Esteban Denecken | Engineering | Best Researcher Award

Dr. Esteban Denecken | Engineering | Best Researcher Award

Researcher from University of Los Andes, Chile

Esteban Jorge Denecken Campaña is a dedicated researcher and electrical engineer specializing in medical image processing and advanced magnetic resonance imaging (MRI) techniques. With a strong background in electrical engineering and ongoing doctoral studies, he has established a clear trajectory in biomedical imaging and computational analysis. His work centers on the development of novel methods for the simultaneous acquisition of water, fat, and velocity imaging using phase-contrast MRI. He has contributed to multiple peer-reviewed journals and has presented at prestigious international conferences including ISMRM. Esteban has collaborated with prominent institutions such as the University of Wisconsin–Madison, where he worked with the Quantitative Body MRI team. His expertise lies at the intersection of image processing, signal acquisition, and algorithmic development for clinical and biological applications. Esteban has also contributed to innovation in image analysis of biological materials and has actively supported undergraduate research and academic mentorship. His professional journey reflects both academic excellence and practical innovation. With solid experience in both academia and industry, he combines technical precision with a creative approach to engineering challenges, particularly in healthcare technologies. His participation in innovation programs and cross-disciplinary research showcases his commitment to translating scientific discovery into practical, impactful solutions.

Professional Profile

Education

Esteban Jorge Denecken Campaña holds a robust academic foundation in electrical engineering and biomedical image processing. He earned both his Bachelor’s and Professional Degree in Civil Electrical Engineering from Universidad de Los Andes in 2015. Currently, he is pursuing a Doctorate in Engineering Sciences with a specialization in Electrical Engineering at Pontificia Universidad Católica de Chile, where his doctoral research focuses on the development of advanced MRI techniques for simultaneous imaging of water, fat, and flow velocity. He has also enhanced his expertise through specialized training, including a Biomedical Imaging course at Northeastern University and practical EEG-fMRI training conducted at Clínica Las Condes. Additionally, Esteban completed the Innovation Academy program at Universidad de Los Andes, where he acquired valuable knowledge in innovation management, intellectual property protection, and science communication. His academic path demonstrates a balanced integration of theoretical knowledge and applied research in electrical engineering, with an increasing focus on medical and biological imaging. His academic excellence is complemented by a commitment to continual learning, evidenced by language training at the University of California, Davis, and participation in multiple research-related technical courses. His educational background positions him as a capable and well-rounded researcher in biomedical engineering.

Professional Experience

Esteban Denecken’s professional experience spans research engineering, doctoral research, and technical innovation within academia and industry. He is currently working as a Research Engineer at the School of Engineering, Universidad de Los Andes, where he develops image processing algorithms for analyzing biological samples, including paletted rich fibrin and microglial cells. As part of his doctoral research at Pontificia Universidad Católica de Chile, he has developed advanced techniques for MRI data acquisition, contributing significantly to the field of simultaneous imaging of biological structures and functions. He also completed a prestigious research internship at the University of Wisconsin–Madison, where he collaborated with leading experts in quantitative MRI. Earlier in his career, Esteban served as an Assistant Scientist at the Advanced Center of Electrical and Electronic Engineering (AC3E), where he enhanced algorithms for displaying HDR content on standard screens. His experience also includes working as a Frontend Developer for Falabella Financiero, where he contributed to the development of digital platforms for credit services in Latin America. Esteban has held roles supporting undergraduate education and research and has served as a teacher assistant for various engineering subjects. His broad professional experience reflects a dynamic balance between academic research, software development, and technical mentorship.

Research Interests

Esteban Denecken’s research interests lie at the intersection of electrical engineering, medical imaging, and computational analysis. His primary focus is the development of novel MRI techniques, specifically aimed at the simultaneous acquisition of water, fat, and velocity imaging. This work enhances the diagnostic capabilities of MRI in clinical settings, particularly in cardiovascular and metabolic imaging. He is also deeply engaged in image processing techniques for analyzing the structural and functional properties of biological tissues. His research addresses challenges in respiratory gating, porosity analysis, and segmentation of microglial cells—topics that are critical in both clinical diagnostics and biomedical research. Esteban is particularly interested in leveraging signal processing, machine learning, and computational modeling to improve the accuracy and efficiency of image-based diagnostics. His interdisciplinary approach involves collaboration with experts in radiology, biomedical engineering, and computer vision. Through his research, Esteban seeks to bridge the gap between engineering innovation and healthcare application, contributing to advances in personalized medicine and non-invasive diagnostics. He continues to explore how computational tools can enhance imaging resolution, data interpretation, and automation in clinical workflows, highlighting his commitment to impactful, translational research in biomedical technology.

Research Skills

Esteban Denecken possesses a wide range of research skills, particularly in medical imaging, signal processing, and algorithm development. His technical proficiency includes the design and implementation of MRI-based techniques for simultaneous imaging of multiple parameters such as water, fat, and blood velocity. He has extensive experience with 4D flow MRI and respiratory gating, which are essential for capturing dynamic physiological processes. Esteban is skilled in biomedical image processing, including tissue segmentation, porosity analysis, and quantitative imaging. He is adept at developing custom algorithms for analyzing both structural and functional aspects of biological materials, using tools such as MATLAB and Python. His research contributions extend to high-impact journal publications and presentations at top-tier international conferences. Additionally, Esteban is experienced in interdisciplinary collaboration, having worked alongside radiologists, physicists, and engineers during his internship at the University of Wisconsin–Madison. He has also mentored undergraduate students, providing guidance in thesis work related to computer vision and image analysis. His ability to communicate complex technical concepts, combined with practical software development experience, further enhances his research effectiveness. Overall, Esteban demonstrates a rare combination of scientific rigor, software engineering capabilities, and collaborative agility.

Awards and Honors

While Esteban Denecken’s formal awards and honors are not explicitly listed, his academic and professional trajectory includes multiple indicators of distinction and recognition. His selection for a competitive internship at the University of Wisconsin–Madison, under the mentorship of renowned radiology expert Dr. Diego Hernando, reflects a high level of international recognition. Participation in leading international conferences such as ISMRM, where he has consistently presented his work since 2021, also underscores the academic community’s acknowledgment of his contributions. His doctoral research at Pontificia Universidad Católica de Chile, one of the most prestigious institutions in Latin America, further attests to his scholarly capabilities and potential. Additionally, Esteban’s role as a mentor to undergraduate thesis students and as a research engineer at Universidad de Los Andes shows that he is entrusted with responsibilities that reflect institutional confidence in his expertise and leadership. Through these roles and invitations to high-level collaborative projects, Esteban has positioned himself as a rising figure in the field of biomedical engineering. His consistent involvement in innovative academic initiatives, such as the Innovation Academy at UANDES, reinforces his proactive engagement in research and innovation ecosystems.

