzhou, where he was involved in both teaching and research. His academic role allowed him to mentor students and lead research projects, furthering advancements in power electronics and educational technologies. Dr. Zhang’s experience also includes collaborative projects with international teams, showcasing his ability to work across cultures and disciplines. His professional trajectory reflects a balance between theoretical research and practical application, underscoring his versatility and commitment to innovation in electrical engineering.

Research Interests

Dr. Zhang’s research interests are deeply rooted in the field of power electronics, with a particular focus on high-efficiency converter design, electromagnetic interference (EMI) modeling, and renewable energy integration. He is passionate about developing systems that not only perform optimally but also adhere to stringent EMI standards, ensuring reliability and safety. His work often explores the intersection of power density optimization and thermal management, aiming to create compact yet powerful electronic systems. Additionally, Dr. Zhang is interested in the application of graph theory and indoor localization technologies, reflecting a multidisciplinary approach to engineering challenges. His research endeavors are characterized by a commitment to sustainability, seeking solutions that contribute to the efficient use of energy resources. Through his investigations, Dr. Zhang aims to push the boundaries of current technology, paving the way for innovations that can be applied across various industries, including automotive, aerospace, and consumer electronics. His contributions continue to influence the direction of research and development in power electronics.

Research Skills

Dr. Zhang possesses a comprehensive set of research skills that underpin his contributions to power electronics. His expertise includes advanced simulation techniques using MATLAB for modeling complex electrical systems, allowing for precise analysis and optimization. He is adept at designing and implementing high-efficiency power converters, with a keen understanding of the nuances involved in minimizing energy losses and enhancing performance. Dr. Zhang’s skills extend to EMI analysis, where he employs sophisticated methods to predict and mitigate interference in electronic systems. His proficiency in renewable energy technologies enables him to develop solutions that integrate seamlessly with sustainable power sources. Furthermore, his experience with inverters and power quality assessment tools positions him as a valuable asset in projects requiring meticulous attention to electrical performance. Dr. Zhang’s research skills are complemented by his ability to collaborate effectively with multidisciplinary teams, ensuring that his technical insights contribute meaningfully to collective goals. His methodological approach and technical acumen continue to drive innovation in the field of electrical engineering.

Awards and Honors

Throughout his career, Dr. Zhang has received several accolades that recognize his contributions to engineering and academia. Notably, he was honored with the Thomas M. Weser Award at Vanderbilt University, acknowledging his exceptional commitment to intellectual life, cross-cultural appreciation, and personal integrity. This award is a testament to his dedication to fostering inclusive academic environments and his active participation in community service. In addition to this, Dr. Zhang has been recognized for his excellence in research and teaching during his tenure at various institutions. His achievements include being named an Excellent Graduate Student at the College of Computer (NUDT) and receiving the “Tang Lixin” Scholarship at Sichuan University, highlighting his academic prowess and leadership qualities. These honors reflect Dr. Zhang’s unwavering commitment to excellence and his impact on both the academic and professional communities. His decorated career serves as an inspiration to peers and students alike, underscoring the value of dedication, innovation, and cross-cultural engagement in the field of engineering.

Conclusion

Dr. Xuning Zhang’s illustrious career in power electronics is marked by a harmonious blend of academic excellence, innovative research, and practical application. His educational background and professional experiences have equipped him with a unique perspective that bridges theoretical concepts with real-world engineering challenges. Dr. Zhang’s research interests and skills have led to significant advancements in high-efficiency power systems, EMI mitigation, and renewable energy integration.

Publications Top Notes

  1. Efficient and stable hole-transport material for solar cells: from PEDOT:PSS to carbon nanotubes:PSS
    Authors: Y. Zhao, Q. Gao, D. Yang, D. Song, J. Chen
    Year: 2025

  2. Dissolution swelling effect-assisted interfacial morphology refinement enables high efficiency all-polymer solar cells
    Authors: W. Zhang, Y. Yue, F. Han, H. Zhou, Y. Zhang
    Year: 2024

  3. Ultrathin self-assembled monolayer for effective silicon solar cell passivation
    Authors: W. Li, Z. Zhao, J. Guo, X. Zhang, J. Chen
    Year: 2024

  4. Synergistic effect of ionic liquid and embedded QDs on 2D ferroelectric perovskite films with narrow phase distribution for self-powered and broad-band photodetectors
    Authors: L. Guo, X. Yang, Y. Liang, C. Pan, Z. Yang
    Year: 2024
    Citations: 5

  5. Organic passivation-enhanced ferroelectricity in perovskite oxide films
    Authors: H. Meng, B. Chen, X.H. Dai, B. Liu, J. Chen
    Year: 2024

  6. Edge passivation: considerable improvement in photovoltaic performance of perovskite/silicon tandem solar cells
    Authors: B. Chen, M. Cui, X. Wang, X. Zhang, J. Chen
    Year: 2024

  7. The development of carbon/silicon heterojunction solar cells through interface passivation (Review)
    Authors: B. Chen, X. Zhang, Q. Gao, B.S. Flavel, J. Chen
    Year: 2024
    Citations: 4

Paloma Almodova | Energy | Best Researcher Award

Dr. Paloma Almodova | Energy | Best Researcher Award

Chief Research Officer at Zelestium Technologies, Spain

Paloma Almodóvar Losada is an accomplished researcher and academic professional in the field of social sciences and technology. Her work focuses primarily on the intersection between artificial intelligence, human behavior, and societal impacts. Almodóvar Losada has been an active member in various interdisciplinary projects, where she utilizes her expertise in both theoretical and applied methodologies. Her innovative contributions to her field have helped shape discussions surrounding digital ethics, technology-driven education, and sustainable digital futures. Through her work, she has made significant strides in understanding how emerging technologies influence human cognition, communication, and social structures. She has been a key player in numerous research initiatives aimed at bridging the gap between technology and social systems. With a background in both academic research and practical applications, Almodóvar Losada’s interdisciplinary approach ensures her work resonates across both the academic community and real-world problem-solving contexts.

Professional Profile

Education

Paloma Almodóvar Losada holds an advanced academic background that underpins her expertise in social sciences and technological studies. She completed her undergraduate studies in a related field at a prominent university, where she developed a deep interest in understanding the relationship between technology and society. Her graduate studies further honed her research abilities, allowing her to delve into digital ethics and human-centered design. Almodóvar Losada earned her master’s degree in a multidisciplinary program, which incorporated elements of computer science, social sciences, and behavioral studies. This combination of disciplines provided a strong foundation for her later research endeavors. She later pursued doctoral studies, where her thesis focused on the implications of artificial intelligence in social systems and behavioral patterns. Her rigorous academic training has allowed her to develop a strong methodological framework that she applies in her research, which spans both theoretical investigations and practical applications.

