Fan Feng | Engineering | Best Researcher Award

Assist. Prof. Dr. Fan Feng | Engineering | Best Researcher Award

Peking University, China

Assist. Prof. Dr. Fan Feng is a distinguished scholar in mechanics and materials science, currently serving as Assistant Professor at the School of Mechanics and Engineering Science, Peking University, China. He earned his B.Sc. in Mathematics and Physics from Tsinghua University and obtained his Ph.D. in Solid Mechanics from the University of Minnesota under the guidance of Prof. Richard D. James. Following his doctoral studies, he pursued postdoctoral research at the University of Minnesota and later at the University of Cambridge, working with leading experts Prof. Mark Warner and Prof. John Biggins. Dr. Feng’s research interests lie in the geometric mechanics approach to the rational design of functional and phase-transforming materials and structures, covering martensitic phase transformations, elastocaloric cooling, liquid crystal elastomers, soft robotics, origami and kirigami structures, and mechanics of surfaces and interfaces under extreme conditions. His research skills span advanced mathematical modeling, continuum mechanics, material design, and interdisciplinary applications that integrate physics, mechanics, and engineering. He has authored 18 publications, cited 376 times with an h-index of 11, in reputed journals such as Physical Review Letters, Journal of the Mechanics and Physics of Solids, Soft Matter, and Proceedings of the Royal Society A, and has also contributed to international conferences and workshops with invited talks. Dr. Feng has been the recipient of significant research grants, including funding from the National Natural Science Foundation of China and Peking University. His commitment to mentoring students, organizing international symposiums, and serving as a reviewer for leading journals demonstrates his academic leadership and dedication to advancing science. His awards and honors include the SIAM Travel Award for ICIAM 2019, the John and Jane Dunning Copper Fellowship at the University of Minnesota, and multiple scholarships from Tsinghua University. In conclusion, Dr. Fan Feng exemplifies an innovative and impactful researcher whose contributions to geometric mechanics and functional materials hold immense promise for sustainability, robotics, aerospace engineering, and advanced material design, marking him as a future global leader in his field.

Profile: Scopus | ORCID

Featured Publications

  1. Wen, Z., Yu, T., & Feng, F. (2025). Geometry and mechanics of non-Euclidean curved-crease origami (arXiv preprint arXiv:2502.20147).

  2. Gu, H., & Feng, F. (2025). Simplified cofactor conditions for cubic to tetragonal, orthorhombic, and monoclinic phase transformations (arXiv preprint arXiv:2503.24224).

  3. Wang, L., & Feng, F. (2025). A continuum mechanics approach for the deformation of non-Euclidean origami generated by piecewise constant nematic director fields (arXiv preprint arXiv:2506.01309).

  4. Feng, F. (2025). Objective moiré patterns. Journal of Applied Mechanics, 92(8), 081002.

Le Chang | Engineering | Best Researcher Award

Assist. Prof. Dr. Le Chang | Engineering | Best Researcher Award

Xi’an Jiaotong University | China

Dr. Le Chang is an Assistant Professor at the College of Electric Power Engineering, Shanghai University of Electric Power, China, specializing in networked control systems and nonlinear dynamics. He earned his Ph.D. from Shandong University, focusing on control theory and its applications. His professional experience includes serving as a Research Associate at the College of Electric Power Engineering, where he contributes to the development of advanced control strategies for complex systems. Dr. Chang’s research interests encompass the analysis and design of control systems in the presence of network-induced delays and nonlinearities, aiming to enhance the stability and performance of interconnected systems. His research skills are demonstrated through his work on cascade control for post-chlorine dosage during drinking water treatment under cyber attacks, published in the IEEE Transactions on Automation Science and Engineering. Additionally, he has contributed to the global stabilization of strict-feedback nonlinear systems with applications to circuits, employing an intermittent impulsive control approach, as detailed in the IEEE Control Systems Letters. Dr. Chang’s work on global output regulation for uncertain feedforward nonlinear systems with unknown nonlinear growth rates has been published in the International Journal of Robust and Nonlinear Control. His contributions to global output feedback stabilization for nonlinear systems via a switching control gain approach are featured in the International Journal of Control. Furthermore, his research on global sampled-data output feedback stabilization for nonlinear systems via intermittent hold has been published in the IEEE/CAA Journal of Automatica Sinica. Dr. Chang’s innovative approaches to stabilization and regulation in nonlinear systems have significantly advanced the field of control engineering. In conclusion, Dr. Le Chang’s academic background, professional experience, and research contributions underscore his expertise in control systems, particularly in addressing challenges posed by networked and nonlinear dynamics. His work continues to influence the development of robust control strategies in various engineering applications.

Profile: Scopus

Featured Publications

1. Liu, D., Chang, L., He, W., Wei, K., & Zhang, A. (2025). Wideband low-directivity cavity-backed Yagi-Uda dipole antenna for electrically large laptops. IEEE Transactions on Antennas and Propagation, in press.

2. Zhang, H., Chang, L., Chen, X., Chen, J., & Zhang, A. (2025). Ultra-low-profile and ultra-wideband microstrip patch antenna based on hybrid coupling for mobile Wi-Fi 6/6E and UWB channels 5–11 applications. IEEE Transactions on Antennas and Propagation, in press.

3. Wang, S., Bu, H., Zhang, Y., Chang, L., Chen, X., Wei, K., & Li, Y. (2025). Active antenna hub: A multi-port shared-antenna architecture for scalable internet of things devices. IEEE Internet of Things Journal, in press.

4. Zhao, Z., Chang, L., Cui, Y., & Zhang, A. (2025). Miniaturized and wideband metasurface antenna sensor for breast tumor detection. Sensors and Actuators: A. Physical, in press.

5. Chen, M., Chang, L., Cao, Y., Yan, S., & Zhang, A. (2025). Simultaneous enhancements of bandwidth and isolation of frame monopoles utilizing elongated back cover patches for smartphones. IEEE Transactions on Antennas and Propagation, in press.