Conclusion

Esteban Jorge Denecken Campaña is a highly promising researcher with a focused expertise in medical image processing and electrical engineering. His academic foundation, hands-on research in advanced MRI techniques, and collaboration with leading international institutions demonstrate a strong alignment with the criteria of a Best Researcher Award. He has contributed to multiple peer-reviewed publications and regularly participates in global scientific forums, reflecting both scholarly productivity and engagement with the research community. His skills in biomedical imaging, algorithm development, and interdisciplinary collaboration are significant strengths that enhance the impact of his work. While he could further benefit from more visible international awards or patents to supplement his growing publication record, his current achievements clearly position him as a valuable asset to the research and academic community. Esteban’s innovative mindset, academic dedication, and technical expertise make him a strong contender for recognition as a best researcher. His work not only advances scientific understanding but also holds practical value in clinical diagnostics and health technologies. Therefore, he is well-suited for consideration for the Best Researcher Award and has the potential to make significant contributions to his field in the coming years.

Publications Top Notes

1. Simultaneous Acquisition of Water, Fat, and Velocity Images Using a Phase‐Contrast T2‐IDEAL Method*

  • Authors: Esteban Denecken, Cristóbal Arrieta, Julio Sotelo, Hernán Mella, Sergio Uribe

  • Year: 2025

2. Simultaneous Acquisition of Water, Fat, and Velocity Images Using a Phase‐Contrast 3p‐Dixon Method

  • Authors: Esteban Denecken, Cristóbal Arrieta, Diego Hernando, Julio Sotelo, Hernán Mella, Sergio Uribe

  • Year: 2025​

3. Impact of Respiratory Gating on Hemodynamic Parameters from 4D Flow MRI

  • Authors: Esteban Denecken, Julio Sotelo, Cristobal Arrieta, Marcelo E. Andia, Sergio Uribe

  • Year: 2022

Kuo Liu | Engineering | Best Researcher Award

Prof. Kuo Liu | Engineering | Best Researcher Award

Deputy director at Dalian University of Technology, China

Liu Kuo is a distinguished professor and doctoral supervisor at the School of Mechanical Engineering, Dalian University of Technology. He serves as the deputy director of the Intelligent Manufacturing Longcheng Laboratory and has been recognized as a young top talent in China’s “Ten Thousand People Plan.” He has also been honored under the Liaoning Province “Xingliao Talent Plan” and is regarded as a high-end talent in Dalian City. In addition to his academic and administrative roles, Liu Kuo holds significant positions in national standardization committees. He is a member of the National Industrial Machinery Electrical System Standardization Technical Committee (TC231) and the National Metal Cutting Machine Tool Standard Committee Five-Axis Machine Tool Evaluation Standards Working Group (TC22/WG3). Furthermore, he serves as a review expert for the Chinese Mechanical Engineering Society on “Machine Tool Equipment Manufacturing Maturity.” His expertise spans precision maintenance theory, real-time thermal error compensation, intelligent monitoring technology, and performance optimization for CNC machine tools. With extensive contributions to research, Liu Kuo has led over 20 major scientific projects and has published more than 80 high-impact papers. His work has resulted in numerous patents and software copyrights, reinforcing his status as a leading researcher in intelligent manufacturing and CNC technology.

Professional Profile

Education

Liu Kuo has pursued an extensive academic journey in mechanical engineering, culminating in his current role as a professor at Dalian University of Technology. He obtained his bachelor’s, master’s, and doctoral degrees in Mechanical Engineering from prestigious institutions in China. His academic training provided a strong foundation in advanced manufacturing, precision engineering, and intelligent monitoring systems. Throughout his education, Liu Kuo specialized in CNC machine tools, focusing on precision maintenance theory and real-time error compensation. His doctoral research was instrumental in developing innovative methodologies for optimizing machine tool performance. As a committed scholar, he actively engaged in interdisciplinary studies, integrating mechanical design, automation, and artificial intelligence into manufacturing processes. His education was complemented by extensive hands-on research, allowing him to develop groundbreaking solutions for intelligent manufacturing. Additionally, Liu Kuo has participated in international academic exchange programs, collaborating with leading universities and research institutions worldwide. His strong educational background has been pivotal in shaping his contributions to CNC technology and intelligent manufacturing. Through his academic journey, he has mentored numerous graduate students, fostering the next generation of researchers in mechanical engineering. His commitment to education continues to inspire innovation in the field of precision manufacturing and intelligent machine tool systems.

Professional Experience

Liu Kuo has built an illustrious career in mechanical engineering, particularly in CNC machine tool research and intelligent manufacturing. Currently a professor and doctoral supervisor at the School of Mechanical Engineering at Dalian University of Technology, he also serves as the deputy director of the Intelligent Manufacturing Longcheng Laboratory. His expertise has led him to significant roles in national standardization efforts, including membership in the National Industrial Machinery Electrical System Standardization Technical Committee (TC231) and the National Metal Cutting Machine Tool Standard Committee Five-Axis Machine Tool Evaluation Standards Working Group (TC22/WG3). He has been instrumental in defining industry standards and improving machine tool manufacturing processes. Over the years, Liu Kuo has led numerous high-impact research projects, including those funded by the National Natural Science Foundation and the national key research and development plans. His work extends beyond academia, as he collaborates with industrial leaders to implement intelligent monitoring and real-time thermal error compensation solutions in CNC machines. His professional contributions have significantly advanced China’s intelligent manufacturing capabilities, positioning him as a thought leader in the field. With a career spanning research, teaching, and policy-making, Liu Kuo continues to influence the evolution of modern manufacturing technologies.

Research Interests

Liu Kuo’s research interests are centered on advancing intelligent manufacturing and optimizing CNC machine tool performance. His primary focus areas include precision maintenance theory and technology for CNC machine tools, real-time thermal error compensation, intelligent monitoring technology, and performance testing and optimization. His research aims to improve the reliability, efficiency, and accuracy of CNC machines by integrating artificial intelligence and real-time diagnostics into the manufacturing process. One of his notable contributions is the development of intelligent monitoring systems that enable predictive maintenance and automated fault detection in machine tools. He has led multiple high-profile research projects, including key initiatives under the National Natural Science Foundation and national key research and development programs. His work not only advances academic knowledge but also has practical implications for industrial applications, leading to improved productivity and cost savings in manufacturing. Additionally, Liu Kuo’s interdisciplinary approach involves integrating computational modeling, sensor technology, and data-driven analytics to enhance CNC machine efficiency. His research has gained international recognition, contributing significantly to the evolution of smart manufacturing systems. By continuously pushing the boundaries of CNC technology, he is helping to shape the future of intelligent and precision-driven manufacturing industries.