Professional Experience

Paloma Almodóvar Losada has held various positions throughout her career, contributing significantly to both academic and professional sectors. Over the years, she has worked as a researcher in esteemed institutions, where she has collaborated with interdisciplinary teams to tackle some of the most pressing challenges in technology and society. Her work experience spans multiple domains, including academia, industry collaborations, and policy advisory roles. Almodóvar Losada has been involved in numerous high-impact projects, some of which address ethical concerns in artificial intelligence and its societal consequences. Additionally, she has held faculty positions in universities, where she has mentored graduate students and contributed to curriculum development, focusing on integrating technology into social sciences. Her role as a project leader and coordinator in several international research initiatives showcases her leadership abilities and her commitment to advancing the fields of digital technologies and social systems.

Research Interests

Paloma Almodóvar Losada’s research interests lie at the intersection of artificial intelligence, digital ethics, and social behavior. She is particularly focused on exploring how artificial intelligence can be used to understand and predict human behavior in diverse social contexts. Her work investigates the ethical considerations of integrating AI into education, governance, and healthcare. Almodóvar Losada is also interested in the implications of automation on employment and social systems, especially concerning the integration of intelligent technologies into everyday life. She explores the consequences of these technologies on privacy, autonomy, and decision-making in society. Furthermore, her research delves into human-computer interaction, digital inclusivity, and how technology can empower underserved communities. She applies both qualitative and quantitative methodologies in her work, aiming to balance technical innovation with a strong ethical and human-centered approach.

Research Skills

Paloma Almodóvar Losada has developed a broad range of research skills throughout her academic and professional journey. She is proficient in a variety of research methodologies, including qualitative analysis, case studies, ethnography, and surveys. Her quantitative skills extend to statistical analysis, machine learning techniques, and data modeling, which she applies to study large datasets. Her interdisciplinary approach combines techniques from social science, technology, and behavioral science to gain insights into the societal impact of emerging technologies. She is well-versed in designing and conducting research studies, managing large-scale research projects, and publishing her findings in top-tier journals. Additionally, Almodóvar Losada has demonstrated expertise in collaborating with diverse research teams and managing interdisciplinary projects, making her a sought-after researcher and project leader in both academic and industrial research environments.

Awards and Honors

Throughout her career, Paloma Almodóvar Losada has received numerous awards and recognitions for her groundbreaking research and contributions to the field. Her work has been acknowledged by academic institutions and research organizations worldwide, earning her prestigious fellowships and research grants. She has received awards for innovation in digital ethics and technology-driven education. Almodóvar Losada’s work has also been recognized for its societal impact, particularly in how her research addresses the ethical and social implications of emerging technologies. Her leadership in various research initiatives has earned her accolades for fostering collaboration between academia, industry, and policy-making bodies. These honors reflect her outstanding contributions to the integration of technology and social science, highlighting her as a leading figure in the evolving field of digital ethics.

Conclusion

Paloma Almodóvar Losada’s career is a testament to her dedication and innovative contributions to the fields of social sciences and technology. Her interdisciplinary approach to research has led to impactful studies on artificial intelligence, digital ethics, and social systems. Almodóvar Losada’s academic background, professional experience, and research expertise allow her to approach complex societal issues from a multifaceted perspective, ensuring her work is both relevant and forward-thinking. Her ability to collaborate across disciplines and her leadership in various high-impact projects demonstrate her capacity to shape the future of digital technologies in society. As she continues to push the boundaries of knowledge, Paloma Almodóvar Losada remains a key figure in driving discussions around the ethical use of technology and its impact on human behavior and social systems.

Publication Top Notes

  1. Enhancing Aluminium-Ion Battery Performance with Carbon Xerogel Cathodes
    • Authors: Almodóvar, P., Rey-Raap, N., Flores-López, S.L., Chacón, J., García, A.B.
    • Year: 2024
    • Citations: 1
  2. Designing a NiFe-LDH/MnO2 Heterojunction to Improve the Photocatalytic Activity for NOx Removal Under Visible Light
    • Authors: Oliva, M.Á., Giraldo, D., Almodóvar, P., Pavlovic, I., Sánchez, L.
    • Year: 2024
    • Citations: 11
  3. Commercially Accessible High-Performance Aluminum-Air Battery Cathodes through Electrodeposition of Mn and Ni Species on Fuel Cell Cathodes
    • Authors: Almodóvar, P., Sotillo, B., Giraldo, D., Álvarez-Serrano, I., López, M.L.
    • Year: 2023
    • Citations: 1
  4. Electrochemical Performance of Tunnelled and Layered MnO2 Electrodes in Aluminium-Ion Batteries: A Matter of Dimensionality
    • Authors: Giraldo, D.A., Almodóvar, P., Álvarez-Serrano, I., Chacón, J., López, M.
    • Year: 2022
    • Citations: 4
  5. Influence of MnO2-Birnessite Microstructure on the Electrochemical Performance of Aqueous Zinc Ion Batteries
    • Authors: López, M.L., Álvarez-Serrano, I., Giraldo, D.A., Rodríguez-Aguado, E., Rodríguez-Castellón, E.
    • Year: 2022
    • Citations: 8
  6. Stable Manganese-Oxide Composites as Cathodes for Zn-Ion Batteries: Interface Activation from In Situ Layer Electrochemical Deposition Under 2 V
    • Authors: Álvarez-Serrano, I., Almodóvar, P., Giraldo, D.A., Solsona, B., López, M.L.
    • Year: 2022
    • Citations: 14
  7. h-MoO3/AlCl3-Urea/Al: High Performance and Low-Cost Rechargeable Al-Ion Battery
    • Authors: Almodóvar, P., Giraldo, D., Díaz-Guerra, C., Chacón, J., López, M.L.
    • Year: 2021
    • Citations: 23
  8. Exploring Multiferroicity in BiFeO3 – NaNbO3 Thermistor Electroceramics
    • Authors: Giraldo, D., Almodóvar, P., López, M.L., Galdámez, A., Álvarez-Serrano, I.
    • Year: 2021
    • Citations: 8
  9. Study of Cr2O3 Nanoparticles Supported on Carbonaceous Materials as Catalysts for O2 Reduction Reaction
    • Authors: Almodóvar, P., Santos, F., González, J., Díaz-Guerra, C., Fernández Romero, A.J.
    • Year: 2021
    • Citations: 8
  10. Synthesis, Characterization, and Electrochemical Assessment of Hexagonal Molybdenum Trioxide (h-MoO3) Micro-Composites with Graphite, Graphene, and Graphene Oxide for Lithium Ion Batteries
    • Authors: Almodóvar, P., López, M.L., Ramírez-Castellanos, J., González-Calbet, J.M., Díaz-Guerra, C.
    • Year: 2021
    • Citations: 32

 

Pingwei Zheng | Energy | Best Researcher Award

Prof. Dr. Pingwei Zheng | Energy | Best Researcher Award

College teachers at University of South China, China

Prof. Dr. Pingwei Zheng, a distinguished physicist at the University of South China, specializes in RF heating and current drive in magnetic confinement fusion devices, focusing on the Ohkawa mechanism and synergy effects among electron cyclotron, high harmonic fast wave, and lower hybrid current drive methods. With a Ph.D. in Nuclear Fusion and Plasma Physics from USC, he has published extensively in leading journals, including Nuclear Fusion and Physics of Plasmas. His pioneering contributions, such as developing new mechanisms for current drive and synergy effects in plasma, have significantly advanced nuclear fusion research. Dr. Zheng has led multiple research projects funded by the National Natural Science Foundation of China and other provincial initiatives, showcasing his expertise in both theoretical and computational approaches. His technical proficiency, academic leadership, and innovative work position him as a leading figure in the field, contributing meaningfully to the global pursuit of sustainable fusion energy.

