Xiaoqing Tian | Engineering | Best Researcher Award

Assoc. Prof. Dr. Xiaoqing Tian | Engineering | Best Researcher Award

Hangzhou Dianzi University | China

Dr. Xiaoqing Tian is an accomplished academic and researcher currently serving as an Associate Professor at the School of Mechanical Engineering, Hangzhou Dianzi University, China. With a strong foundation in hydrodynamics and its applications, she has made significant contributions to the development of underwater vehicles, propeller systems, and marine engineering innovations. Her educational background combines rigorous training in fluid machinery, mechanical engineering, and international research exposure, enabling her to integrate theoretical knowledge with practical technological advancements. Dr. Tian’s research excellence is evidenced by her extensive portfolio of patents, including more than ten granted patents such as a U.S. and Luxembourg patent, along with over twenty high-quality publications in peer-reviewed journals. Her work emphasizes hydrodynamic optimization, underwater robotics, and environmental applications, fostering solutions that bridge engineering challenges with sustainable maritime practices. Beyond her academic achievements, she has been recognized as a Zhejiang Province Overseas High-level Talent, a D-type Talent of Zhejiang Province, and a Qiantang Scholar of Hangzhou, reflecting her influence and leadership in her field. With a career that blends innovation, teaching, and applied research, Dr. Tian stands as a leading figure in advancing the boundaries of marine and mechanical engineering technologies.D

Professional Profile

Scopus Profile | ORCID Profile

Education

Dr. Xiaoqing Tian’s academic journey reflects a progressive and multidisciplinary approach to engineering, combining mechanical, electrical, and hydrodynamic expertise. She began her studies with a Bachelor’s degree in Mechanical & Electrical Engineering from the Henan Institute of Science and Technology, China. where she developed a foundational understanding of integrated engineering systems. Building on this, she earned a Master’s degree in Fluid Machinery and Engineering from the College of Mechanical Engineering at Hangzhou Dianzi University, China. focusing on fluid dynamics and mechanical system design. Her doctoral studies at the College of Water Conservancy and Hydropower Engineering, Hohai University, China. centered on advanced topics in fluid machinery and engineering, deepening her expertise in hydrodynamic modeling and marine applications. Notably, between, she conducted international research at the University of Helsinki, Finland, specializing in hydrodynamics and its environmental applications. This overseas experience broadened her perspective, allowing her to collaborate with global experts and explore the cross-disciplinary impacts of fluid mechanics on environmental science. Collectively, her academic background equips her with the technical knowledge, analytical skills, and global outlook necessary to address complex engineering challenges in both theoretical and applied contexts.

Professional Experience

Dr. Xiaoqing Tian has built an impressive professional career that blends teaching, research, and innovation in marine and mechanical engineering. Since December, she has served as a Lecturer and later an Associate Professor at the School of Mechanical Engineering, Hangzhou Dianzi University, China, where she teaches core engineering subjects, supervises graduate students, and leads research projects in hydrodynamics and underwater vehicle design. Her role involves both academic instruction and the development of innovative technologies aimed at solving practical engineering problems. she expanded her research portfolio through a postdoctoral position at the Ocean College, Zhejiang University, China, where she worked on advanced projects involving underwater robotics, propulsion systems, and hydrodynamic performance optimization. she undertook international research at the Department of Environmental Sciences, University of Helsinki, Finland, focusing on hydrodynamics applications in environmental and water systems. This combination of domestic and international experience has enabled her to cultivate a global research network, collaborate on interdisciplinary projects, and translate academic research into real-world engineering solutions. Her professional trajectory reflects a dedication to advancing knowledge while fostering innovation in marine engineering technology.

Research Interests

Dr. Xiaoqing Tian’s research interests span a wide range of topics in hydrodynamics, marine engineering, and mechanical design, with a strong emphasis on practical applications in underwater technologies. Her primary focus lies in the optimization of hydrodynamic performance for underwater vehicles and propulsion systems, including autonomous underwater vehicles (AUVs) and towed bodies. She is particularly interested in the integration of computational fluid dynamics (CFD) simulations with experimental testing to enhance propulsion efficiency, stability, and maneuverability. Her work also explores the development of novel propeller designs and hydrophobic coatings to improve performance in marine environments. Beyond vehicle propulsion, Dr. Tian investigates underwater sensing systems, such as magnetometer-equipped towed bodies, to support oceanographic surveys and environmental monitoring. She is also engaged in research on water quality improvement technologies, including artificially induced downwelling aeration systems. Her interdisciplinary approach allows her to bridge mechanical engineering principles with environmental science applications, ensuring that her innovations contribute to both technological advancement and sustainable marine resource management. By combining numerical modeling, prototype development, and field testing, Dr. Tian addresses real-world maritime challenges while advancing the scientific understanding of hydrodynamic systems.