Research Skills

Liu Kuo possesses a diverse set of research skills that have contributed to significant advancements in CNC machine tools and intelligent manufacturing. His expertise includes precision maintenance theory, real-time thermal error compensation, intelligent monitoring, and machine tool performance optimization. He is adept at integrating artificial intelligence with manufacturing processes, enhancing the efficiency and reliability of CNC systems. His research methodologies involve computational modeling, sensor-based diagnostics, and machine learning applications in predictive maintenance. Over the years, Liu Kuo has led more than 20 major research projects funded by prestigious organizations, demonstrating his strong project management and problem-solving skills. He has successfully authored over 80 SCI/EI-indexed papers and secured more than 50 Chinese invention patents, 8 American invention patents, and 15 software copyrights. His technical expertise extends to developing industry standards for CNC machine tools, collaborating with national committees, and formulating guidelines for intelligent manufacturing systems. With a strong foundation in mechanical engineering, automation, and data analytics, he continues to pioneer innovative research that bridges academia and industry. His extensive research skills have made him a leading figure in advancing precision engineering and smart manufacturing technologies worldwide.

Awards and Honors

Liu Kuo’s contributions to mechanical engineering and intelligent manufacturing have been recognized through numerous prestigious awards and honors. He has been named a young top talent under China’s “Ten Thousand People Plan,” a highly competitive program aimed at fostering top-tier researchers. Additionally, he has been selected for the Liaoning Province “Xingliao Talent Plan,” which acknowledges outstanding professionals in engineering and technology. His recognition as a high-end talent in Dalian City further underscores his influence in the field. Beyond these honors, Liu Kuo has received multiple awards for his groundbreaking research in CNC machine tools and precision manufacturing. His patents and scientific publications have earned national and international acclaim, contributing to advancements in intelligent machine tool systems. His role in national standardization committees highlights his leadership in shaping the future of CNC technology. Through his dedication to research, innovation, and knowledge dissemination, he has significantly impacted China’s industrial and academic landscapes. Liu Kuo’s achievements demonstrate his commitment to excellence and his continuous pursuit of cutting-edge solutions in mechanical engineering and manufacturing.

Conclusion

Liu Kuo is a highly accomplished professor and researcher whose contributions have significantly advanced CNC machine tool technology and intelligent manufacturing. His work in precision maintenance, real-time error compensation, and intelligent monitoring has positioned him as a leader in mechanical engineering. As a professor at Dalian University of Technology and deputy director of the Intelligent Manufacturing Longcheng Laboratory, he plays a crucial role in shaping future advancements in manufacturing technology. His extensive portfolio of research projects, patents, and scientific publications underscores his dedication to innovation. Recognized as a young top talent in China, he has received numerous prestigious awards and honors for his contributions. His leadership in national standardization committees further highlights his influence in the field. By integrating artificial intelligence and real-time monitoring into CNC machines, Liu Kuo continues to revolutionize intelligent manufacturing. His research and expertise bridge the gap between academia and industry, fostering technological advancements that drive economic growth. As he continues to push the boundaries of precision engineering, Liu Kuo remains a key figure in the development of cutting-edge manufacturing solutions. His work not only enhances industrial efficiency but also paves the way for the future of smart manufacturing.

Publication Top Notes

  1. Title: Characteristics of time series development and formation mechanism of icing interface strain under three-dimensional freezing conditions

    • Authors: L. Zeng, Lingqi; H. Liu, Haibo; H. Zhang, Hao; K. Liu, Kuo; Y. Wang, Yongqing
    • Year: 2025
  2. Title: Research on precision machining for ultra-thin structures based on 3D in-situ ice clamping

    • Authors: L. Zeng, Lingqi; H. Liu, Haibo; H. Zhang, Hao; K. Liu, Kuo; Y. Wang, Yongqing
    • Year: 2025
  3. Title: Cryogenic fluid labyrinth sealing characteristics considering cavitation effect

    • Authors: L. Han, Lingsheng; Y. Cheng, Yishun; X. Duan, Xinbo; K. Liu, Kuo; Y. Wang, Yongqing
    • Year: 2025
  4. Title: Defect formation mechanism in the shear section of GH4099 superalloy honeycomb under milling with ice fixation clamping

    • Authors: S. Jiang, Shaowei; D. Sun, Daomian; H. Liu, Haibo; K. Liu, Kuo; Y. Wang, Yongqing
    • Year: 2025
  5. Title: Multi-objective topology optimization for cooling element of precision gear grinding machine tool

    • Authors: C. Ma, Chi; J. Hu, Jiarui; M. Li, Mingming; X. Deng, Xiaolei; S. Weng, Shengbin
    • Year: 2025
    • Citations: 4
  6. Title: A semi-supervised learning method combining tool wear laws for machining tool wear states monitoring

    • Authors: M. Niu, Mengmeng; K. Liu, Kuo; Y. Wang, Yongqing
    • Year: 2025
    • Citations: 1
  7. Title: Influence of feed entrance angle on transverse tearing burr formation in the milling of superalloy honeycomb with ice filling constraint

    • Authors: S. Jiang, Shaowei; H. Liu, Haibo; Y. Zuo, Yueshuai; Y. Wang, Yongqing; S.Y. Liang, Steven Y.
    • Year: 2024
  8. Title: Hole position correction method for robotic drilling based on single reference hole and local surface features

    • Authors: T. Li, Te; B. Liang, Bochao; T. Zhang, Tianyi; K. Liu, Kuo; Y. Wang, Yongqing
    • Year: 2024
  9. Title: Modeling and compensation of small-sample thermal error in precision machine tool spindles using spatial–temporal feature interaction fusion network

    • Authors: Q. Chen, Qian; X. Mei, Xuesong; J. He, Jialong; J. Zhou, Jianqiang; S. Weng, Shengbin
    • Year: 2024
    • Citations: 38
  10. Title: A tool wear monitoring approach based on triplet long short-term memory neural networks