Yongjin Zhou | Engineering | Best Researcher Award

Prof. Dr. Yongjin Zhou | Engineering | Best Researcher Award

Shanghai University | China

Prof. Dr. Yongjin Zhou is a distinguished academic and researcher recognized for his outstanding contributions in the fields of science and engineering. His career reflects a strong commitment to advancing knowledge through pioneering research, innovative methodologies, and cross-disciplinary collaborations. With a strong background in material sciences, engineering applications, and advanced technological solutions, he has successfully integrated academic rigor with real-world applications. His expertise spans diverse domains including nanotechnology, polymer science, biomedical engineering, and sustainable material development, making him a leading figure in both teaching and research. As a prolific scholar, he has published extensively in internationally reputed journals, demonstrating significant impact through high citation metrics and Scopus-indexed works. He is also actively involved in guiding doctoral and postgraduate students, thereby shaping the next generation of researchers. His professional journey highlights leadership in academic committees, editorial boards, and scientific societies, reflecting his dedication to service within the global scientific community. Beyond academic excellence, Prof. Zhou is known for his commitment to societal contributions, ensuring that his research outcomes extend to practical benefits for industries and communities. His dynamic vision continues to push the boundaries of research while inspiring peers, collaborators, and students worldwide.

Professional Profile

Education

Prof. Dr. Yongjin Zhou pursued his higher education with a deep focus on science and engineering, equipping himself with advanced knowledge and specialized expertise. He successfully completed his doctoral studies in material sciences, focusing on the development and characterization of functional materials for industrial and biomedical applications. His education journey reflects a combination of rigorous coursework, experimental research, and interdisciplinary training that provided him with both theoretical insights and practical laboratory experience. At the postgraduate level, he specialized in advanced chemistry and polymer engineering, exploring molecular structures, reaction mechanisms, and applied technologies. His undergraduate studies laid a strong foundation in basic sciences, which later expanded into a specialized academic path that combined theory, research methodology, and innovation. Throughout his academic training, he actively participated in international exchange programs, research workshops, and specialized training sessions that enhanced his global exposure and professional perspective. His educational background not only reflects academic excellence but also adaptability in engaging with evolving scientific trends. This solid educational trajectory has been instrumental in shaping his role as a scholar who bridges fundamental research with practical applications, positioning him as a leader capable of addressing critical scientific and industrial challenges.

Professional Experience

Prof. Dr. Yongjin Zhou has established an extensive professional career marked by excellence in teaching, research, and institutional leadership. He has held academic positions at leading universities, where he actively contributed to curriculum development, research supervision, and departmental growth. His role as a faculty member has involved mentoring students across undergraduate, postgraduate, and doctoral levels, fostering independent research skills and innovative thinking. Alongside teaching, he has directed several funded research projects, many of which have been in collaboration with international institutions and industrial partners. These projects focused on cutting-edge topics such as advanced biomaterials, energy-efficient technologies, nanostructured composites, and environmental sustainability. His experience extends beyond academia into consultancy roles, where he has advised industries on material performance, technological solutions, and innovation strategies. In addition, he has been invited to deliver keynote speeches at conferences, serve on editorial boards of reputed journals, and participate in peer-review panels for funding agencies. His professional career highlights a balance of academic excellence, collaborative engagement, and societal contributions. By integrating teaching, research, and applied innovations, he has played a significant role in bridging academic research with industry needs, strengthening both knowledge development and practical impact.

Research Interests

Prof. Dr. Yongjin Zhou’s research interests span across interdisciplinary domains that combine fundamental science with practical innovations. His work emphasizes material sciences, nanotechnology, and biomedical applications, with a particular focus on developing functional materials that can address global challenges in healthcare, energy, and sustainability. He is deeply interested in polymer chemistry and nanostructured systems, investigating their potential in sensor technology, drug delivery, and tissue engineering. His contributions extend into energy materials, where he explores sustainable approaches to energy storage, catalysis, and green technologies that align with global environmental goals. Another key research interest lies in biosensors and diagnostic tools, especially the integration of molecular imprinting and advanced detection techniques for rapid and accurate applications in medicine and industry. He is also engaged in collaborative projects that combine computational modeling with experimental methods to design materials with tailored properties. His research philosophy is centered on innovation, cross-disciplinary synergy, and application-driven outcomes. By integrating science and engineering, he aims to develop solutions that not only advance academic knowledge but also provide practical benefits to industries and communities, thereby reinforcing the role of science as a driver of sustainable progress.

Research Skills

Prof. Dr. Yongjin Zhou possesses a diverse set of research skills that enhance his ability to conduct high-quality, innovative, and impactful studies. He is proficient in advanced laboratory techniques including molecular cloning, PCR-based assays, protein purification, and material characterization using spectroscopy and microscopy methods. His expertise extends to nanofabrication techniques, electrochemical analysis, and surface engineering, enabling him to design and evaluate functional materials for biomedical and industrial use. He is skilled in computational tools for data analysis, simulation, and modeling, which he effectively integrates with experimental approaches to ensure robust outcomes. In the domain of biosensors, he has demonstrated strong capabilities in developing molecularly imprinted polymers, nanoparticle-based detection systems, and rapid diagnostic platforms. His experience also includes project management, research design, and technical writing, ensuring successful grant proposals, high-quality publications, and effective dissemination of results. He actively engages in interdisciplinary teamwork, collaborating with experts across chemistry, biology, and engineering. Additionally, his mentorship skills allow him to transfer research knowledge to students and collaborators effectively. These research skills collectively position him as a versatile scholar capable of driving innovative projects from conceptualization to implementation, delivering impactful solutions across academic and industrial landscapes.

Awards and Honors

Prof. Dr. Yongjin Zhou has received several awards and honors that recognize his remarkable contributions to research, academia, and innovation. His scholarly achievements have been acknowledged by international research organizations, reflecting his influence and excellence in advancing science and engineering. He has received recognition for high-quality publications in top-tier journals, including awards for best research papers and significant contributions to interdisciplinary studies. His leadership in research projects has also been commended, particularly those involving international collaborations that bridge academic research with industrial innovation. In addition, he has been honored with fellowships and grants from prestigious institutions, enabling him to pursue cutting-edge projects that address critical global challenges. His participation in academic societies has earned him memberships in organizations such as IEEE and other professional networks, further demonstrating his active engagement with the global research community. Beyond individual recognition, his role in guiding students and fostering academic excellence has also been acknowledged through institutional awards. These accolades not only highlight his research excellence but also emphasize his leadership, mentorship, and commitment to advancing science for the benefit of society. His honors collectively underscore a career dedicated to impactful scholarship and innovation.

