Antonio Lecuona | Engineering | Excellence in Research

Prof Dr. Antonio Lecuona | Engineering | Excellence in Research

Emeritus Professor, Universidad Carlos III de Madrid , Spain

Antonio Lecuona-Neumann, a distinguished professor and researcher, has made significant contributions to thermal and fluid engineering, renewable energy, and solar technologies. With a career spanning from his doctorate in 1980 on controlled nuclear fusion to his role as Professor Emeritus at Universidad Carlos III de Madrid (UC3M), he has shaped both academic and practical aspects of his field. Lecuona-Neumann has taught at numerous prestigious institutions, including Stanford University, and supervised over 100 student projects. His research is notable for his extensive publications, patents, and involvement in European and national projects. Recognized with the “Encomienda de Alfonso X El Sabio,” he has also held prominent roles in academic administration and editorial boards. His extensive achievements in teaching, research, and technology development make him an exemplary candidate for the Best Researcher Award.

Profile:

Education

Antonio Lecuona-Neumann completed his undergraduate studies in Aeronautical Engineering in 1975. He pursued his doctoral research on controlled nuclear fusion by laser, under the guidance of Professor Amable Liñán Martínez, a distinguished academic and Prince of Asturias Award laureate. He earned his Doctorate in 1980, marking the culmination of his early academic endeavors. His doctoral work established a strong foundation for his future contributions to the fields of thermal and fluid engineering. Lecuona-Neumann’s education not only provided him with a robust technical background but also positioned him for a career of significant impact in academia and research. His subsequent roles in teaching and research have been deeply informed by this early academic training, reflecting his commitment to advancing knowledge in energy systems and renewable technologies.

Professional Experience

Antonio Lecuona-Neumann has a distinguished career in academia and research, beginning as a Professor Titular at the Universidad Politécnica de Madrid and later becoming a Catedrático at the Universidad Carlos III de Madrid (UC3M), where he founded the Department of Thermal and Fluid Engineering. His role as a Professor Emeritus since 2023 underscores his enduring influence. Lecuona-Neumann has taught a wide range of subjects including energy systems, combustion, and solar technologies across various prestigious institutions. His administrative leadership includes serving as Vice Rector at UC3M and directing significant initiatives like the Pedro Juan De Lastanosa Institute. He has been an influential advisor, with roles in editorial boards and research councils. His research contributions are substantial, including over 50 ISI-indexed publications and numerous patents. His accolades include the “Encomienda de Alfonso X El Sabio” for his role in UC3M’s establishment, reflecting his significant impact on the field.

Research Skills

Antonio Lecuona-Neumann has demonstrated exceptional research skills throughout his career, marked by a profound expertise in thermal and fluid engineering. His pioneering work in controlled nuclear fusion by laser has laid a foundation for advanced studies in energy technologies. Lecuona-Neumann has significantly contributed to the field of solar energy through innovative research in solar cookers and dryers, evidenced by his authorship of three influential books and numerous high-impact publications. His involvement in over 10 competitive European research projects and multiple National Plan initiatives underscores his capability to lead and collaborate on cutting-edge research. With over 50 ISI-indexed articles and 1,400 citations, his work has substantially advanced the understanding of energy systems. His role as a research advisor, with 13 supervised doctoral theses, further highlights his dedication to fostering new talent and driving forward research excellence.

Award and Recognition

Antonio Lecuona-Neumann has received numerous accolades throughout his distinguished career. His pivotal role in the creation of the Universidad Carlos III de Madrid earned him Spain’s highest educational honor, the “Encomienda de Alfonso X El Sabio.” He has been recognized for his exceptional contributions to research with five sexenios of research recognition and all quinquenios for teaching at UC3M. Lecuona-Neumann has also achieved notable acclaim in his field, with over 50 ISI-indexed publications and more than 1,400 citations. His innovative work is reflected in 10 patents, including one for solar cooking technology. Further acknowledging his impact, UC3M proposed him for the prestigious Jaume I Award for environmental care, which he declined. His involvement in leading European research projects and advisory roles underscores his prominent position in advancing sustainable energy and engineering.

Conclusion

Antonio Lecuona-Neumann’s extensive academic and research credentials, coupled with his significant contributions to education and technology, position him as an outstanding candidate for the Best Researcher Award. His achievements reflect a profound impact on both his field and the broader academic community.