  • Authors: B. Qin, Bo; Y. Wang, Yongqing; K. Liu, Kuo; M. Niu, Mengmeng; Y. Jiang, Yeming
  • Year: 2024

 

Rabia Toprak | Engineering | Best Researcher Award

Assist. Prof. Dr. Rabia Toprak | Engineering | Best Researcher Award

Electrical-Electronics Engineering,  Karamanoglu Mehmetbey University,  Turkey

Rabia Toprak, an Assistant Professor at Karamanoglu Mehmetbey University, holds a Ph.D. in Electrical-Electronics Engineering from Konya Technical University, where her thesis focused on the detection of cancerous tissues using advanced antenna structures. With extensive research experience, she has participated in multiple national projects, including the development of high-gain microstrip antennas for medical applications and investigations into natural fiber-reinforced composites. Toprak has published numerous articles in international refereed journals, contributing to advancements in antenna design for cancer detection and electromagnetic field studies. Her teaching contributions span both undergraduate and graduate courses, where she emphasizes the principles of electromagnetics. Rabia Toprak’s dedication to innovative research and her significant impact on the fields of telecommunications and biomedical engineering make her a highly suitable candidate for the Research for Best Researcher Award, recognizing her contributions to academia and her commitment to improving health outcomes through technology.

Profile

Professional Experience

Rabia Toprak has built a solid academic career in the field of electrical-electronic engineering, specializing in telecommunications. She currently holds the position of Assistant Professor at Karamanoglu Mehmetbey University, having previously served as a research assistant in the same department from 2013 to 2023. Her long-standing affiliation with the academic community highlights her commitment to both teaching and research. Toprak’s experience includes leadership roles in various scientific projects, particularly those focusing on antenna designs for medical applications, further showcasing her expertise in applied electromagnetics.

Research Interests

Rabia Toprak’s research interests lie at the intersection of electrical engineering and biomedical applications, particularly in the design and implementation of microstrip antennas for medical diagnostics. Her doctoral work focused on the detection of cancerous tissues using high-gain microstrip and horn antenna structures, showcasing her commitment to advancing healthcare technologies. Toprak has contributed to various projects investigating the electrical properties of pathological tissues and has designed microstrip antennas for detecting cardiovascular conditions. Additionally, her work includes the development of natural fiber-reinforced epoxy/polymer-based hybrid composites for antenna applications, reflecting her interest in sustainable materials. With numerous publications in reputable journals, Toprak continues to explore innovative solutions for improving diagnostic methods in medicine, making significant contributions to both engineering and healthcare fields. Her ongoing projects include research on the effects of antenna designs on breast and colon tissue samples, further establishing her expertise in medical engineering.

Research Skills

Rabia Toprak has demonstrated exceptional research skills throughout her academic and professional career. As an Assistant Professor in the Department of Electrical-Electronic Engineering at Karamanoğlu Mehmetbey University, she has actively engaged in numerous research projects focused on innovative applications of microstrip antennas for medical diagnostics. Her expertise encompasses the design and implementation of antennas for detecting cancerous tissues and cardiovascular conditions, showcasing her proficiency in both theoretical and practical aspects of electromagnetic engineering. Toprak’s research is underpinned by her ability to conduct comprehensive literature reviews, design experimental setups, and analyze complex data. She has published multiple articles in esteemed international journals, reflecting her commitment to advancing knowledge in her field. Additionally, her involvement in collaborative research projects, such as the detection of cancer tissues and the design of hybrid composite substrates, highlights her strong teamwork and project management capabilities. Overall, Rabia Toprak’s research skills position her as a leading figure in her area of expertise.

Awards and Honors

Rabia Toprak, Assistant Professor at Karamanoglu Mehmetbey University, has garnered notable recognition for her innovative research in the field of electrical and electronic engineering. Her pivotal contributions include significant advancements in microstrip antenna technology, particularly in applications related to cancer detection and cardiovascular monitoring. In 2022, she received a prestigious grant from Higher Education Institutions for her project on the detection of cancerous tissues, highlighting her leadership in national research initiatives. Additionally, her work has been featured in several high-impact international journals, showcasing her commitment to advancing scientific knowledge. Toprak’s presentations at various international conferences have further solidified her reputation as a leading researcher in her field. Her dedication to education is evident in her teaching roles, where she inspires the next generation of engineers. These accolades reflect her exceptional contributions to both academia and the scientific community, establishing her as a prominent figure in engineering research.

Conclusion 

Rabia Toprak is a strong candidate for the Research for Best Researcher Award due to her significant contributions to the field of electrical and electronic engineering, particularly in medical applications. With a doctoral thesis focusing on the detection of cancerous tissues using advanced microstrip and horn antenna structures, she has demonstrated a commitment to innovative research with practical implications. Her role in various national scientific projects, such as the investigation of electrical properties of pathological tissues and the development of natural fiber-reinforced hybrid composites, underscores her multidisciplinary approach and collaboration within the scientific community. Furthermore, her numerous publications in reputable international journals highlight her ongoing dedication to advancing knowledge in her field. Rabia’s expertise, research impact, and teaching contributions at Karamanoglu Mehmetbey University reflect her commitment to excellence and innovation in research, making her an ideal candidate for this prestigious award.

Publication Top Notes

  • An approach to determine pathological breast tissue samples with free-space measurement method at 24 GHz
    • Authors: Rabia Toprak, Seyfettin Sinan Gultekin, Ahmet Kayabasi, Zeliha Esin Celik, Fatma Hicret Tekin, Dilek Uzer
    • Year: 2024
    • Citations: 0 (as it is a recent publication)
  • Comparison of Far Field and Near Field Values of Skin Tissue Measured Using Microstrip Antenna Structure
    • Authors: Rabia Toprak, Seyfettin Sinan Gultekin, Dilek Uzer
    • Year: 2022
    • Citations: 1
  • Investigation of Gain Enhancement in Microstrip Antenna Structure in Pathological Tissue Samples
    • Authors: Rabia Toprak, Seyfettin Sinan Gultekin, Dilek Uzer
    • Year: 2021
    • Citations: 2
  • Patolojik Doku Örneklerinde Mikroşerit Anten Yapısında S-Parametrelerine Ait Normalizasyon Değerlerinin İncelenmesi
    • Authors: Rabia Toprak, Seyfettin Sinan Gultekin, Dilek Uzer
    • Year: 2021
    • Citations: 0 (as it is a recent publication)
  • Determination of Cardiovascular Occlusion with Microstrip Antennas
    • Authors: H. Uyanik, D. Uzer, Rabia Toprak, Seyfettin Sinan Gultekin
    • Year: 2020
    • Citations: 3
  • Kanser Hastalığı Tespitine Yönelik ISM Bandında Çalışan Mikroşerit Yama Yapılı İki Antenin Elektromanyetik Alan ve Saçılma Parametreleri Verilerinin Değerlendirilmesi ve Kıyaslanması
    • Authors: Rabia Toprak, Seyfettin Sinan Gultekin, Dilek Uzer
    • Year: 2020
    • Citations: 0 (as it is a recent publication)
  • Microstrip antenna design with circular patch for skin cancer detection
    • Authors: Rabia Toprak, Y. Ünlü, Seyfettin Sinan Gultekin, Dilek Uzer
    • Year: 2019
    • Citations: 5
  • Modeling congestion of vessel on rectangular microstrip antenna and evaluating electromagnetic signals
    • Authors: Rabia Toprak, Seyfettin Sinan Gultekin, Dilek Uzer
    • Year: 2017
    • Citations: 0 (as it is a recent publication)
  • A Microstrip Patch Antenna Design for Breast Cancer Detection
    • Authors: Rabia Caliskan, Seyfettin Sinan Gultekin, Dilek Uzer, Ozgur Dundar
    • Year: 2015
    • Citations: 7