Research Skills

Dr. Xiaoqing Tian possesses a robust set of research skills that enable her to conduct high-quality and impactful studies in marine and mechanical engineering. Her expertise includes hydrodynamic modeling, propeller performance analysis, and underwater vehicle design, supported by advanced use of computational fluid dynamics (CFD) tools. She has strong capabilities in designing and optimizing propulsion systems, integrating novel features such as hydrophobic coatings and guide flow devices to enhance efficiency. Dr. Tian is experienced in the development and testing of underwater towed bodies, including those equipped with environmental sensing devices like magnetometers. Her skills extend to mechanical system prototyping, laboratory experimentation, and large-scale field trials, ensuring that her work bridges theoretical models with real-world performance. In addition to technical competencies, she is proficient in patent development, having secured more than ten patents, including international ones, as the first inventor. Her research methodology combines creativity, precision, and multidisciplinary collaboration, enabling her to work across engineering, oceanography, and environmental science domains. Furthermore, her ability to manage complex projects, lead research teams, and publish extensively in high-impact journals underscores her effectiveness as both a scientist and innovator in her field.

Awards and Honors

Dr. Xiaoqing Tian’s contributions to marine and mechanical engineering have been recognized through several prestigious awards and honors, reflecting her status as a leading expert in her field. She has been named a Zhejiang Province Overseas High-level Talent, a designation awarded to individuals who have made significant contributions to scientific and technological innovation while fostering international collaboration. Additionally, she has been recognized as a D-type Talent of Zhejiang Province, highlighting her role in advancing regional research and innovation capacity. Her designation as a Qiantang Scholar of Hangzhou further underscores her academic excellence, leadership, and contributions to the local and national engineering community. These honors not only acknowledge her individual achievements but also her commitment to mentoring young researchers, driving technological progress, and addressing real-world engineering challenges. They also serve as a testament to her ability to integrate high-level research with societal impact, aligning her professional work with broader goals in innovation, sustainability, and economic development. Collectively, these awards solidify Dr. Tian’s reputation as a respected scholar, inventor, and leader within the global marine engineering research community.

Publication Top Notes

1. Calibration-free optical wave guide bending sensor for soft robots, 2025
2. Study on the hydrodynamic characteristics of an outboard engine propeller with hydrophobic coating, 2025
3. Laboratory Investigations on Parametric Configurations of Artificially Down welling Aerations in Stratified Water, 2023
4. Study on the Resistance of a Large Pure Car Truck Carrier with Bulbous Bow and Transom Stern, 2023
5. Numerical verification for a new type of UV disinfection reactor, 2020

Conclusion

In conclusion, Dr. Xiaoqing Tian embodies the qualities of an accomplished researcher, innovative engineer, and dedicated academic. Her career reflects a deliberate and consistent pursuit of excellence across multiple dimensions — from education and professional development to research innovation and community engagement. With an extensive academic background in fluid machinery, mechanical engineering, and hydrodynamics, complemented by valuable international research experience, she has developed a skill set that is both technically advanced and globally informed. Her work on underwater vehicle systems, propeller optimization, and environmental hydrodynamics demonstrates a unique ability to merge scientific insight with practical engineering solutions. The numerous patents and peer-reviewed publications she has produced serve as evidence of her commitment to technological advancement, while her awards and honors confirm her leadership in the field. Beyond her technical achievements, Dr. Tian contributes to the growth of future engineers through teaching, mentorship, and research collaboration. Looking ahead, she remains committed to expanding the frontiers of marine engineering research, promoting sustainable innovation, and making meaningful contributions to both the academic community and society at large. Her professional journey serves as an inspiring model for aspiring scientists and engineers worldwide.

Zahra Kazemi | Mechanical Engineering | Best Researcher Award

Dr. Zahra Kazemi | Mechanical Engineering | Best Researcher Award

Assistant Professor from Shiraz University of Technology, Iran

Dr. Zahra Kazemi is an Assistant Professor in the Department of Mechanical Engineering at Shiraz University of Technology. She holds a Ph.D. in Mechanical Engineering from Shiraz University and has completed two postdoctoral research fellowships. Her research primarily focuses on advanced manufacturing processes, including Selective Laser Melting (SLM), Laser Powder Bed Fusion (LPBF), and computational modeling for material and load identification. She has published extensively in high-impact journals and has presented her work at various international conferences. Her contributions to numerical simulations and optimization methods have significantly advanced the understanding of defect reduction and material behavior in additive manufacturing. With strong expertise in experimental and computational methods, Dr. Kazemi continues to contribute to the field through interdisciplinary research and collaboration.

Professional Profile

Education

Dr. Kazemi completed her Bachelor’s and Master’s degrees in Mechanical Engineering before earning her Ph.D. from Shiraz University. During her doctoral studies, she specialized in computational modeling and inverse analysis for material behavior prediction. Following her Ph.D., she pursued postdoctoral research, focusing on precision instrumentation design and optimization of advanced manufacturing processes such as SLM. Her academic journey has equipped her with a strong foundation in numerical simulations, experimental validation, and optimization techniques for industrial applications.

Professional Experience

Dr. Kazemi has held academic and research positions in mechanical engineering, focusing on additive manufacturing and numerical modeling. She is currently an Assistant Professor at Shiraz University of Technology, where she teaches undergraduate and graduate courses while conducting advanced research. She has also worked as a postdoctoral researcher, contributing to the development of precision instruments and optimization of laser-based manufacturing techniques. Her professional experience includes supervising research projects, mentoring students, and collaborating with experts in computational mechanics, thermal engineering, and materials science.