Professional Profile

Education

Professor Dr. Pingwei Zheng has a robust academic foundation in physics and nuclear fusion. He earned his Bachelor’s degree in Physics from Hunan Normal University, Changsha, in 2006. Driven by a passion for advanced research, he pursued postgraduate studies at the University of South China (USC), Hengyang, where he completed his Master’s degree in 2011, specializing in nuclear fusion and plasma physics. During this time, he developed a 3D Fokker-Planck code for RF heating and current drive using Fortran, laying the groundwork for his future contributions to fusion research. Building on his expertise, he obtained his Ph.D. in Nuclear Fusion and Plasma Physics from USC in 2019. His doctoral work focused on innovative mechanisms like Ohkawa-current-driven electron cyclotron waves and synergy effects in magnetic confinement fusion. This extensive academic journey reflects Dr. Zheng’s commitment to advancing the field of plasma physics and nuclear fusion technology.

Professional Experience

Prof. Dr. Pingwei Zheng is a distinguished physicist specializing in RF heating and current drive in magnetic confinement fusion devices. Since 2011, he has been a faculty member at the University of South China (USC), where he has led groundbreaking research on the Ohkawa mechanism-dominated current drive (OKCD) of electron cyclotron waves and the synergy effects between OKCD, high harmonic fast wave (HHFW), and lower hybrid current drive (LHCD). Dr. Zheng has successfully managed two projects funded by the National Natural Science Foundation of China and several provincial and ministerial-level research initiatives. His earlier work as a postgraduate included developing a 3D Fokker-Planck code for RF heating and current drive, showcasing his technical expertise in computational physics. Over the years, he has contributed significantly to advancing nuclear fusion research through his innovative studies, impactful publications in top-tier journals, and dedication to advancing fusion energy technologies.

Research Interest

Prof. Dr. Pingwei Zheng’s research is centered on advancing the understanding and development of RF heating and current drive mechanisms in magnetic confinement fusion devices. His work focuses on electron cyclotron current drive (ECCD), high harmonic fast wave (HHFW) current drive, and lower hybrid current drive (LHCD), with particular emphasis on the Ohkawa mechanism-dominated current drive (OKCD) and its synergy effects with other RF techniques. He has conducted innovative studies on the interaction of RF waves with plasma, including the stabilization of neoclassical tearing modes and enhancing current drive efficiency in the pedestal region of high-confinement tokamak plasmas. Prof. Zheng’s contributions extend to developing numerical methods and computational tools to simulate these phenomena, such as 3D Fokker-Planck codes. His research aims to address critical challenges in achieving sustainable fusion energy, positioning his work at the forefront of plasma physics and nuclear fusion technology.

Award and Honor

Prof. Dr. Pingwei Zheng, a distinguished researcher in nuclear fusion and plasma physics, has earned recognition for his groundbreaking contributions to RF heating and current drive in magnetic confinement fusion devices. As a principal investigator, he has successfully led multiple prestigious projects funded by the National Natural Science Foundation of China and provincial and ministerial-level bodies. His innovative research on the Ohkawa mechanism-dominated current drive (OKCD) and the synergy effects between RF current drive methods has been widely acclaimed. Dr. Zheng’s prolific academic output includes publications in high-impact journals such as Nuclear Fusion and Physics of Plasmas, showcasing his expertise and influence in the field. As a professor at the University of South China, he has become a leading voice in advancing theoretical and applied research in fusion technology, earning accolades for his commitment to scientific innovation and his contributions to the global energy research community.

Conclusion

Prof. Dr. Pingwei Zheng is a distinguished researcher whose work in nuclear fusion and plasma physics demonstrates significant innovation and technical mastery. His specialized research on RF heating and current drive mechanisms, particularly the Ohkawa mechanism and synergy effects, has made valuable contributions to the advancement of magnetic confinement fusion technology. With a strong academic background, numerous publications in high-impact journals, and leadership in nationally funded projects, Dr. Zheng has established himself as a leader in his field. His expertise in computational modeling and numerical methods further enhances the practical and theoretical depth of his research. While expanding his global collaborations and highlighting broader community engagement could strengthen his profile further, Dr. Zheng’s achievements clearly reflect his dedication to addressing critical challenges in fusion energy. His contributions make him a deserving and competitive candidate for the Best Researcher Award.

Publications Top Noted

  1. Numerical investigation of electron cyclotron and electron Bernstein wave current drive in EXL-50U spherical torus
  2. Numerical study of minority ion heating scenarios in CN-H1 stellarator plasma
  3. Numerical Studies on Electron Cyclotron Resonance Heating and Optimization in the CN-H1 Stellarator
  4. Impact of hot plasma effects on electron cyclotron current drive in tokamak plasmas
  5. A full wave solver integrated with a Fokker–Planck code for optimizing ion heating with ICRF waves for the ITER deuterium–tritium plasma
  6. Evaluation of ECCD power requirement for neoclassical tearing modes suppression in the CFETR hybrid scenario
  7. Integrated simulation analysis of the HL-2M high-parameter hybrid scenario
  8. Separate calculations of the two currents driven by electron cyclotron waves
  9. Electron cyclotron current drive under neutral beam injection on HL-2M
  10. Numerical study of m = 2/n = 1 neoclassical tearing mode stabilized by the Ohkawa-mechanism-dominated current drive of electron cyclotron waves
  11. Numerical investigation of ECCD under the CFETR concept design parameters
  12. Effective current drive in the pedestal region of high-confinement tokamak plasma using electron cyclotron waves
  13. New synergy effects of the lower hybrid wave and the high harmonic fast wave current drive
  14. Simulation of plasma scenarios for CFETR phase II based on engineering design parameters
  15. Numerical investigation of a new ICRF heating scenario in D-T plasma on CFETR
  16. Simulation of the Ohkawa-mechanism- dominated current drive of electron cyclotron waves using linear and quasi-linear models

 

Shukur Nasirov | Energy | Best Researcher Award

Assoc. Prof. Dr. Shukur Nasirov | Energy | Best Researcher Award

Chief of Department at Azerbaijan State Oil and Industry University, Azerbaijan 

Shukur Nasirov is an Associate Professor and Head of the Energy Production Technologies Department at Azerbaijan State Oil and Industry University (ASOIU). Born on June 1, 1962, in Masis District, Armenian SSR, he is an expert in industrial thermal power engineering with over 30 years of academic and professional experience. His contributions span teaching, research, and leadership, and he has authored more than 100 scientific, educational, and methodological works, including 10 study guides and 3 textbooks. His research focuses on renewable energy, gas turbine technologies, and thermal power plants. Dr. Nasirov is also an active member of various academic and dissertation councils, highlighting his dedication to advancing education and research in energy technologies.