Miqin Zhang | Engineering | Best Researcher Award

Prof. Miqin Zhang | Engineering | Best Researcher Award

Dept of materials science and engineering, UNIVERSITY OF WASHINGTON,  United States

Miqin Zhang is a distinguished candidate for the Best Researcher Award, holding the Kyocera Chair Professorship in Materials Science and Engineering at the University of Washington and serving as a professor in various medical departments. His academic journey includes a Ph.D. from UC Berkeley, laying a solid foundation in materials science and biomedical engineering. Zhang’s research focuses on nanoscience and its applications in cancer therapy, tissue engineering, and biosensing, resulting in over 200 publications and more than 43,000 citations. His innovative work, especially in biodegradable hydrogels and targeted drug delivery systems, has significantly advanced therapeutic strategies. Recognition as a Highly Cited Researcher and fellowships from esteemed organizations highlight his influence in the field. Miqin Zhang’s multidisciplinary expertise and substantial contributions to science make him a deserving recipient of the Best Researcher Award, inspiring future researchers to strive for excellence and innovation in their work.

 

Profile:

Education

Miqin Zhang has an impressive educational background that lays the foundation for his distinguished career in materials science and engineering. He earned his Ph.D. in Materials Science and Engineering with a minor in Biomedical Engineering from the University of California, Berkeley, in 1999. Prior to this, he completed his Master of Science in Mechanical Engineering at the University of Victoria in Canada in 1993. His academic journey began at Jiangxi University of Science and Technology in China, where he obtained his Bachelor of Science in Metallurgical and Chemical Engineering in 1983. This rigorous training, coupled with research experience as a graduate assistant, equipped Zhang with a robust understanding of materials science principles and their applications in biomedical contexts. His extensive educational background not only demonstrates his commitment to academic excellence but also provides the expertise necessary for his impactful research in nanotechnology and regenerative medicine.

 

Professional Experiences 

Miqin Zhang has an extensive professional background in the field of materials science and engineering, currently serving as a Professor in the Department of Materials Science & Engineering at the University of Washington since 1999. His academic journey includes roles as an Associate Professor and Assistant Professor within the same department, highlighting a progressive career dedicated to research and education. Prior to his tenure at the University of Washington, Zhang gained valuable experience as a Graduate Research Assistant at both the University of California, Berkeley, and the University of Victoria, Canada. His early career began in China, where he worked as a Research Assistant and Associate at the Zhejiang Research Institute of Metallurgy, contributing to significant advancements in metallurgical research. This diverse and rich professional experience underscores his expertise in materials science and engineering, positioning him as a prominent figure in interdisciplinary research and collaboration.

 

Research skills 

Miqin Zhang exhibits exceptional research skills in the fields of nanoscience, biomaterials, and tissue engineering. His expertise encompasses the development of innovative nanomaterials for targeted drug delivery, particularly in cancer therapy, showcasing his proficiency in integrating engineering principles with biomedical applications. Zhang’s analytical skills are evident in his ability to conduct complex experimental designs, including the use of biodegradable hydrogels for stem cell delivery and tissue regeneration. His extensive publication record, which includes over 200 peer-reviewed articles with high citation rates, demonstrates not only his capacity for impactful research but also his commitment to advancing scientific knowledge. Furthermore, his leadership roles in collaborative projects, coupled with his engagement in interdisciplinary research, reflect his adeptness at fostering teamwork and driving innovation within diverse research environments.

 

Award And Recoginition 

Miqin Zhang is a distinguished candidate for the Best Researcher Award, holding the Kyocera Chair Professorship in the Department of Materials Science and Engineering at the University of Washington. His academic journey includes a Ph.D. in Materials Science and Engineering, complemented by extensive research experience in nanotechnology and its applications in cancer therapy, tissue engineering, and biosensing. With over 200 peer-reviewed publications and more than 43,000 citations, his work significantly impacts the scientific community. Zhang has received numerous accolades, including fellowships in prestigious organizations like The Royal Society of Chemistry and recognition as a Highly Cited Researcher. His innovative research, particularly in developing biodegradable hydrogels and nanomaterials, has revolutionized therapeutic approaches. By awarding him this honor, we not only recognize his exceptional contributions but also inspire future generations to pursue excellence in research and innovation within the fields of materials science and biomedical engineering.

 

Conclusion

 Miqin Zhang exemplifies the ideal candidate for the Best Researcher Award due to his exceptional contributions to the fields of materials science and engineering, particularly in nanotechnology and biomedical applications. His extensive academic and professional background, highlighted by his current positions at the University of Washington, reflects his commitment to interdisciplinary research and innovation. With over 200 peer-reviewed publications and more than 43,000 citations, Zhang’s work has significantly advanced therapeutic strategies for cancer treatment and tissue engineering. His numerous accolades, including fellowships and recognition as a Highly Cited Researcher, further underscore his influence and leadership in the scientific community. Awarding Zhang this recognition would honor his remarkable achievements and inspire future researchers to pursue excellence and innovation, ultimately contributing to the advancement of science and improved health outcomes. His dedication and impact make him a deserving recipient of this prestigious award.