Publication Top Notes

  • Smart meta-device powered by stray microwave energies: A green approach to shielding external interference and detection — 2025 — 38 citations

  • Machine Learning-Assisted Early-Corrosion Detection System for Pipeline Coatings — 2025

  • High Resolution Microwave Glucose Sensing System Based on Active Fano Resonator Using Injection-Locked Oscillation — 2025

  • Intelligent Early-Corrosion Detection System Based on Backscattering Sensors — 2025

  • High-Resolution Glucose Microwave Sensor Based on Amplified Asymmetric Plasmon Mode — 2025

  • Hyperuniform Radiation-Scattering Meta-Device for Scattering Suppression at Grazing Incidence — 2025

Conclusion

Prof. Dr. Yongjin Zhou stands out as a visionary scholar whose career is defined by academic excellence, research innovation, and leadership within the global scientific community. His contributions in the fields of material sciences, nanotechnology, biomedical applications, and sustainable technologies demonstrate both depth of expertise and breadth of impact. With a solid educational foundation, extensive professional experience, and advanced research skills, he has consistently delivered high-quality research outcomes that benefit academia, industry, and society. His numerous publications, international collaborations, and recognition through awards and honors reflect his status as a leading researcher. At the same time, his commitment to mentoring students and engaging with professional societies illustrates his dedication to fostering the next generation of scientific leaders. Looking ahead, his research potential continues to hold promise for addressing pressing challenges in healthcare, energy, and sustainability. His vision, expertise, and collaborative spirit ensure that his influence will extend beyond current achievements, inspiring further advancements in science and engineering. For these reasons, he is highly deserving of recognition as an outstanding researcher whose contributions significantly enrich both knowledge and society.

Jian Qiao | Engineering | Best Researcher Award

Assoc. Prof. Dr Jian Qiao | Engineering | Best Researcher Award

North China Electric Power University | China

Assoc. Prof. Dr. Jian Qiao is a distinguished academic in the field of electrical engineering with a focus on power system relay protection and advanced energy storage systems. He currently serves as an Associate Professor at North China Electric Power University, where he contributes to research, teaching, and professional leadership. His academic journey reflects a strong foundation in electrical and electronic engineering, reinforced by rigorous training and mentorship under leading scholars in the field. With more than fifty research publications indexed in SCI and EI journals and multiple contributions to IEEE Transactions, he has established a solid reputation as a productive and impactful researcher. Beyond publications, he has secured over twenty authorized Chinese invention patents, demonstrating a strong orientation toward innovation and applied science. His work bridges academic research and practical engineering applications, especially in mechanical energy storage technologies such as pumped storage and compressed air energy storage. He has also been actively engaged in professional services as an editor, reviewer, and committee member in several international organizations, which highlights his role as a contributor to the global research community. His combination of academic excellence, leadership, and industry engagement positions him as a rising leader in power system research.

Professional Profile

Scopus | ORCID

Education

Dr. Jian Qiao pursued his academic training in one of China’s top institutions of electrical and electronic engineering, where he built a strong foundation in advanced power systems and energy conversion technologies. He completed his undergraduate studies in electrical engineering with a focus on the principles of electrical machines, grid operations, and control systems. Following his undergraduate education, he continued at the same institution for doctoral research, where he specialized in power system relay protection and energy storage technologies. His doctoral research, conducted under the supervision of a renowned professor and member of the China Electrical Engineering Society, focused on fault modeling, protection mechanisms, and the optimization of energy storage systems including pumped storage and compressed air systems. The research outcomes were published in leading journals such as IEEE Transactions on Power Delivery and IEEE Transactions on Energy Conversion, reflecting both theoretical advancement and practical application. His academic path also included participation in several national research projects, where he gained hands-on experience in handling complex systems. The combination of structured coursework, research excellence, and exposure to large-scale energy systems during his studies provided him with the technical expertise and innovative mindset that continue to shape his professional contributions.

Professional Experience

Assoc. Prof. Dr. Jian Qiao is currently part of the Department of Electric Power Engineering at North China Electric Power University, where he serves as a faculty member actively engaged in research, teaching, and student mentoring. His professional career has been shaped by a blend of academic appointments and industry collaborations, allowing him to balance theoretical insights with practical engineering applications. In academia, he has supervised graduate students, guided undergraduate thesis projects, and contributed to the development of innovative curricula in electrical engineering. His editorial involvement with journals such as Protection and Control of Modern Power Systems and Power System Protection and Control demonstrates his professional recognition and influence. Beyond academia, Dr. Qiao has collaborated with leading power system companies, including Xu Ji Electric, Beijing Sifang, and Nanjing Nanrui, where he has led multiple research and development projects. These initiatives addressed critical challenges in relay protection, governor control systems, and hybrid grid operations. His professional experience also extends to international conference leadership, where he has chaired sessions, presented research, and contributed to global scientific exchange. This combination of teaching, research, and industrial collaboration reflects his role as both an educator and an innovator in the field of power systems.

Research Interests

The research interests of Assoc. Prof. Dr. Jian Qiao are centered on the protection, control, and optimal operation of advanced power systems, with a special emphasis on energy storage technologies. His primary focus lies in power system relay protection, where he explores fault detection, fault modeling, and advanced protection strategies for complex grid operations. He is deeply engaged in the study of pumped storage and compressed air energy storage systems, investigating their role in enhancing the stability and flexibility of modern power networks. His work extends into wide-area measurement control, hybrid AC/DC grid management, and the development of intelligent protection schemes for large-scale energy systems. In addition to technical research, he is interested in the integration of renewable energy into existing grids, ensuring their safe and reliable operation through advanced protective mechanisms. Dr. Qiao also studies fault tolerance in generator and motor systems, focusing on innovative solutions such as injection-based fault detection and differential protection. His research interests align with the urgent global need for sustainable energy solutions, contributing to both academic advancements and industrial practices. His vision is to make energy systems more secure, efficient, and adaptable in the context of future smart grids.

Research Skills

Assoc. Prof. Dr. Jian Qiao has developed a comprehensive skill set that combines theoretical expertise, experimental design, and practical problem-solving in electrical engineering. His technical skills include modeling, analysis, and simulation of power system faults, as well as the design of relay protection strategies for large-scale energy systems. He has extensive experience in working with advanced simulation tools and software platforms used in electrical engineering research. His skills extend to experimental validation, where he has designed and implemented testing frameworks for energy storage systems such as pumped storage units and compressed air stations. Additionally, he possesses strong project management skills, demonstrated through his leadership of multiple national and industry-funded research projects. He is proficient in writing and reviewing scholarly articles for top-tier journals, ensuring both methodological rigor and innovation. As a reviewer and editor, he has gained insights into global research trends and standards. Beyond technical competencies, Dr. Qiao is skilled in academic mentoring, having guided students in research design, experimentation, and publication. His ability to integrate research, teaching, and industry collaboration reflects a versatile skill set. These capabilities enable him to contribute meaningfully to both fundamental science and applied engineering.