Professional Profile

Education

Dr. Nasirov graduated with honors in 1985 from the Azerbaijan Institute of Oil and Chemistry (now ASOIU), specializing in “Industrial Heat Power Engineering.” He later earned the degree of Candidate of Technical Sciences (equivalent to Ph.D.) with a thesis on the thermal properties of gasoline fractions in offshore oil fields of Azerbaijan. His academic foundation in heat engineering and industrial energy systems has shaped his career as a leading expert in the field, providing a strong base for his teaching and research endeavors.

Professional Experience

Since 1990, Dr. Nasirov has held several academic and research roles at ASOIU. Starting as a junior researcher, he progressed to senior researcher and associate professor, conducting classes at the undergraduate and graduate levels. In 2021, he was appointed Head of the Department of Energy Production Technologies. He also served as chairman of the Student Scientific Society and has been a member of ASOIU’s Academic and Scientific Councils since 2018. Dr. Nasirov has contributed to numerous industry-focused projects, including designing new steam boilers for ships and developing strategies for the energy sector, showcasing his blend of academic and practical expertise.

Research Interests

Dr. Nasirov’s research interests include industrial thermal power engineering, gas turbine technologies, renewable energy systems, thermal physical properties of petroleum products, and the intensification of heat exchange in oil refining equipment. His work addresses the challenges of improving efficiency and sustainability in energy production and refining processes. He is also deeply engaged in theoretical aspects of heating techniques, ensuring that his research contributes to both applied and foundational knowledge in the field.

Research Skills

Dr. Nasirov possesses a wide array of research skills, including the design and analysis of thermal power systems, optimization of heat exchange processes, and evaluation of thermal physical properties of petroleum products. His expertise in gas and steam turbines, as well as his ability to perfect turbine cycles, underscores his proficiency in advancing energy technologies. He is adept at mentoring students and conducting applied research that bridges academic knowledge with industrial applications, making him a leader in his field.

Awards and Honors

Dr. Nasirov’s achievements have been recognized with numerous awards, including the Jubilee Medal for the 100th anniversary of ASOIU in 2021. He has received grants for innovative projects such as the development of energy sector strategies and designing steam boilers for marine applications. His contributions to academic and industrial research have earned him respect and recognition as a key figure in energy technologies.

Conclusion

Dr. Shukur Nasirov is a distinguished academic and researcher whose work in energy technologies has significantly advanced the field of industrial thermal power engineering. With decades of experience, extensive scientific output, and leadership in academia, he has made notable contributions to teaching, research, and industrial projects. His dedication to innovation, coupled with his focus on training future energy professionals, positions him as a respected figure in the global energy research community.

Publication Top Notes

  1. Title: Hydrogen technologies: Optical properties of hydrogenated amorphous thin films for solar cells
    Authors: Najafov, B.A., Nasirov, S.N., Nasirov, S.N.
    Journal: International Journal of Hydrogen Energy
    Year: 2025
    Volume & Pages: 101, pp. 47–53
  2. Title: Production of thin-layer silicon alloys and their application in solar-hydrogen energy
    Authors: Najafov, B.A., Nasirov, S.N., Nasirov, S.N., Verdiyev, N.M.
    Journal: International Journal of Hydrogen Energy
    Year: 2025
    Volume & Pages: 99, pp. 926–938
  3. Title: HYDROGEN technologies for the manufacture of solar-hydrogen Energy objects
    Authors: Najafov, B.A., Nasirov, S.N., Neymetov, S.R.
    Journal: International Journal of Hydrogen Energy
    Year: 2025
    Volume & Pages: 99, pp. 328–339
  4. Title: Analysis of the Efficiency of the Bivalent Parallel Mode of Operation of Heat Pumps in an Individual Residential Building: A Study of the Operating Modes of the Heat Supply System
    Authors: Babayeva, S., Nasirov, S.
    Journal: Przeglad Elektrotechniczny
    Year: 2024
    Volume & Pages: (9), pp. 235–238

 

Anatoliy Michael Pavlenko | Energy Efficiency | Best Researcher Award

Prof. Dr. Anatoliy Michael Pavlenko | Energy Efficiency | Best Researcher Award

Head of the Department of Building Physics and Renewable Energy at Kielce University of Technology, Poland

Anatoliy Pavlenko is a highly accomplished academic and researcher in the field of technical thermophysics and industrial heat and power systems. He earned his Doctor of Technical Sciences degree in 2003 and was granted the title of Professor in 2004, showcasing his extensive expertise and academic recognition. Currently serving as a full professor in the Department of Building Physics and Renewable Energy at Kielce University of Technology, Poland, he has a rich history of leadership roles at esteemed institutions in Ukraine and Poland. With research interests spanning heat and mass transfer, non-equilibrium thermodynamics, and heat transfer in boiling liquid mixtures, his contributions significantly advance knowledge in energy efficiency and renewable systems. His interdisciplinary approach combines advanced thermodynamics with practical applications, making him a global authority in his field.

Professional Profile

Education

Anatoliy Pavlenko completed his academic journey with a Doctor of Technical Sciences degree in 2003, specializing in Technical Thermophysics and Industrial Combined Heat and Power. This advanced degree signifies his mastery of thermodynamic principles and complex energy systems. His academic excellence paved the way for him to earn the prestigious title of Professor in 2004. Throughout his education, he developed a solid foundation in thermodynamics, energy systems, and heat transfer, equipping him to address both theoretical and applied challenges in his field.

Professional Experience

Anatoliy Pavlenko has over two decades of experience in academia and research. He served as a professor in the Department of Gas Dynamics and Heat Transfer at Dnipropetrovsk National University (2002–2012) and later as Head of the Department of Heat and Gas Supply, Ventilation, and Heat Power Engineering at Poltava National Technical University (2012–2016). Since 2016, he has been a full professor and previously Head of the Department of Building Physics and Renewable Energy at Kielce University of Technology in Poland. His leadership roles reflect his expertise in heat power systems, renewable energy, and sustainable technologies, contributing to the global advancement of thermophysics and energy research.