Publication Top Notes

  • Green synthesis of iron-doped graphene quantum dots: an efficient nanozyme for glucose sensing
    Authors: Xinqi Li, Guanyou Lin, Lijun Zhou, Octavia Prosser, Mohammad H. Malakooti, Miqin Zhang
    Year: 2024
    Citation: DOI: 10.1039/D4NH00024B
  • Injectable Biodegradable Chitosan–PEG/PEG–Dialdehyde Hydrogel for Stem Cell Delivery and Cartilage Regeneration
    Authors: Xiaojie Lin, Ruofan Liu, Jacob Beitzel, Yang Zhou, Chloe Lagadon, Miqin Zhang
    Year: 2024
    Citation: DOI: 10.3390/gels10080508
  • Human Neural Stem Cell Expansion in Natural Polymer Scaffolds Under Chemically Defined Condition
    Authors: Fei‐Chien Chang, Matthew Michael James, Yang Zhou, Yoshiki Ando, Hadi M. Zareie, Jihui Yang, Miqin Zhang
    Year: 2024
    Citation: DOI: 10.1002/adbi.202400224
  • A Chitosan Scaffold Supports the Enhanced and Prolonged Differentiation of HiPSCs into Nucleus Pulposus-like Cells
    Authors: Yuanzhang Tang, Yang Zhou, Miqin Zhang
    Year: 2024
    Citation: DOI: 10.1021/acsami.4c06013
  • Advances in nanoparticle-based mRNA delivery for liver cancer and liver-associated infectious diseases
    Authors: Seokhwan Chung, Chan Mi Lee, Miqin Zhang
    Year: 2023
    Citation: DOI: 10.1039/D2NH00289B
  • 3D chitosan scaffolds support expansion of human neural stem cells in chemically defined condition
    Authors: Fei-Chien Chang, Matthew Michael James, Abdullah Mohammed Qassab, Yang Zhou, Yoshiki Ando, Min Shi, Miqin Zhang
    Year: 2023
    Citation: DOI: 10.1016/j.matt.2023.08.014
  • Chitosan Scaffolds as Microcarriers for Dynamic Culture of Human Neural Stem Cells
    Authors: Yoshiki Ando, Fei-Chien Chang, Matthew James, Yang Zhou, Miqin Zhang
    Year: 2023
    Citation: DOI: 10.3390/pharmaceutics15071957
  • Iron Oxide Nanoparticle-Mediated mRNA Delivery to Hard-to-Transfect Cancer Cells
    Authors: Jianxi Huang, Guanyou Lin, Taylor Juenke, Seokhwan Chung, Nicholas Lai, Tianxin Zhang, Tianyi Zhang, Miqin Zhang
    Year: 2023
    Citation: DOI: 10.3390/pharmaceutics15071946
  • Enhanced Cell Penetration and Pluripotency Maintenance of hiPSCs in 3D Natural Chitosan Scaffolds
    Authors: Yuanzhang Tang, Yang Zhou, Guanyou Lin, Miqin Zhang
    Year: 2023
    Citation: DOI: 10.1002/mabi.202200460
  • Ligand Chemistry in Antitumor Theranostic Nanoparticles
    Authors: Guanyou Lin, Miqin Zhang
    Year: 2023
    Citation: DOI: 10.1021/acs.accounts.3c00151
  • 3D Porous Scaffold-Based High-Throughput Platform for Cancer Drug Screening
    Authors: Yang Zhou, Gillian Pereira, Yuanzhang Tang, Matthew James, Miqin Zhang
    Year: 2023
    Citation: DOI: 10.3390/pharmaceutics15061691
  • Data from Time-Resolved MRI Assessment of Convection-Enhanced Delivery by Targeted and Nontargeted Nanoparticles in a Human Glioblastoma Mouse Model
    Authors: Zachary R. Stephen, Peter A. Chiarelli, Richard A. Revia, Kui Wang, Forrest Kievit, Chris Dayringer, Mike Jeon, Richard Ellenbogen, Miqin Zhang
    Year: 2023
    Citation: DOI: 10.1158/0008-5472.c.6511271
  • Iron Oxide Nanoparticles Decorated with Functional Peptides for a Targeted siRNA Delivery to Glioma Cells
    Authors: Seokhwan Chung, Yutaro Sugimoto, Jianxi Huang, Miqin Zhang
    Year: 2023
    Citation: DOI: 10.1021/acsami.2c17802
  • Electrospun nanofibers for 3-D cancer models, diagnostics, and therapy
    Authors: Ariane Erickson, Peter A. Chiarelli, Jianxi Huang, Sheeny Lan Levengood, Miqin Zhang
    Year: 2022
    Citation: DOI: 10.1039/D2NH00328G
  • High-Throughput Dispensing of Viscous Solutions for Biomedical Applications
    Authors: Richard A. Revia, Brandon Wagner, Matthew James, Miqin Zhang
    Year: 2022
    Citation: DOI: 10.3390/mi13101730
  • Enzymatic and Cellular Degradation of Carbon-Based Biconcave Nanodisks
    Authors: Zhiyong Wei, Qingxin Mu, Hui Wang, Guanyou Lin, Miqin Zhang
    Year: 2022
    Citation: DOI: 10.3390/mi13071144
  • Iron oxide nanoparticle-mediated radiation delivery for glioblastoma treatment
    Authors: Peter A. Chiarelli, Richard A. Revia, Zachary R. Stephen, Kui Wang, Forrest M. Kievit, Jordan Sandhu, Meenakshi Upreti, Seokhwan Chung, Richard G. Ellenbogen, Miqin Zhang
    Year: 2022
    Citation: DOI: 10.1016/j.mattod.2022.04.001

 

Shruti Prajapati | Engineering | Excellence in Research

Ms. Shruti Prajapati | Engineering | Excellence in Research

Research Scholar, Delhi Technological University,  India

Shruti Prajapati is a deserving candidate for the Excellence in Research Award, showcasing a strong academic background and impactful contributions to renewable energy research. Currently pursuing a Ph.D. at Delhi Technological University, she has an M.Tech in Power Systems & Control from Birla Institute of Technology, achieving an impressive 82.9%, along with a B.E. in Electrical & Electronics Engineering. Her research focuses on control techniques for renewable energy resources in microgrids, with expertise in optimization techniques and artificial neural networks. Shruti has authored several high-impact publications, including innovative studies on hybrid standalone microgrids and adaptive MPPT techniques, demonstrating her commitment to advancing sustainable energy solutions. Her technical skills in MATLAB and energy management further enhance her research capabilities. Overall, Shruti’s dedication, expertise, and significant contributions to her field position her as a leading researcher and an excellent candidate for this prestigious award.