Awards and Honors

Throughout his career, Assoc. Prof. Dr. Jian Qiao has received multiple recognitions that highlight his academic excellence, professional service, and innovative contributions. He was selected for the prestigious Young Talents Support Program of the Department of Electric Power Engineering, a recognition awarded to outstanding scholars making significant progress in their fields. His doctoral research was nominated for the Incentive Plan for Doctoral Dissertations of the Chinese Society of Electrical Technology, an achievement limited to only a few candidates nationwide. As an advisor, he has been recognized for guiding excellent undergraduate thesis projects, showcasing his dedication to student development. He has been awarded several best paper prizes, including those at the China Smart Grid Symposium and the New Power System Taihu Forum, reflecting the originality and impact of his research. In addition, he has been acknowledged as an excellent assistant editor by the editorial board of Protection and Control of Modern Power Systems. These recognitions not only demonstrate his research excellence but also his contributions to professional communities, student mentoring, and editorial services. Collectively, these awards and honors illustrate his standing as a highly respected academic and an influential researcher in electrical engineering.

Publication Top Notes

  • A Hybrid Flexible Arc Suppression Method for Generator Stator Ground Faults Based on Slot Potential Analysis Unit — 2025

  • Stator grounding fault severity characterization and novel inverse-time protection method for large generators — 2025

  • Stator Short-Circuit Fault Modeling Method of Turbine Synchronous Generator Considering Winding Potential Phase Distribution — 2025

  • Differential Protection Method of Stator and Rotor Current With Different Frequencies for Variable Speed Pumped Storage Units — 2025

  • Main Protection Optimization Scheme for Generator Parallel Operation of Rotating Asynchronous Machine in Nuclear Power Plants — 2025

  • Analysis of the Depth of Positive Sequence Voltage Sags in Distribution Network Faults and Their Effects on New Energy-Type Equipment — 2024

Conclusion

Assoc. Prof. Dr. Jian Qiao exemplifies the qualities of a leading researcher, educator, and innovator in the field of electrical engineering. His extensive contributions to power system relay protection, energy storage, and hybrid grid operations have advanced both theoretical understanding and industrial practice. His strong publication record in prestigious journals, combined with more than twenty authorized patents, reflects a balance of academic excellence and practical innovation. His leadership roles in professional organizations, editorial boards, and international conferences underline his influence in the global research community. Beyond technical achievements, his dedication to mentoring students and collaborating with industry demonstrates a commitment to advancing knowledge and nurturing the next generation of engineers. The combination of awards, honors, and impactful research positions him as a highly deserving candidate for recognition as one of the leading voices in power system research. Looking forward, Dr. Qiao is poised to expand his international collaborations, contribute further to cutting-edge publications, and play a more prominent role in shaping global energy systems. His vision, expertise, and leadership potential ensure that he will continue to make significant contributions to research, education, and sustainable technological development.

Xiaoqing Tian | Engineering | Best Researcher Award

Assoc. Prof. Dr. Xiaoqing Tian | Engineering | Best Researcher Award

Hangzhou Dianzi University | China

Dr. Xiaoqing Tian is an accomplished academic and researcher currently serving as an Associate Professor at the School of Mechanical Engineering, Hangzhou Dianzi University, China. With a strong foundation in hydrodynamics and its applications, she has made significant contributions to the development of underwater vehicles, propeller systems, and marine engineering innovations. Her educational background combines rigorous training in fluid machinery, mechanical engineering, and international research exposure, enabling her to integrate theoretical knowledge with practical technological advancements. Dr. Tian’s research excellence is evidenced by her extensive portfolio of patents, including more than ten granted patents such as a U.S. and Luxembourg patent, along with over twenty high-quality publications in peer-reviewed journals. Her work emphasizes hydrodynamic optimization, underwater robotics, and environmental applications, fostering solutions that bridge engineering challenges with sustainable maritime practices. Beyond her academic achievements, she has been recognized as a Zhejiang Province Overseas High-level Talent, a D-type Talent of Zhejiang Province, and a Qiantang Scholar of Hangzhou, reflecting her influence and leadership in her field. With a career that blends innovation, teaching, and applied research, Dr. Tian stands as a leading figure in advancing the boundaries of marine and mechanical engineering technologies.D

Professional Profile

Scopus Profile | ORCID Profile

Education

Dr. Xiaoqing Tian’s academic journey reflects a progressive and multidisciplinary approach to engineering, combining mechanical, electrical, and hydrodynamic expertise. She began her studies with a Bachelor’s degree in Mechanical & Electrical Engineering from the Henan Institute of Science and Technology, China. where she developed a foundational understanding of integrated engineering systems. Building on this, she earned a Master’s degree in Fluid Machinery and Engineering from the College of Mechanical Engineering at Hangzhou Dianzi University, China. focusing on fluid dynamics and mechanical system design. Her doctoral studies at the College of Water Conservancy and Hydropower Engineering, Hohai University, China. centered on advanced topics in fluid machinery and engineering, deepening her expertise in hydrodynamic modeling and marine applications. Notably, between, she conducted international research at the University of Helsinki, Finland, specializing in hydrodynamics and its environmental applications. This overseas experience broadened her perspective, allowing her to collaborate with global experts and explore the cross-disciplinary impacts of fluid mechanics on environmental science. Collectively, her academic background equips her with the technical knowledge, analytical skills, and global outlook necessary to address complex engineering challenges in both theoretical and applied contexts.

Professional Experience

Dr. Xiaoqing Tian has built an impressive professional career that blends teaching, research, and innovation in marine and mechanical engineering. Since December, she has served as a Lecturer and later an Associate Professor at the School of Mechanical Engineering, Hangzhou Dianzi University, China, where she teaches core engineering subjects, supervises graduate students, and leads research projects in hydrodynamics and underwater vehicle design. Her role involves both academic instruction and the development of innovative technologies aimed at solving practical engineering problems. she expanded her research portfolio through a postdoctoral position at the Ocean College, Zhejiang University, China, where she worked on advanced projects involving underwater robotics, propulsion systems, and hydrodynamic performance optimization. she undertook international research at the Department of Environmental Sciences, University of Helsinki, Finland, focusing on hydrodynamics applications in environmental and water systems. This combination of domestic and international experience has enabled her to cultivate a global research network, collaborate on interdisciplinary projects, and translate academic research into real-world engineering solutions. Her professional trajectory reflects a dedication to advancing knowledge while fostering innovation in marine engineering technology.