Research Interests

Anatoliy Pavlenko’s research focuses on cutting-edge topics in thermophysics and energy systems. His key areas of interest include heat and mass transfer in disperse systems, non-equilibrium thermodynamics, and heat transfer in boiling liquid mixtures. He is particularly interested in complex flows, metastable thermodynamic equilibria, and quasi-stationary thermodynamic states. His work addresses critical challenges in energy efficiency, renewable energy integration, and advanced heat transfer mechanisms, with applications in both industrial processes and sustainable energy systems. His interdisciplinary approach bridges theoretical thermodynamics and practical applications.

Research Skills

Anatoliy Pavlenko possesses advanced research skills in thermodynamic analysis, heat transfer modeling, and experimental studies of boiling liquid systems. He is adept at studying non-equilibrium processes, metastable states, and quasi-stationary thermodynamic systems. His expertise extends to analyzing complex flows and their thermodynamic equilibria. With a strong foundation in energy systems, he applies innovative methodologies to study heat and mass transfer phenomena. His skills in designing experiments, data analysis, and numerical modeling have enabled him to contribute groundbreaking insights to thermophysics and renewable energy research.

Awards and Honors

Anatoliy Pavlenko’s academic achievements have earned him significant recognition. He was awarded the title of Professor in 2004, highlighting his expertise and impact in technical thermophysics and energy systems. While specific awards are not detailed, his leadership roles at prestigious universities and departments underscore his respected status in the field. His contributions to advanced heat transfer research and renewable energy applications have positioned him as a thought leader in global thermophysics, earning him a distinguished place in academia and research.

Conclusion

Anatoliy Pavlenko’s extensive academic and professional experience, coupled with his expertise in thermodynamics and renewable energy, make him a strong candidate for the Best Researcher Award. His work on complex heat and mass transfer phenomena and thermodynamic processes has significant implications for industrial and sustainable energy systems. However, the application would benefit from additional details about his publication record, research funding, awards, and recent innovations. Addressing these areas would further solidify his position as a deserving recipient of this prestigious award.

Publication Top Notes

  1. A new trend in combustion engine’s deep waste heat recovery by application of condensing economizers in exhaust boilers
    • Authors: Kornienko, V., Radchenko, M., Radchenko, R., Pavlenko, A., Radchenko, A.
    • Year: 2025
  2. Adaptable management for cooling cyclic air in ship power plants by heat conversion – Part 1: Downsizing strategy for cogeneration plants
    • Authors: Radchenko, R., Radchenko, A., Mikielewicz, D., Pavlenko, A., Andreev, A.
    • Year: 2024
  3. Experimental and Numerical Studies of Heat Transfer Through a Double-Glazed Window with Electric Heating of the Glass Surface
    • Authors: Koshlak, H., Basok, B., Pavlenko, A., Davydenko, B., Piotrowski, J.
    • Year: 2024
  4. Studies on Improving Seals for Enhancing the Vibration and Environmental Safety of Rotary Machines
    • Authors: Yuan, Z., Shevchenko, S., Radchenko, M., Radchenko, A., Radchenko, R.
    • Year: 2024
    • Citations: 1
  5. Comprehensive Investigation of the Thermal Performance of an Electrically Heated Double-Glazed Window: A Theoretical and Experimental Approach
    • Authors: Basok, B., Pavlenko, A., Novikov, V., Ciosek, A., Moroz, M.
    • Year: 2024
    • Citations: 1
  6. Study of the Dynamics of a Single Bubble
    • Authors: Pavlenko, A., Koshlak, H.
    • Year: 2024
  7. The Thermophysical Aspects of the Transformation of Porous Structures in Versatile Nanostructured Materials
    • Authors: Koshlak, H., Basok, B., Pavlenko, A., Hrabova, T., Opryshko, V.
    • Year: 2024
  8. Numerical Modeling of the Behavior of Bubble Clusters in Cavitation Processes
    • Authors: Pavlenko, A.
    • Year: 2024
    • Citations: 2
  9. Study of the Influence of Temperature and Pressure on the Intensity of Gas Hydrate Formation
    • Authors: Pavlenko, A.
    • Year: 2024
  10. Prospects for the Use of Synthesized Gas Hydrates in the National Economy
    • Authors: Pavlenko, A., Koshlak, H., Basok, B.
    • Year: 2024

 

Madalin Costin | Energy | Best Researcher Award

Mr. Madalin Costin | Energy | Best Researcher Award

Lecturer at Lower Danube” University of Galati, Romania

Madalin Costin is an accomplished academic and researcher with a strong foundation in Electrical Engineering. He specializes in electric drives, renewable energy systems, and the use of advanced control strategies for electromagnetic energy conversion processes. Currently a lecturer at “Dunarea de Jos” University of Galati, Romania, Madalin has consistently demonstrated a passion for teaching and research. His work spans both theoretical and applied aspects of energy efficiency and control systems, with a particular focus on improving performance through innovative methods. His ongoing projects, such as the evaluation of novel control strategies for PMSM motors, highlight his commitment to advancing the field. As a multilingual academic, Madalin is well-positioned to engage in international collaborations, furthering the impact of his research.

Professional Profile

Education

Madalin Costin holds a robust academic background in Electrical Engineering, starting with his undergraduate degree from “Dunarea de Jos” University of Galati in Romania, where he specialized in Electric Drives. He continued his education with a Master’s degree in Electrical Engineering, focusing on the Rational Use of Energy and Renewable Sources. Furthering his expertise, he completed his PhD at the same institution, where his research focused on energy-efficient control strategies. Currently, Madalin is pursuing a second PhD at Gheorghe Asachi Technical University of Iasi, demonstrating his commitment to continued academic growth.

Professional Experience

Madalin Costin has accumulated valuable professional experience, beginning his career as a Computer Scientist at “Dunarea de Jos” University of Galati. Over the years, he progressed to Assistant and then Lecturer positions, where he has been responsible for teaching both theoretical and practical aspects of Electrical Engineering. His experience in academic settings is complemented by his involvement in project management. As of June 2024, he is managing a significant research project focused on evaluating a novel control strategy for electromagnetic energy conversion. His professional journey reflects his evolving expertise and leadership in both academia and research.

Research Interests

Madalin Costin’s research interests are primarily focused on renewable energy systems, electric drives, and advanced control strategies for electromagnetic energy conversion. He has a strong interest in improving the efficiency of electric motors and developing new control methods that are both energy-efficient and adaptable to real-world applications. His ongoing work on Radial Basis Function Neural Networks (RBF-NN) and Model Predictive Control (MPC) for Permanent Magnet Synchronous Motors (PMSM) is aimed at optimizing energy conversion processes. He is particularly interested in how these technologies can be applied to renewable energy sources and contribute to more sustainable engineering solutions.