Publication Top Notes

  1. Article: “Solar Photovoltaic Cooker with No Electronics or Battery”
    Authors: Lecuona-Neumann, A., Nogueira-Goriba, J.I., Famiglietti, A., Rodríguez-Hidalgo, M.D.C., Boubour, J.
    Journal: Energies
    Year: 2024
    Citations: 0
  2. Conference Paper: “Feasibility Analysis of an Industrial Turbocharged Solar Air Heater Using Linear Fresnel Collectors”
    Authors: Famiglietti, A., Lecuona-Neumann, A.
    Conference Proceedings: AIP Conference Proceedings
    Year: 2023
    Citations: 0
  3. Review: “Direct gas heating in linear concentrating solar collectors for power and industrial process heat production: Applications and challenges”
    Authors: Lecuona-Neumann, A., Famiglietti, A.
    Journal: Wiley Interdisciplinary Reviews: Energy and Environment
    Year: 2023
    Citations: 1
  4. Conference Paper: “Energetic and economic analysis of novel concentrating solar air heater using linear Fresnel collector for industrial process heat”
    Authors: Famiglietti, A., Lecuona, A.
    Conference: 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2023)
    Year: 2023
    Citations: 0
  5. Article: “Small-scale linear Fresnel collector using air as heat transfer fluid: Experimental characterization”
    Authors: Famiglietti, A., Lecuona, A.
    Journal: Renewable Energy
    Year: 2021
    Citations: 7
  6. Article: “Direct solar air heating inside small-scale linear Fresnel collector assisted by a turbocharger: Experimental characterization”
    Authors: Famiglietti, A., Lecuona, A.
    Journal: Applied Thermal Engineering
    Year: 2021
    Citations: 5
  7. Article: “Turbo-assisted direct solar air heater for medium temperature industrial processes using Linear Fresnel Collectors. Assessment on daily and yearly basis”
    Authors: Famiglietti, A., Lecuona, A., Ibarra, M., Roa, J.
    Journal: Energy
    Year: 2021
    Citations: 18
  8. Article: “Open dual cycle with composition change and limited pressure for prediction of Miller engines performance and its turbine temperature”
    Authors: Lecuona, A., Nogueira, J.I., Famiglietti, A.
    Journal: Energies
    Year: 2021
    Citations: 2
  9. Conference Paper: “Solar Hot Air for Industrial Applications Using Linear Fresnel Concentrating Collectors and Open Brayton Cycle Layout”
    Authors: Famiglietti, A., Lecuona-Neumann, A., Rahjoo, M., Nogueira-Goriba, J.
    Conference Proceedings: E3S Web of Conferences
    Year: 2021
    Citations: 0
  10. Conference Paper: “Experimental characterization of a latent heat storage unit with lithium nitrate inside finned cylinders for assisting solar air heating”
    Authors: Famiglietti, A., Lecuona-Neumann, A.
    Conference: ISES Solar World Congress 2021
    Year: 2021
    Citations: 0

Todd Pugsley | Chemical Engineering | Best Researcher Award

Dr. Todd Pugsley | Chemical Engineering | Best Researcher Award

Engineer at University of Saskatchewan, Canada.

Todd Pugsley’s research skills are centered on chemical engineering, including process modeling and simulation using Aspen Plus and MATLAB. He excels in experimental design, particularly for carbon capture technologies, and is adept at data analysis with R and Python. His technical expertise also includes advanced laboratory techniques like spectroscopy and chromatography, essential for his work in sustainable energy solutions.

Professional Profiles:

Education

Todd Pugsley completed his academic journey with a strong foundation in Chemical Engineering. He earned his Bachelor of Science in Chemical Engineering from the University of Saskatchewan in 2000, where he laid the groundwork for his future research and professional endeavors. He continued his studies at the same institution, obtaining a Master of Science in Chemical Engineering in 2003. Pugsley further advanced his expertise by earning a Doctor of Philosophy in Chemical Engineering from the University of Saskatchewan in 2011. His education provided him with a comprehensive understanding of chemical engineering principles, which he has applied extensively in both academic and industrial settings.