Research Interests

Dr. Xiaoqing Tian’s research interests span a wide range of topics in hydrodynamics, marine engineering, and mechanical design, with a strong emphasis on practical applications in underwater technologies. Her primary focus lies in the optimization of hydrodynamic performance for underwater vehicles and propulsion systems, including autonomous underwater vehicles (AUVs) and towed bodies. She is particularly interested in the integration of computational fluid dynamics (CFD) simulations with experimental testing to enhance propulsion efficiency, stability, and maneuverability. Her work also explores the development of novel propeller designs and hydrophobic coatings to improve performance in marine environments. Beyond vehicle propulsion, Dr. Tian investigates underwater sensing systems, such as magnetometer-equipped towed bodies, to support oceanographic surveys and environmental monitoring. She is also engaged in research on water quality improvement technologies, including artificially induced downwelling aeration systems. Her interdisciplinary approach allows her to bridge mechanical engineering principles with environmental science applications, ensuring that her innovations contribute to both technological advancement and sustainable marine resource management. By combining numerical modeling, prototype development, and field testing, Dr. Tian addresses real-world maritime challenges while advancing the scientific understanding of hydrodynamic systems.

Research Skills

Dr. Xiaoqing Tian possesses a robust set of research skills that enable her to conduct high-quality and impactful studies in marine and mechanical engineering. Her expertise includes hydrodynamic modeling, propeller performance analysis, and underwater vehicle design, supported by advanced use of computational fluid dynamics (CFD) tools. She has strong capabilities in designing and optimizing propulsion systems, integrating novel features such as hydrophobic coatings and guide flow devices to enhance efficiency. Dr. Tian is experienced in the development and testing of underwater towed bodies, including those equipped with environmental sensing devices like magnetometers. Her skills extend to mechanical system prototyping, laboratory experimentation, and large-scale field trials, ensuring that her work bridges theoretical models with real-world performance. In addition to technical competencies, she is proficient in patent development, having secured more than ten patents, including international ones, as the first inventor. Her research methodology combines creativity, precision, and multidisciplinary collaboration, enabling her to work across engineering, oceanography, and environmental science domains. Furthermore, her ability to manage complex projects, lead research teams, and publish extensively in high-impact journals underscores her effectiveness as both a scientist and innovator in her field.

Awards and Honors

Dr. Xiaoqing Tian’s contributions to marine and mechanical engineering have been recognized through several prestigious awards and honors, reflecting her status as a leading expert in her field. She has been named a Zhejiang Province Overseas High-level Talent, a designation awarded to individuals who have made significant contributions to scientific and technological innovation while fostering international collaboration. Additionally, she has been recognized as a D-type Talent of Zhejiang Province, highlighting her role in advancing regional research and innovation capacity. Her designation as a Qiantang Scholar of Hangzhou further underscores her academic excellence, leadership, and contributions to the local and national engineering community. These honors not only acknowledge her individual achievements but also her commitment to mentoring young researchers, driving technological progress, and addressing real-world engineering challenges. They also serve as a testament to her ability to integrate high-level research with societal impact, aligning her professional work with broader goals in innovation, sustainability, and economic development. Collectively, these awards solidify Dr. Tian’s reputation as a respected scholar, inventor, and leader within the global marine engineering research community.

Publication Top Notes

1. Calibration-free optical wave guide bending sensor for soft robots, 2025
2. Study on the hydrodynamic characteristics of an outboard engine propeller with hydrophobic coating, 2025
3. Laboratory Investigations on Parametric Configurations of Artificially Down welling Aerations in Stratified Water, 2023
4. Study on the Resistance of a Large Pure Car Truck Carrier with Bulbous Bow and Transom Stern, 2023
5. Numerical verification for a new type of UV disinfection reactor, 2020

Conclusion

In conclusion, Dr. Xiaoqing Tian embodies the qualities of an accomplished researcher, innovative engineer, and dedicated academic. Her career reflects a deliberate and consistent pursuit of excellence across multiple dimensions — from education and professional development to research innovation and community engagement. With an extensive academic background in fluid machinery, mechanical engineering, and hydrodynamics, complemented by valuable international research experience, she has developed a skill set that is both technically advanced and globally informed. Her work on underwater vehicle systems, propeller optimization, and environmental hydrodynamics demonstrates a unique ability to merge scientific insight with practical engineering solutions. The numerous patents and peer-reviewed publications she has produced serve as evidence of her commitment to technological advancement, while her awards and honors confirm her leadership in the field. Beyond her technical achievements, Dr. Tian contributes to the growth of future engineers through teaching, mentorship, and research collaboration. Looking ahead, she remains committed to expanding the frontiers of marine engineering research, promoting sustainable innovation, and making meaningful contributions to both the academic community and society at large. Her professional journey serves as an inspiring model for aspiring scientists and engineers worldwide.

Snekhalatha Umapathy | Engineering | Excellence in Research Award

Prof. Dr. Snekhalatha Umapathy | Engineering | Excellence in Research Award

Professor and Head from SRM Institute of Science and Technology, India

Dr. Snekhalatha Umapathy is a distinguished Professor in the Department of Biomedical Engineering at SRM Institute of Science and Technology. With a research career spanning over a decade, she has made substantial contributions to biomedical instrumentation, biosensors, medical image and signal processing, and artificial intelligence applications in healthcare. She has authored over 145 publications, including 55 in SCI-indexed journals and 54 in the Web of Science, showcasing her consistent academic productivity. Her research is highly interdisciplinary, integrating engineering, medicine, and advanced computing techniques. Dr. Umapathy’s work has led to the granting of five patents and the publication of three more, underscoring her commitment to innovation and translational research. She has successfully supervised six Ph.D. scholars and continues to mentor three more, indicating her dedication to academic leadership and student development. Her most recent studies focus on quantum machine learning and wearable biosensors, areas of increasing importance in personalized medicine. Through her extensive involvement in international conferences, book publications, and impactful journals, she maintains a strong academic presence. Overall, Dr. Umapathy stands out as a highly accomplished researcher whose work bridges fundamental research and clinical application, positioning her as a leading expert in the biomedical engineering domain.