Research Interests

Dr. Kazemi’s research interests include additive manufacturing, computational modeling, inverse analysis, and material behavior prediction. She is particularly focused on enhancing the performance of metal structures manufactured using SLM through simulation and experimental validation. Additionally, her work on load and material identification using inverse analysis contributes to the accurate characterization of viscoplastic materials. She is also interested in applying machine learning techniques to optimize manufacturing processes and reduce defects in industrial applications.

Research Skills

Dr. Kazemi possesses strong expertise in numerical simulations, finite element analysis, and computational mechanics. She is proficient in using advanced software tools for modeling and optimization of manufacturing processes. Her skills extend to experimental validation techniques, including thermal and structural analysis of manufactured components. She is also experienced in meshfree analysis methods, load identification techniques, and optimization strategies for material design. With a background in interdisciplinary research, she effectively integrates computational and experimental approaches to improve engineering solutions.

Awards and Honors

Dr. Kazemi has received recognition for her contributions to mechanical engineering through awards and conference presentations. She has been acknowledged for her research excellence in additive manufacturing and material optimization. Her work has been published in leading journals, and she has received invitations to speak at international conferences. She has also been involved in collaborative projects that have been recognized for their impact on manufacturing innovation and computational analysis.

Conclusion

Dr. Zahra Kazemi is a distinguished researcher in mechanical engineering, specializing in additive manufacturing and computational modeling. With a strong academic background, extensive publication record, and expertise in numerical and experimental research, she continues to contribute significantly to her field. Her dedication to advancing manufacturing techniques and material analysis positions her as a valuable asset to the academic and research community. By expanding her collaborations, securing research funding, and further developing industrial applications of her work, she can further enhance her impact in mechanical engineering and beyond.

Publications Top Notes

  1. Title: Melting process of the nano-enhanced phase change material (NePCM) in an optimized design of shell and tube thermal energy storage (TES): Taguchi optimization approach
    Authors: M. Ghalambaz, S.A.M. Mehryan, A. Veismoradi, M. Mahdavi, I. Zahmatkesh, …
    Year: 2021
    Citations: 72

  2. Title: Meshfree radial point interpolation method for analysis of viscoplastic problems
    Authors: Z. Kazemi, M.R. Hematiyan, R. Vaghefi
    Year: 2017
    Citations: 30

  3. Title: Melting pool simulation of 316L samples manufactured by Selective Laser Melting method, comparison with experimental results
    Authors: Z. Kazemi, M. Soleimani, H. Rokhgireh, A. Nayebi
    Year: 2022
    Citations: 25

  4. Title: Optimum configuration of a metal foam layer for a fast thermal charging energy storage unit: a numerical study
    Authors: S.A.M. Mehryan, K.A. Ayoubloo, M. Mahdavi, O. Younis, Z. Kazemi, M. Ghodrat, …
    Year: 2022
    Citations: 18

  5. Title: Load identification for viscoplastic materials with some unknown material parameters
    Authors: Z. Kazemi, M.R. Hematiyan, Y.C. Shiah
    Year: 2019
    Citations: 18

  6. Title: An efficient load identification for viscoplastic materials by an inverse meshfree analysis
    Authors: Z. Kazemi, M.R. Hematiyan, Y.C. Shiah
    Year: 2018
    Citations: 12

  7. Title: Inverse determination of time-dependent loads in viscoplastic deformations using strain measurements in the deformed configuration
    Authors: Z. Kazemi, M.R. Hematiyan
    Year: 2018
    Citations: 4

  8. Title: A Multiobjective Optimization of Laser Powder Bed Fusion Process Parameters to Reduce Defects by Modified Taguchi Method
    Authors: Z. Kazemi, R. Nayebi, A. M. Hojjatollah, M. Soleimani
    Year: 2025

  9. Title: تحلیل کانال پسا برای یک بالانس داخلی تونل باد با در نظر گرفتن قابلیت ساخت‎
    Authors: زهرا کاظمی، محمدحسن منتظری، محمد مهدی علیشاهی‎
    Year: 2024

  10. Title: Residual Stress of 316L Samples Manufactured by Selective Laser Melting Method with Consideration of Evaporation
    Authors: Z. Kazemi, H. Rokhgireh, A. Nayebi
    Year: 2023

  11. Title: Selective Laser Melting Defects: Morphology of Defects Due to Lack of Fusion and Evaporation Pores
    Authors: A.N. Zahra Kazemi, Hojjatollah Rokhgireh
    Year: 2023

  12. Title: Residual Stress of 316L Samples Manufactured by Selective Laser Melting Method with Consideration of Evaporation
    Authors: A.N. Zahra Kazemi, Hojjatollah Rokhgireh
    Year: 2023

  13. Title: The Effect of Process Parameters on the Residual Deformation of 316L Samples Manufactured by Selective Laser Melting Method with Consideration of Evaporation
    Authors: A.N. Zahra Kazemi, Hojjatollah Rokhgireh
    Year: 2023