Profile:

 

Education

Shruti Prajapati is currently pursuing her Ph.D. at Delhi Technological University, building on a solid academic foundation in electrical engineering. She earned her M.Tech in Power Systems & Control from the Birla Institute of Technology, Mesra Ranchi, achieving an impressive GPA of 82.9%. Prior to that, she completed her Bachelor of Engineering in Electrical & Electronics Engineering from M.S Engineering College, Bangalore, where she secured a GPA of 71.5%. Her educational journey began with her intermediate studies at Nav Jeevan Mission School in Deoria, followed by high school at GM Academy, where she achieved a commendable CGPA of 9. This robust educational background not only reflects her dedication and commitment to her field but also equips her with the knowledge and skills necessary to contribute meaningfully to research and development in renewable energy and related technologies.

Professional Experiences

Shruti Prajapati has amassed significant professional experience in the field of renewable energy and power systems. Currently pursuing her Ph.D. at Delhi Technological University, she actively engages in research focusing on control techniques for microgrids and optimization methods. Her prior role as a research assistant at the Birla Institute of Technology allowed her to work on cutting-edge projects related to energy management and control techniques for solar photovoltaic systems. She has also contributed to the development of innovative solutions in her capacity as a team member in various international conferences and collaborative research initiatives. Through her hands-on experience with MATLAB, Simulink, and advanced programming languages, Shruti has honed her skills in energy modeling and system analysis. Her professional journey reflects a commitment to advancing renewable energy technologies and enhancing power system reliability, establishing her as a knowledgeable and dedicated researcher in her field.

 

Research skills

Shruti Prajapati possesses a robust set of research skills that make her a standout candidate for the Excellence in Research Award. Her expertise in control techniques for renewable energy resources, particularly within microgrids, showcases her ability to tackle complex energy challenges. Proficient in MATLAB and Simulink, she utilizes these tools for energy modeling and management, facilitating the development of innovative solutions for power systems. Shruti’s work with optimization techniques and artificial neural networks demonstrates her analytical skills and commitment to enhancing energy efficiency. Moreover, her publications in high-impact journals reflect her capacity to conduct rigorous research and contribute valuable insights to the field. Her collaboration on various projects, including adaptive MPPT techniques and islanding detection, highlights her teamwork and leadership abilities. Overall, Shruti’s comprehensive skill set positions her as a promising researcher dedicated to advancing renewable energy technologies

 

Awards And Recoginition

Shruti Prajapati is a distinguished researcher currently pursuing her Ph.D. at Delhi Technological University, with a focus on control techniques for renewable energy resources. She holds an M.Tech in Power Systems & Control from the Birla Institute of Technology, where she excelled academically. Prajapati has made significant contributions to the field through her published works in high-impact journals, including innovative solutions for hybrid standalone microgrids and grid-integrated solar photovoltaic systems. Her research not only enhances theoretical understanding but also addresses practical challenges in energy management and efficiency. Recognized for her expertise in optimization techniques and artificial neural networks, she is poised to make a lasting impact on sustainable energy solutions. Prajapati’s commitment to excellence in research and her notable achievements underscore her potential as a leader in the field, making her a deserving candidate for the Excellence in Research Award.

Conclusion

Shruti Prajapati embodies the essence of the Excellence in Research Award through her exceptional academic achievements and impactful contributions to the field of renewable energy. With a strong educational background, including a Ph.D. in progress at Delhi Technological University and an M.Tech from the esteemed Birla Institute of Technology, she has demonstrated both knowledge and commitment. Her research focuses on innovative control techniques for microgrids, optimizing energy management, and enhancing reliability in renewable systems. Shruti’s notable publications in high-impact journals highlight her ability to address pressing energy challenges with creative solutions. Her work not only advances academic knowledge but also offers practical applications that can significantly improve energy efficiency and sustainability. Given her dedication, expertise, and substantial contributions, Shruti Prajapati stands out as a leading researcher and a deserving candidate for this prestigious award.

 

Publication Top Notes

  • Evolutionary Algorithm for Enhanced Performance of Grid Connected SPV System
    S. Prajapati, R. Garg, P. Mahajan
    2022, 5th International Conference on Contemporary Computing and Informatics, pp. 814-820.
    Citations: 3
  • Honey Badger Algorithm Based PI Controller for DC Link Voltage Control of Solar Photovoltaic System Connected to Grid for Enhanced Power Quality
    S. Prajapati, R. Garg, P. Mahajan
    Electric Power Components and Systems, pp. 1-20, 2024.
    Citations: 2
  • Modified Control Approach for MPP Tracking and DC Bus Voltage Regulation in a Hybrid Standalone Microgrid
    S. Prajapati, R. Garg, P. Mahajan
    Electric Power Systems Research, 236, 110935, 2024.
    Citations: 1
  • Novel Adaptive MPPT Technique for Enhanced Performance of Grid Integrated Solar Photovoltaic System
    S. Prajapati, R. Garg, P. Mahajan
    Computers and Electrical Engineering, 120, 109648, 2024.
    Citations: Not specified
  • Network Reconfiguration-Based Outage Management for Reliability Enhancement of Microgrid: A Hardware in Loop Approach
    S. Prajapati, S.K. Sahu, D. Ghosh
    In The Internet of Energy, pp. 337-357, Apple Academic Press, 2024.
    Citations: Not specified

 

FİLİZ YANGILAR | Engineering | Best Researcher Award

Assoc Prof Dr. FİLİZ YANGILAR | Engineering | Best Researcher Award

Assoc Prof Dr, Erzincan Binali Yıldırım University , Turkey

Dr. Filiz Yangılar is an Associate Professor at Erzincan Binali Yıldırım University, specializing in Nutrition and Dietetics. She completed her Bachelor’s in Food Engineering in 2000 and earned her Master’s and Ph.D. in Food Engineering from Atatürk University in 2004 and 2010, respectively. Her research focuses on dairy products, probiotics, and food quality assessment, with a notable thesis on the maturation period of white cheese using different probiotic cultures. Dr. Yangılar has supervised numerous graduate theses and has been involved in various national scientific research projects, contributing significantly to her field. She has held several administrative roles, including Department Head and Institute Director. Recognized for her contributions, she has received multiple awards, including those from Erzincan Binali Yıldırım University. Dr. Yangılar’s dedication to research and education highlights her impact on the advancement of nutrition science in Turkey. 🥗📚✨

Profile:

Education

Dr. Filiz Yangılar completed her Bachelor’s degree in Food Engineering at Atatürk University in 2000. She pursued her Master’s degree in Food Engineering, also at Atatürk University, where she graduated in 2004 with a thesis on the production of local cheeses and their microbiological, physical, and chemical properties. She continued her academic journey at Atatürk University, earning her Ph.D. in Food Engineering in 2010, focusing on the quality criteria of white cheese produced with different probiotic cultures. Dr. Yangılar has since become a notable academic in the field of nutrition and dietetics, currently serving as an Associate Professor at Erzincan Binali Yıldırım University. Her extensive educational background is complemented by various leadership roles within her department, showcasing her commitment to advancing research and education in food sciences.