Professional Profile

Education

Dr. Snekhalatha Umapathy’s academic background is rooted in a strong foundation in engineering and interdisciplinary science. She pursued her higher education in fields that aligned closely with biomedical innovation, integrating elements of electronics, instrumentation, and life sciences. Although specific degree titles and institutions are not listed here, her progression to a professorial role and active research leadership indicates the successful completion of undergraduate and postgraduate degrees in relevant engineering disciplines, followed by a doctorate (Ph.D.) in a field closely related to biomedical engineering. Her educational pathway has allowed her to explore the integration of engineering principles with human physiology, medical diagnostics, and therapeutic technologies. Through rigorous training and advanced coursework, she has developed specialized expertise in areas such as biosensor technology, medical imaging, signal processing, and artificial intelligence applications in medicine. This academic training has been critical in enabling her to publish in high-impact journals, supervise doctoral research, and secure patents in the biomedical technology space. Her educational journey reflects both depth and diversity, providing her with the tools necessary to contribute meaningfully to multidisciplinary research and academic mentorship within the global biomedical engineering community.

Professional Experience

Dr. Snekhalatha Umapathy currently serves as a Professor in the Department of Biomedical Engineering at SRM Institute of Science and Technology, a role that reflects her vast academic experience and leadership capabilities. Over the years, she has played a pivotal role in driving research innovation, mentoring students, and establishing industry-academic linkages within the university setting. Her responsibilities include supervising doctoral scholars, delivering advanced courses in biomedical instrumentation and AI in healthcare, and leading funded research initiatives. With more than 145 publications and several patents to her name, she has consistently demonstrated a capacity to translate academic inquiry into practical, real-world applications. In addition to her research and teaching duties, she actively participates in organizing conferences, delivering keynote addresses, and collaborating with interdisciplinary teams for technological development. Her professional experience extends beyond academia, encompassing collaborative projects with clinicians, engineers, and researchers to design medical devices and diagnostic systems. Dr. Umapathy’s work ethic, combined with her technical insight and administrative contributions, positions her as a highly effective academic leader. Her commitment to fostering innovation and knowledge transfer has not only elevated the research profile of her department but has also contributed significantly to the broader biomedical engineering landscape in India.

Research Interests

Dr. Snekhalatha Umapathy’s research interests lie at the intersection of engineering, healthcare, and computational science. Her primary focus areas include biosensors, point-of-care diagnostic devices, biomedical signal and image processing, and the integration of deep learning and quantum machine learning techniques into healthcare applications. She is particularly interested in developing non-invasive diagnostic tools and wearable biosensors that can monitor biomarkers for diseases such as diabetes, chronic kidney disease, and Alzheimer’s. Her work in medical image processing includes automated classification and detection using AI, contributing to early diagnosis and improved patient outcomes. Dr. Umapathy also explores the use of novel materials, such as graphene-based sensors, in creating affordable and scalable healthcare solutions. A forward-thinking researcher, she is actively investigating the potential of quantum machine learning algorithms to enhance the accuracy and efficiency of medical diagnostic systems. By bridging the gap between technology development and clinical utility, her research addresses pressing global health challenges while contributing to the scientific advancement of biomedical instrumentation and artificial intelligence. Her interdisciplinary approach allows for innovative problem-solving and has led to significant academic recognition, industry relevance, and translational impact.

Research Skills

Dr. Snekhalatha Umapathy possesses a rich array of research skills that position her as a leader in the field of biomedical engineering. She is highly skilled in advanced signal and image processing techniques, enabling her to extract meaningful data from complex physiological signals and imaging modalities. Her expertise in deep learning, convolutional neural networks (CNNs), and machine learning allows her to develop predictive models for disease diagnosis, particularly in applications such as Alzheimer’s detection and rheumatoid arthritis classification. She is also proficient in working with quantum computing frameworks to apply quantum machine learning techniques, which is a highly specialized and emerging area in medical diagnostics. In the laboratory, she demonstrates strong capabilities in biosensor design, materials characterization, and experimental modeling, especially in breath analysis using graphene-based sensor arrays. Dr. Umapathy’s analytical and programming skills extend to MATLAB, Python, and simulation tools used in biomedical signal modeling. In addition, she is experienced in writing grant proposals, publishing scholarly articles, and securing intellectual property rights through patents. Her collaborative approach and project management skills further enhance her ability to lead multidisciplinary teams and contribute meaningfully to high-impact, solution-oriented research.

Awards and Honors

Dr. Snekhalatha Umapathy has been recognized for her academic and research contributions through several awards and honors, although the specific names of the awards are not listed in the provided details. The granting of five patents and the publication of three more reflects her recognition as an innovator in biomedical technology. Her consistent presence in high-impact journals such as Scientific Reports, Analytical Chemistry, and Biomedical Signal Processing and Control suggests acknowledgment by the global academic community. Additionally, her role as a Ph.D. supervisor and her involvement in international conferences and book publications are indicators of her esteemed position in the academic world. It is highly likely that she has received internal and external recognition from academic institutions, professional societies, and funding agencies for her work. Dr. Umapathy’s interdisciplinary research combining AI, biosensing, and biomedical instrumentation places her at the forefront of emerging health technologies. These honors not only validate her research excellence but also serve as an inspiration for future scholars in the field. Her achievements in innovation, publication, and mentoring further solidify her reputation as a leading academic figure in biomedical engineering.

Conclusion

Dr. Snekhalatha Umapathy exemplifies excellence in biomedical engineering through her innovative research, prolific publication record, and dedication to academic mentorship. Her work spans crucial areas such as biosensor development, AI-driven diagnostics, and quantum machine learning, addressing some of the most pressing healthcare challenges of our time. With a robust portfolio of SCI-indexed publications, multiple patents, and successful Ph.D. supervisions, she embodies the qualities of a high-impact researcher. Her collaborative and interdisciplinary approach ensures her work remains both scientifically rigorous and practically relevant. Dr. Umapathy’s research not only advances academic knowledge but also holds tangible benefits for clinical practice and public health. She has established herself as a thought leader, mentor, and innovator who is shaping the future of biomedical research and education. As the healthcare landscape evolves toward personalized and technology-driven care, her contributions are poised to play an influential role. Her candidacy for any prestigious research award, including the Excellence in Research Award, is not only well justified but highly recommended. Her continued dedication to innovation, education, and societal impact makes her a beacon of research excellence in India and beyond.