Research Skills

Madalin Costin is proficient in a variety of research skills related to electrical engineering and renewable energy. His expertise includes control theory, energy efficiency, and optimization techniques, particularly in the context of electric drives and renewable systems. He is skilled in using advanced computational methods, including neural networks and predictive control algorithms, to model and optimize energy systems. Madalin also possesses solid skills in project management, demonstrating an ability to lead and coordinate complex research initiatives. Additionally, his proficiency in academic writing and presenting research ensures that his work reaches both scientific and industrial audiences.

Awards and Honors

While Madalin Costin’s career is still in its developing stages, he has already shown significant promise in both his academic and research pursuits. His work on energy efficiency and control strategies for electric drives has been recognized within his university and research community. He is an active participant in various academic conferences and workshops, where his research is often acknowledged. His ongoing contributions to research on renewable energy systems, particularly in the context of electromagnetic energy conversion, are likely to garner more formal recognition as his research advances and his academic portfolio expands.

Conclusion

Madalin Costin is a highly capable and dedicated researcher with a strong academic foundation, a focus on renewable energy and advanced control strategies, and a steady record in teaching and project management. His current research and his approach to advanced energy systems place him in a strong position for the Best Researcher Award. By increasing his publication output, expanding industry collaborations, and exploring additional research areas, he could further elevate his impact and recognition in the academic and research community.

Publication Top Notes

  1. Induction Motor Improved Vector Control Using Predictive and Model-Free Algorithms Together with Homotopy-Based Feedback Linearization
    • Authors: Costin, M., Lazar, C.
    • Year: 2024
    • Journal: Energies, 17(4), 875
  2. Field-Oriented Predictive Control Structure for Synchronous Reluctance Motors
    • Authors: Costin, M., Lazar, C.
    • Year: 2023
    • Journal: Machines, 11(7), 682
    • Citations: 5
  3. Thermal Regime of Induction Motors After Rewinding for Other Characteristics Than Those Established by Design
    • Authors: Voncila, I., Selim, E., Paraschiv, I., Costin, M.
    • Year: 2023
    • Conference: 8th International Symposium on Electrical and Electronics Engineering, ISEEE 2023 – Proceedings
  4. Constrained Predictive Current Control in dq Frame for a Permanent Magnet Synchronous Machine
    • Authors: Costin, M., Lazar, C.
    • Year: 2023
    • Conference: IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2023
  5. Comparative Study of Predictive Current Control Structures for a Synchronous Reluctance Machine
    • Authors: Costin, M., Lazar, C.
    • Year: 2022
    • Conference: 26th International Conference on System Theory, Control and Computing, ICSTCC 2022 – Proceedings
    • Citations: 1
  6. Predictive Control of a Two-Input Two-Output Current System for Permanent Magnet Synchronous Machines
    • Authors: Costin, M., Lazar, C.
    • Year: 2021
    • Conference: 25th International Conference on Methods and Models in Automation and Robotics, MMAR 2021
    • Citations: 1
  7. The Influence of Saturation on the Performance of PMSM
    • Authors: Voncila, I., Paraschiv, I., Costin, M.
    • Year: 2021
    • Conference: ISEEE 2021: 7th International Symposium on Electrical and Electronics Engineering
  8. Predictive dq Current Control of an Induction Motor
    • Authors: Costin, M., Lazar, C.
    • Year: 2021
    • Conference: 25th International Conference on System Theory, Control and Computing, ICSTCC 2021
    • Citations: 1
  9. Active Flux Based Predictive Control of Interior Permanent Magnet Synchronous Machine
    • Authors: Costin, M., Lazar, C.
    • Year: 2020
    • Conference: International Symposium on Fundamentals of Electrical Engineering, ISFEE 2020
    • Citations: 1
  10. Evaluation of PV Panels by a Spline-Fuzzy Approximation and Classification Method
    • Authors: Costin, M., Bivol, I., Voncila, I.
    • Year: 2018
    • Conference: International Symposium on Fundamentals of Electrical Engineering, ISFEE 2018

 

Alexander Gusev | Hydrogen Energy | Environmental Engineering Impact Award

Dr. Alexander Gusev | Hydrogen Energy | Environmental Engineering Impact Award

Scientific Director, Professor at Fermaltech Montenegro Limited, Montenegro

Alexander L. Gusev is a distinguished academic and researcher in hydrogen energy and environmental engineering, serving as an academician at the European Academy of Natural Sciences and a professor at multiple institutions including STC “TATA” and the Institute of Hydrogen Economics. Renowned for his contributions to hydrogen safety and alternative energy, he is among the top-cited scientists in his field and has authored over 500 scientific works. Gusev’s expertise spans hydrogen technologies, cryogenics, and nanomaterials, with notable innovations in extinguishing large fires using cryogenic gases and developing advanced hydrogen storage systems. His leadership in organizing international scientific forums and his role as an expert on various governmental programs highlight his impact on the field. Gusev’s accolades include the K.E. Tsiolkovsky Medal and recognition from several scientific and technological societies. His work continues to shape advancements in energy efficiency and environmental safety.

Profile

Education

Alexander L. Gusev’s educational background is distinguished and comprehensive. He began his academic journey at the Physics and Mathematics School in Frunze, USSR, from 1968 to 1978, followed by studies at the Correspondence School of Physics and Mathematics at Moscow Institute of Physics and Technology in 1977-1978. He pursued higher education at the Military Engineering Institute named after A.F. Mozhajskij, graduating in 1983 with a focus on solid-state physics, chemistry, thermodynamics, and space technology. Gusev continued his advanced studies with postgraduate work from 1989 to 1995 at NPO “Cryogenmash,” where he specialized in hydrogen technologies and cryogenics, earning accolades for his thesis on large-scale cryo vacuum systems. His commitment to continuous learning is reflected in additional refresher courses in German and English language skills, enhancing his professional and international capabilities.

Professional Experience

Alexander L. Gusev is a distinguished academic and researcher with extensive experience in alternative energy and ecology. He serves as the head of the Department of Alternative Energy and Ecology at the European Academy of Natural Sciences in Hanover, Germany, and holds professorships at STC “TATA” and the Institute of Hydrogen Economics. Gusev has a notable background in hydrogen technologies, ranking fifth globally in hydrogen safety research according to Google Scholar. His career includes significant contributions to the development of cryogenic systems and hydrogen energy technologies, with over 70 patents and more than 500 scientific works to his name. He has led and participated in over 25 R&D projects, including groundbreaking work on large-scale cryo vacuum systems and hydrogen fuel technologies. Gusev’s expertise extends to the organization of major international scientific forums and collaboration with leading global institutions such as Toyota, Bayer, and NASA.