Professional Experience

Dr. Filiz Yangılar is an accomplished Associate Professor at Erzincan Binali Yıldırım University, specializing in Nutrition and Dietetics. With a solid educational background, she earned her Ph.D. in Food Engineering from Atatürk University in 2010, focusing on the maturation period of probiotic cheese. Dr. Yangılar has held various academic positions, including Doctor Lecturer at both Erzincan and Ardahan Universities, where she has significantly contributed to the development of nutrition programs. She has supervised numerous master’s theses, addressing topics such as plant-based formulations and nutritional needs post-disasters. Dr. Yangılar is actively involved in national research projects, examining the quality characteristics of traditional and innovative food products. Additionally, she has served in various administrative roles, including as the Director of the Health Sciences Institute and the Head of the Nutrition and Dietetics Department. Her commitment to advancing food science and nutrition has earned her several awards for research and academic excellence.

Research Skills

Dr. Filiz Yangılar, an accomplished associate professor in the Department of Nutrition and Dietetics at Erzincan Binali Yıldırım University, possesses extensive research skills in food engineering and nutrition. Her expertise includes investigating the quality criteria of various dairy products, particularly focusing on the microbiological, physical, chemical, and sensory properties of traditional cheeses. Dr. Yangılar has successfully led multiple research projects on probiotic bacteria and their application in dairy production, contributing valuable insights to the field. Additionally, she has supervised numerous master’s theses, fostering new research in areas such as plant-based nutrition and functional foods. Her involvement in national scientific research projects further demonstrates her ability to collaborate and innovate within her discipline. With a strong publication record and recognition through various awards, Dr. Yangılar continues to advance research in nutritional science and food quality, emphasizing the importance of healthful dietary practices.

Award and Recognition

Dr. Filiz Yangılar, a prominent associate professor at Erzincan Binali Yıldırım University, has made significant contributions to the field of nutrition and dietetics, particularly in food engineering. She earned her PhD from Atatürk University, focusing on the quality characteristics of various dairy products, showcasing her expertise in food technology. Dr. Yangılar has been recognized for her innovative research through multiple awards, including the 2024 AR-GE Project Market award and the Academic Science, Art, and Sports Award from her university. Her projects on probiotics and functional food formulations have garnered national attention, reflecting her commitment to advancing food science. Additionally, she serves in various academic leadership roles, including as the director of the Health Sciences Institute. Dr. Yangılar’s dedication to teaching and research continues to inspire students and colleagues alike, establishing her as a respected figure in the academic community. 🏆👩‍🔬🥇

Conclusion

Dr. Filiz Yangılar is a highly qualified candidate for the Research for Best Researcher Award. Her extensive experience, strong research contributions, and leadership roles position her as a significant figure in the field of nutrition and food engineering. By focusing on international collaboration and diversifying her research topics, she could further enhance her impact and recognition in the global research community. Overall, Dr. Yangılar embodies the qualities of a leading researcher and would be a deserving recipient of this award. 🌟📚🏆

Publication Top Notes

  • Title: As a potentially functional food: Goats’ milk and products
    Authors: F Yangilar
    Journal: Journal of Food and Nutrition Research
    Year: 2013
    Volume: 1(4), pp. 68-81
    Citations: 197
  • Title: The application of dietary fibre in food industry: structural features, effects on health and definition, obtaining and analysis of dietary fibre: a review
    Authors: F Yangilar
    Journal: Journal of Food and Nutrition Research
    Year: 2013
    Volume: 1(3), pp. 13-23
    Citations: 191
  • Title: Pullulan: Production and usage in food industry
    Authors: P Oğuzhan, F Yangilar
    Journal: African Journal of Food Science and Technology
    Year: 2013
    Volume: 4(3), pp. 2141-5455
    Citations: 98*
  • Title: Effects of green banana flour on the physical, chemical and sensory properties of ice cream
    Authors: F Yangilar
    Journal: Food Technology and Biotechnology
    Year: 2015
    Volume: 53(3), pp. 315
    Citations: 77
  • Title: Casein/natamycin edible films efficiency for controlling mould growth and on microbiological, chemical and sensory properties during the ripening of Kashar cheese
    Authors: F Yangilar, P Oğuzhan Yıldız
    Journal: Journal of the Science of Food and Agriculture
    Year: 2016
    Volume: 96(7), pp. 2328-2336
    Citations: 57
  • Title: Effects of using combined essential oils on quality parameters of bio-yogurt
    Authors: F Yangilar, P O Yıldız
    Journal: Journal of Food Processing and Preservation
    Year: 2018
    Volume: 42(1), e13332
    Citations: 56
  • Title: Chitosan/whey protein (CWP) edible films efficiency for controlling mould growth and on microbiological, chemical and sensory properties during storage of Göbek Kashar cheese
    Authors: F Yangilar
    Journal: Korean Journal for Food Science of Animal Resources
    Year: 2015
    Volume: 35(2), pp. 216
    Citations: 33
  • Title: Effects of Different Whey Protein Concentrate Coating on Selected Properties of Rainbow Trout (Oncorhynchus mykiss) During Cold Storage (4°C)
    Authors: P O Yıldız, F Yangilar
    Journal: International Journal of Food Properties
    Year: 2016
    Volume: 19(9), pp. 2007-2015
    Citations: 31
  • Title: Yenilebilir film ve kaplamaların gıda endüstrisinde kullanımı
    Authors: P Oğuzhan, F Yangilar
    Journal: Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    Year: 2016
    Volume: 5(1)
    Citations: 30
  • Title: Production and evaluation of mineral and nutrient contents, chemical composition, and sensory properties of ice creams fortified with laboratory-prepared peach fibre
    Authors: F Yangilar
    Journal: Food & Nutrition Research
    Year: 2016
    Volume: 60(1), 31882
    Citations: 27