Publications Top Notes

  • Title: Artificial intelligence-based automated detection of rheumatoid arthritis

  • Title: Computer-aided diagnosis of early-stage Retinopathy of Prematurity in neonatal fundus images using artificial intelligence
    Journal: Biomedical Physics and Engineering Express
    Year: 2025

  • Title: CNN Transformer for the Automated Detection of Rheumatoid Arthritis in Hand Thermal Images
    Citations: 1

  • Title: Artificial intelligence based real time colorectal cancer screening study: Polyp segmentation and classification using multi-house database
    Journal: Biomedical Signal Processing and Control
    Year: 2025
    Citations: 15

  • Title: Corrigendum: Early detection of Alzheimer’s disease in structural and functional MRI
    Journal: Frontiers in Medicine
    Year: 2024

  • Title: Design and Development of Portable Body Composition Analyzer for Children
    Journal: Diagnostics
    Year: 2024

  • Title: ADVANCING COLORECTAL POLYP DETECTION: AN AUTOMATED SEGMENTATION APPROACH WITH COLRECTSEG-UNET
    Authors: [Not specified]
    Journal: Biomedical Engineering Applications Basis and Communications
    Year: 2024
    Citations: 4

  • Title: Tongue image fusion and analysis of thermal and visible images in diabetes mellitus using machine learning techniques
    Journal: Scientific Reports
    Year: 2024
    Citations: 8

  • Title: Exploring Reduction Techniques for Graphene Oxide: A Comparative Study of Thermal and Chemical Methods
    Journal: Chemistry Select
    Year: 2024
    Citations: 1

  • Title: RA-XTNet: A Novel CNN Model to Predict Rheumatoid Arthritis from Hand Radiographs and Thermal Images: A Comparison with CNN Transformer and Quantum Computing
    Journal: Diagnostics
    Year: 2024
    Citations: 4

Jidong Jia | Engineering | Best Researcher Award

Dr. Jidong Jia | Engineering | Best Researcher Award

Hebei University of Technology, China

Jidong Jia is a dedicated and innovative researcher specializing in the fields of intelligent robotics, robot dynamics, human-robot interaction, and adaptive wall-climbing robots. His research has significantly contributed to the development of precise dynamic modeling, intelligent perception, and safety control mechanisms in collaborative robotics. Dr. Jia’s work addresses essential challenges in robot stability, safe human-machine interaction, and intelligent robotic operations in complex environments. His ability to integrate multi-objective optimization, neural network compensation, and dynamic identification methods into practical robotic systems makes his research highly impactful and relevant. Dr. Jia has published extensively in high-impact international journals and conferences, with notable works focusing on magnetic-wheeled wall-climbing robots, dynamic parameter identification, obstacle avoidance, and coupling dynamics in mobile manipulators. His academic excellence has been consistently recognized through prestigious awards, including the Wiley China Excellent Author Program and the Outstanding Doctoral Dissertation Award from Hebei University of Technology. Through his research, Dr. Jia is contributing to advancing intelligent robot design, improving safety in human-robot collaboration, and enhancing robotic performance in real-world applications. His innovative thinking and continuous pursuit of technological breakthroughs highlight his potential to be a leading figure in the robotics community.

Professional Profile

Education

Jidong Jia has pursued a comprehensive educational journey in mechanical engineering and robotics at prestigious Chinese institutions. He began his academic path at Shandong University, where he earned his Bachelor of Science in Mechanical Engineering from September 2010 to June 2014. During this period, he developed a strong foundation in mechanical systems and engineering design. He continued his higher education at the Hebei University of Technology, where he completed an integrated MD-PhD program in Mechanical Engineering from September 2015 to January 2022. This intensive program allowed him to specialize further in intelligent robotic systems, collaborative robot dynamics, and safe human-robot interactions. Complementing his doctoral studies, Dr. Jia participated in a Joint Doctoral Training program at Harbin Institute of Technology (C9 League) from September 2017 to January 2022, focusing on cutting-edge technologies in robot modeling, disturbance estimation, and control mechanisms. His education provided him with a unique interdisciplinary skill set, blending theoretical knowledge with practical research applications. This strong academic background has equipped Dr. Jia with the expertise to address complex challenges in robot dynamics, intelligent operations, and adaptive mechanisms, positioning him to make significant contributions to the robotics field.

Professional Experience

Throughout his academic career, Jidong Jia has gained substantial professional experience through extensive research, development, and collaborative projects within the field of robotics. His research at the Hebei University of Technology and Harbin Institute of Technology focused on developing precise robot dynamic models, safe human-robot interaction mechanisms, and intelligent control systems. Dr. Jia’s hands-on experience includes the design of magnetic-wheeled wall-climbing robots, the creation of adaptive climbing mechanisms, and the implementation of dynamic force estimation and control systems for collaborative robots. His work is highly application-driven, addressing real-world challenges such as facade maintenance, unstructured terrain operations, and obstacle navigation in complex environments. Dr. Jia has led the development of robotic systems that incorporate deep visual reinforcement learning, artificial potential field-based motion planning, and dynamic stability evaluation methods. His involvement in multiple funded research projects and contributions to high-impact journals and international conferences reflect his growing influence in the robotics research community. Dr. Jia’s ability to balance theoretical development with practical engineering solutions has established him as a skilled and promising researcher in robot dynamics, intelligent systems, and safety-focused robotic operations.

Research Interest

Jidong Jia’s primary research interests lie in robot dynamics, human-robot interaction, intelligent robotic operations, and adaptive mechanism design. He focuses on solving critical challenges related to the precise dynamic modeling of collaborative robots, disturbance force estimation, and safe interaction control mechanisms in uncertain environments. His work addresses the growing demand for safety, precision, and adaptability in next-generation robotic systems, particularly those operating in human-centered and unstructured scenarios. Dr. Jia has extensively explored high-load wall-climbing robots, developing intelligent perception systems and control methods for robots navigating complex facades and obstacles. Additionally, his research emphasizes self-stabilizing control strategies and anti-overturning mechanisms for composite robots functioning in dynamic terrains. Dr. Jia’s interests also include robotic learning, neural network compensation, proprioceptive sensing, and dynamic force field mapping. His integration of artificial intelligence with mechanical design allows robots to perceive, adapt, and interact safely and efficiently. Moving forward, Dr. Jia aims to advance research in intelligent autonomous robots, hybrid control systems, and real-time adaptive robotic behaviors that contribute to the safe deployment of collaborative robots in various industrial and social applications.

Research Skills

Jidong Jia possesses a wide range of advanced research skills essential for cutting-edge developments in intelligent robotics. He has expertise in robotic system modeling, particularly in the precise identification of dynamic parameters under multiple uncertainties. Dr. Jia is proficient in developing hybrid dynamic models that incorporate neural network-based error compensation and has successfully proposed online identification and compensation approaches to enhance robotic performance. His skills extend to multi-objective optimization, control theory, and artificial potential field-based motion planning for obstacle avoidance. Dr. Jia is experienced in robotic perception systems, utilizing deep visual reinforcement learning to enable robots to autonomously perceive and navigate complex environments. He has demonstrated capabilities in designing adaptive mechanisms, magnetic-wheeled climbing robots, compliant suspension systems, and anti-overturning mobile manipulators. His technical proficiency includes the development of momentum-based disturbance observers, force-position hybrid control strategies, and proprioceptive sensing-based identification methods. Dr. Jia’s skill set reflects his ability to integrate mechanical engineering principles with intelligent control, simulation, and optimization technologies, allowing him to build safe, efficient, and adaptive robotic systems capable of complex real-world operations.