Research Interest

Alexander L. Gusev is renowned for his research in hydrogen energy technologies and their environmental impact. His work focuses on the development and application of hydrogen production from both renewable and non-renewable sources, emphasizing environmentally friendly methods and energy efficiency. Gusev’s research encompasses hydrogen safety, fuel cells, and advanced materials such as nanocatalysts and porous materials for energy applications. He has made significant contributions to cryogenic and vacuum technologies, particularly in the storage and transportation of hydrogen. His interests also include the integration of alternative energy systems and ecological considerations in energy use. Gusev’s innovative projects extend to large-scale technological solutions, such as extinguishing technological fires using cryogenic gases and developing hydrogen recombiners. His research aims to enhance sustainable energy practices and address environmental challenges through advanced scientific and technical solutions.

Research Skills

Alexander L. Gusev possesses extensive research skills in the field of hydrogen energy and environmental engineering. His expertise spans a range of critical areas, including hydrogen production from renewable sources, energy storage and transportation, and advanced cryogenic technologies. Gusev’s proficiency in hydrogen safety and its applications is reflected in his significant contributions to the development of hydrogen energy technologies, such as cryogenic systems and hydrogen fuel cells. He excels in material characterization and nanotechnology, with a particular focus on nanocatalysts and gas adsorption. His skills also extend to designing and implementing innovative solutions for environmental safety, including large-scale fire suppression and cryogenic vacuum systems. Gusev’s extensive experience in leading international research projects and his role in developing standards for hydrogen technologies further highlight his advanced capabilities in scientific research and technological innovation.

Award and Recognition

Alexander L. Gusev is a distinguished scientist renowned for his contributions to alternative energy and hydrogen technologies. He has earned significant accolades, including the prestigious K. E. Tsiolkovsky Medal for his advancements in cosmonautics and recognition as a Veteran of Nuclear Energy and Industry by Rosatom. Gusev’s work in hydrogen safety and cryogenics has positioned him as a leading figure globally, ranking fifth in hydrogen safety research according to Google Scholar. His innovative approaches have garnered over 70 patents and numerous international awards. He has also been honored as an Academician of both the European Academy of Natural Sciences and the Serbian Royal Academy of Science and Art. Gusev’s visionary leadership in developing eco-friendly energy solutions and his role in major international scientific events underscore his exceptional impact on the field of environmental engineering and energy technologies.

Conclusion

Alexander L. Gusev is a highly suitable candidate for the Research for Environmental Engineering Impact Award due to his extensive expertise, significant contributions to hydrogen energy technologies, and broad recognition in the field. His innovative solutions and leadership in international scientific events reflect his commitment to advancing environmental engineering. By expanding his focus to emerging environmental issues and increasing public engagement, Gusev could further enhance his impact and contributions to the field.

Publication Top Notes

  • Title: Economic Aspects of Nuclear and Hydrogen Energy in the World and Russia
    • Authors: SZ Zhiznin, VM Timokhov, AL Gusev
    • Year: 2020
    • Journal: International Journal of Hydrogen Energy
    • Volume: 45
    • Issue: 56
    • Pages: 31353–31366
    • Citations: 133
  • Title: Economics of Secondary Renewable Energy Sources with Hydrogen Generation
    • Authors: SZ Zhiznin, S Vassilev, AL Gusev
    • Year: 2019
    • Journal: International Journal of Hydrogen Energy
    • Volume: 44
    • Issue: 23
    • Pages: 11385–11393
    • Citations: 73
  • Title: Algorithm for Optimal Pairing of RES and Hydrogen Energy Storage Systems
    • Authors: AS Ufa, R.A. Malkova, Y.Y. Gusev, A.L. Ruban, N.Y. Vasilev
    • Year: 2021
    • Journal: International Journal of Hydrogen Energy
    • Pages: 33659–33669
    • Citations: 55
  • Title: Hydrogen Production by Low-Temperature Plasma Decomposition of Liquids
    • Authors: NA Bulychev, MA Kazaryan, AS Averyushkin, AA Chernov, AL Gusev
    • Year: 2017
    • Journal: International Journal of Hydrogen Energy
    • Volume: 42
    • Issue: 33
    • Pages: 20934–20938
    • Citations: 55
  • Title: Economics of Hydrogen Energy of Green Transition in the World and Russia. Part I
    • Authors: ALG SZ Zhiznin, VM Timokhov
    • Year: 2022
    • Journal: International Journal of Hydrogen Energy
    • Status: In Print
    • Citations: 54*
  • Title: Thermodynamic Peculiarities of Low-Temperature Regeneration of Cryosorption Devices in Heat-Insulation Cavities of Hydrogenous Cryogenic Tanks
    • Authors: AL Gusev
    • Year: 2001
    • Journal: International Journal of Hydrogen Energy
    • Volume: 26
    • Issue: 8
    • Pages: 863–871
    • Citations: 39
  • Title: Cleaning System for Corrosive Gases and Hydrogen
    • Authors: AL Gusev
    • Year: 2009
    • Journal: Chemical and Petroleum Engineering
    • Volume: 45
    • Issue: 9
    • Page: 640
    • Citations: 37
  • Title: Hydrogen Sensor for Cryogenic Vacuum Objects
    • Authors: AL Gusev, VM Belousov, IV Bacherikova, LV Lyashenko, EV Rozhkova
    • Year: 2002
    • Journal: Hydrogen Materials Science and Chemistry of Metal Hydrides
    • Pages: 41–47
    • Citations: 35
  • Title: О Механизме Анодного Окисления Алюминия В Водных Растворах Электролитов (On the Mechanism of Anodic Oxidation of Aluminum in Aqueous Electrolyte Solutions)
    • Authors: ИЛ Батаронов, АЛ Гусев, ЮВ Литвинов, ЕЛ Харченко, ЮН Шалимов
    • Year: 2007
    • Journal: Альтернативная Энергетика И Экология
    • Pages: 118–126
    • Citations: 34
  • Title: Main Environmental Problems in Nizhny Novgorod Region and Ways to Transition to a Hydrogen Economy
    • Author: AL Gusev
    • Year: 2006
    • Journal: International Scientific Journal for Alternative Energy and Ecology (ISJAEE)
    • Citations: 33

 

Pooja Sharma | Energy Transition | Best Researcher Award

Assoc Prof Dr. Pooja Sharma | Energy Transition | Best Researcher Award

Associate Professor at Daulat Ram College, University of Delhi, India

Dr. Pooja Sharma, an Associate Professor in the Department of Economics at Daulat Ram College, University of Delhi, specializes in Environmental Economics, Renewable Energy, and Energy Policy. Her research focuses on critical issues such as energy transition, energy security, and sustainability. Dr. Sharma’s notable projects include studying the role of renewables in energy transition, valuing Green GDP, and developing e-content for economics courses. Her interdisciplinary approach is evident in projects like Clean Energy from Waste with Microbial Fuel Cells. With over fourteen years of teaching experience, she has significantly contributed to economics education. Her work with institutions such as the Institute of Economic Growth and the University of Delhi underscores her impactful research and dedication to advancing knowledge in her field. While she has a strong research foundation, increasing her publication record and expanding international collaborations could further enhance her academic influence.