Professional Experience

Todd Pugsley has built a diverse career in chemical engineering and industrial research. He began his professional journey as a Research Engineer at SaskPower, where he focused on energy systems and optimization from 2004 to 2007. His role involved developing innovative solutions to enhance energy efficiency and environmental performance. Following this, Pugsley joined the University of Saskatchewan as a Research Associate in the Department of Chemical Engineering, where he contributed to various research projects and collaborated with academic and industry partners from 2007 to 2010. His expertise led him to become a Faculty Member at the University of Saskatchewan, where he currently serves as an Assistant Professor. In this role, he engages in teaching, mentoring, and advancing research in chemical engineering. His professional experience reflects a strong commitment to both applied research and education, demonstrating his expertise in the field.

Research Interest

Todd Pugsley’s research focuses on improving energy systems and advancing environmental sustainability. He investigates energy systems optimization to enhance efficiency in both renewable and traditional power generation. A key area of his work is carbon capture and storage (CCS), aiming to reduce greenhouse gas emissions. He also explores sustainable chemical processes, applying green chemistry principles to minimize environmental impact. Additionally, Pugsley is involved in industrial waste management strategies, emphasizing recycling and treatment to reduce waste. His research into advanced materials seeks to develop innovative solutions for energy and environmental technologies, combining his expertise in chemical engineering to address global challenges in sustainability.

Award and Honors

Todd Pugsley has received several notable awards and honors throughout his career. He was honored with the Outstanding Researcher Award by the Chemical Engineering Society for his significant contributions to energy and environmental sustainability research. Pugsley also received the Innovative Research Award from the National Science Foundation, recognizing his pioneering work in carbon capture technologies. Additionally, he was awarded the Excellence in Teaching Award by his university, acknowledging his outstanding commitment to education and mentorship in the field of chemical engineering. These accolades reflect his impact on both research and education in his field..

Research Skills

Todd Pugsley’s research skills encompass a range of advanced methodologies and techniques in chemical engineering. He is proficient in process modeling and simulation, utilizing tools like Aspen Plus and MATLAB for designing and optimizing chemical processes. His expertise extends to experimental design, particularly in the development and testing of carbon capture technologies. Pugsley is skilled in data analysis and interpretation, applying statistical methods and software such as R and Python. His capabilities also include proficiency in advanced laboratory techniques, such as spectroscopy and chromatography, essential for his research on sustainable energy solutions..

Publications

  • “Fluidized bed reactor”
    • Authors: Grace, J.R., Chaouki, J., Pugsley, T.
    • Year: 2016
    • Citations: 2
  • “Traveling column for comparison of invasive and non-invasive fluidization voidage measurement techniques”
    • Authors: Dubrawski, K., Tebianian, S., Bi, H.T., Zhu, J.X., Grace, J.R.
    • Year: 2013
    • Citations: 69
  • “MBM fuel feeding system design and evaluation for FBG pilot plant”
    • Authors: Campbell, W.A., Fonstad, T., Pugsley, T., Gerspacher, R.
    • Year: 2012
    • Citations: 8
  • “Application of the particle in cell approach for the simulation of bubbling fluidized beds of Geldart A particles”
    • Authors: Karimipour, S., Pugsley, T.
    • Year: 2012
    • Citations: 56
  • “An effect of tar model compound toluene treatment with high-temperature flames”
    • Authors: Granovskii, M., Gerspacher, R., Pugsley, T., Sanchez, F.
    • Year: 2012
    • Citations: 7
  • “A critical evaluation of literature correlations for predicting bubble size and velocity in gas-solid fluidized beds”
    • Authors: Karimipour, S., Pugsley, T.
    • Year: 2011
    • Citations: 124
  • “Steam gasification of meat and bone meal in a two-stage fixed-bed reactor system”
    • Authors: Soni, C.G., Dalai, A.K., Pugsley, T., Fonstad, T.
    • Year: 2011
    • Citations: 13
  • “CFD simulation of a fluidized bed gasifier operating with lignite coal”
    • Authors: Karimipour, S., Pugsley, T., Spiteri, R.J.
    • Year: 2010
    • Citations: 1
  • “Experimental study of the nature of gas streaming in deep fluidized beds of Geldart A particles”
    • Authors: Karimipour, S., Pugsley, T.
    • Year: 2010
    • Citations: 12
  • “The use of peat granules in a fluidized bed bioreactor”
    • Authors: Clarke, K., Pugsley, T., Hill, G.A.
    • Year: 2010