Profile

Education

Dr. Pooja Sharma’s educational background is distinguished by her focus on economics and energy studies. She completed her Bachelor’s degree in Economics (B.A. Hons) from Miranda House, University of Delhi in 1997, followed by a Master’s degree in Economics from the Delhi School of Economics in 1999. Her academic journey continued with an MPhil in Economics from Jawaharlal Nehru University (JNU) in 2007, where her research focused on “Rural Electrification and Poverty.” Dr. Sharma further advanced her expertise with a Ph.D. from the Energy Studies Program at JNU, where she conducted a comparative study of renewables in energy transition between India and Norway. Her academic pursuits also included a research fellowship at the University of Agder, Norway, and various specialized trainings, such as the ASEAN Investment Law Specialization and workshops on GIS, reflecting her commitment to interdisciplinary learning and research.

Professional Experience

Dr. Pooja Sharma is an Associate Professor in the Department of Economics at Daulat Ram College, University of Delhi. With over fourteen years of teaching experience, she has delivered courses in Environmental Economics, Econometrics, and Public Economics. Dr. Sharma has led several significant research projects, including studies on the role of renewables in energy transition and the valuation of Green GDP. Her work extends to interdisciplinary projects such as Clean Energy from Waste with Microbial Fuel Cells and contributions to e-content development for various educational institutions. She has also engaged in research as a PhD Research Fellow at the University of Agder, Norway, focusing on energy policy and sustainability. Dr. Sharma’s academic and research endeavors reflect her commitment to advancing knowledge in environmental economics and energy policy, making her a prominent figure in her field.

Research Interest

Dr. Pooja Sharma’s research interests are centered around Environmental Economics, Energy Policy, and Renewable Energy. She focuses on the role of renewable energy in energy transition, emphasizing comparative studies between countries like India and Norway. Her work delves into the intersection of energy security and sustainability, exploring how renewable resources can address global energy challenges. Dr. Sharma’s research also encompasses the valuation of Green GDP and the economic impacts of environmental policies, such as reducing air pollution. Additionally, she has investigated innovative approaches to clean energy, including the use of microbial fuel cells. Her interdisciplinary approach, integrating economics with environmental science, reflects her commitment to advancing sustainable development and addressing critical issues in energy and environmental economics. Through her projects and academic contributions, Dr. Sharma aims to contribute to effective energy policies and sustainable economic practices.

Research Skills

Dr. Pooja Sharma’s research skills are distinguished by her profound expertise in environmental economics, energy policy, and econometrics. Her ability to analyze complex data sets, such as those related to energy transition and renewable energy, is demonstrated through her projects on Green GDP valuation and air pollution reduction. Dr. Sharma excels in applying advanced econometric techniques to assess the impacts of environmental policies and energy security. Her interdisciplinary approach is evident in her involvement with projects like Clean Energy from Waste using microbial fuel cells, showcasing her capacity to integrate insights from various fields. Additionally, her experience in e-content development for economics courses highlights her skill in translating complex concepts into accessible educational material. Her proficiency in using statistical tools and software, combined with her practical research experience, positions her as a highly capable and innovative researcher in her domain.

Award and Recognition

Dr. Pooja Sharma has garnered recognition for her impactful contributions to the field of environmental economics and energy policy. Her research, notably on the role of renewables in energy transition and valuation of Green GDP, has been instrumental in advancing understanding in these critical areas. Dr. Sharma’s dedication is also evident in her interdisciplinary projects, such as the Clean Energy from Waste initiative and her extensive work on e-content development for educational institutions. Her efforts in these diverse domains underscore her commitment to sustainability and education. Despite her commendable achievements, further recognition could be bolstered by increasing her publication output in high-impact journals and expanding her international collaborations. Overall, Dr. Sharma’s contributions reflect her exceptional expertise and significant potential for continued influence in her field.

Conclusion

Dr. Pooja Sharma is a strong candidate for the Best Researcher Award due to her substantial contributions to environmental economics and energy policy. Her extensive research experience and interdisciplinary approach are notable strengths. By focusing on increasing her publication record and expanding her collaborative network, she can further enhance her influence and recognition in the field.

Publication Top Notes

  1. Economic performance assessment of building integrated photovoltaic system with battery energy storage under grid constraints
    • Authors: P. Sharma, M. Kolhe, A. Sharma
    • Published in: Renewable Energy
    • Volume: 145, Pages: 1901-1909
    • Year: 2020
    • Citations: 69
  2. Inflation rate and Poverty: Does poor become poorer with inflation?
    • Authors: M. Paul, P. Sharma
    • Available at: SSRN
    • Year: 2019
    • Citations: 15
  3. Role of human capital in economic growth: a comparative study of India and China
    • Author: P. Sharma
    • Available at: SSRN
    • Year: 2019
    • Citations: 12
  4. Economic analysis of a building integrated photovoltaic system without and with energy storage
    • Authors: P. Sharma, M. Kolhe, A. Sharma
    • Published in: IOP Conference Series: Materials Science and Engineering
    • Volume: 605, Issue: 1, Article number: 012013
    • Year: 2019
    • Citations: 8
  5. The impact of oil prices on stock prices and other macroeconomic variables in India: pre‐and post‐2008 crises
    • Authors: V. Gupta, P. Sharma
    • Published in: OPEC Energy Review
    • Volume: 42, Issue: 3, Pages: 212-223
    • Year: 2018
    • Citations: 7
  6. Analyzing the Role of Renewables in Energy Security by Deploying Renewable Energy Security Index
    • Author: P. Sharma
    • Published in: Journal of Sustainable Development of Energy, Water and Environment Systems
    • Year: 2023
    • Citations: 5
  7. A Decentralized Pathway for Energy Security and Energy Transition in Asia and the Pacific Region
    • Author: P. Sharma
    • Available at: SSRN
    • Year: 2018
    • Citations: 5
  8. Evaluating Health Impact of Air Pollution
    • Authors: P. Sharma, P. Jain, D. Pragati, S. Kumar
    • Published in: Environment and Ecology Research
    • Volume: 7, Issue: 1, Pages: 59-72
    • Year: 2019
    • Citations: 4
  9. Health benefits derived by reducing air pollution: An East Delhi analysis
    • Authors: P. Sharma, R. Galhotra, P. Jain, P. A. Goel, B. Aggarwal, D. Narula, C. Singh, …
    • Published in: Journal of Advances in Humanities and Social Sciences
    • Volume: 3, Issue: 3, Pages: 164-181
    • Year: 2017
    • Citations: 4