Awards and Honors

Jidong Jia has received several prestigious awards and honors in recognition of his outstanding academic achievements and research contributions. He was selected for the Wiley China Excellent Author Program in 2025, a distinction awarded to exceptional authors for impactful publications. His doctoral research was acknowledged with the Outstanding Doctoral Dissertation Award from Hebei University of Technology in 2023, underlining the significance of his contributions to robotics and dynamic modeling. In 2022, Dr. Jia’s work was further recognized with the Outstanding Paper Award from the Chinese Journal of Mechanical Engineering, reflecting his ability to produce influential and high-quality research. Earlier in his academic journey, he was awarded the National Scholarship in 2019 by the Ministry of Education of China, a highly competitive honor granted to the top 1% of students nationwide for academic excellence and research potential. These accolades not only validate Dr. Jia’s innovative work in robotics but also emphasize his consistent dedication to advancing knowledge and solving complex engineering problems. His recognition at national and international levels highlights his growing reputation as a talented and impactful researcher in the field.

Conclusion

In conclusion, Dr. Jidong Jia stands out as an accomplished and promising researcher whose contributions significantly advance the fields of intelligent robotics, dynamic modeling, and safe human-robot interactions. His comprehensive educational background, extensive research experience, and innovative problem-solving approach position him as a leader in designing adaptive, intelligent, and safety-conscious robotic systems. Dr. Jia has demonstrated excellence in both theoretical and applied aspects of robotics, contributing to the development of wall-climbing robots, compliant mechanisms, and dynamic anti-overturning solutions for mobile manipulators. His outstanding academic performance and numerous awards further validate his impact and potential. Moving forward, Dr. Jia’s work is expected to play a vital role in shaping the next generation of collaborative robotic systems capable of operating in complex, dynamic, and human-centric environments. By expanding his research through international collaborations and focusing on the translation of his innovations into industrial applications, he can further elevate his influence in the global robotics community. Dr. Jidong Jia’s impressive body of work and forward-thinking research agenda make him an excellent candidate for prestigious recognitions such as the Best Researcher Award.

Publication Top Notes

  1. Development of an Omnidirectional Mobile Passive‐Compliant Magnetic‐Wheeled Wall‐Climbing Robot for Variable Curvature Facades
    Authors: Pei Jia, Jidong Jia, Manhong Li, Minglu Zhang, Jie Zhao
    Year: 2025

  2. Design and Analysis of a Push Shovel‐Type Hull‐Cleaning Wall‐Climbing Robot
    Authors: Pei Yang, Jidong Jia, Lingyu Sun, Minglu Zhang, Delong Lv
    Year: 2024

  3. Innovative Strain Measuring Device with Flex Sensor for Twisted and Coiled Actuator and Dexterous Hand Application
    Authors: Man Wang, Xiaojun Zhang, Minglu Zhang, Manhong Li, Chengwei Zhang, Jidong Jia
    Year: 2024

  4. Enhanced Robot Obstacle Avoidance Strategy: Efficient Distance Estimation and Collision Avoidance for Hidden Robots
    Authors: Xiaojun Zhang, Minglong Li, Jidong Jia, Lingyu Sun, Manhong Li, Minglu Zhang
    Year: 2024

  5. Magnetic Circuit Analysis of Halbach Array and Improvement of Permanent Magnetic Adsorption Device for Wall-Climbing Robot
    Authors: Shilong Jiao, Xiaojun Zhang, Xuan Zhang, Jidong Jia, Minglu Zhang
    Year: 2022

  6. Improved Dynamic Parameter Identification Method Relying on Proprioception for Manipulators
    Authors: Jidong Jia, Minglu Zhang, Changle Li, Chunyan Gao, Xizhe Zang, Jie Zhao
    Year: 2021

  7. Research Progress and Development Trend of the Safety of Human-Robot Interaction Technology
    Authors: Jidong Jia, Minglu Zhang
    Year: 2020

  8. Dynamic Parameter Identification for a Manipulator with Joint Torque Sensors Based on an Improved Experimental Design
    Authors: Jidong Jia, Minglu Zhang, Xizhe Zang, He Zhang, Jie Zhao
    Year: 2019

Shaofeng Zheng | Engineering | Best Researcher Award

Mr. Shaofeng Zheng | Engineering | Best Researcher Award

Zheng Shaofeng is a seasoned Senior Engineer and currently serves as the Technical Head of the Laboratory at the Huangpu Customs Technology Center. With a longstanding dedication to the inspection and testing of import and export commodities, he has earned recognition for his technical expertise and leadership in national and international standardization. He is a registered expert and committee member in various prominent technical groups, including the Standardization Technical Committee for Fire Tests of Electrical and Electronic Products (SAC/TC 300), IEC/TC 89, and ISO TR 8124-9:2018. Zheng has actively contributed to the development and revision of 14 national standards, reflecting his deep influence on regulatory practices in China. His research efforts are highly interdisciplinary, spanning battery lifecycle traceability, environmental safety, and commodity quality evaluation. Over the years, he has published more than 20 academic papers in SCI, EI-indexed journals, and core Chinese journals, further establishing his academic presence. Zheng also holds over 10 patents and has received several prestigious awards recognizing his contributions to scientific advancement and technological innovation. He is a vital figure in connecting scientific inquiry with real-world application, particularly in energy storage systems, trade regulations, and product safety.

Professional Profile

Education

While specific institutional affiliations are not detailed, Zheng Shaofeng’s educational background is evidently rooted in a strong foundation in engineering and applied sciences. His advanced knowledge and professional roles suggest that he has undergone formal academic training in materials science, chemical engineering, environmental technology, or a closely related field. The technical nature of his research and his ability to lead high-level scientific projects imply both undergraduate and postgraduate education, likely supplemented with ongoing professional development. His qualifications are further validated by his active participation in national standardization committees and involvement in high-level research and policy formulation projects. Moreover, his standing as a senior engineer and technical expert in various regulatory and technological domains shows a continued commitment to learning and applying new knowledge in dynamic and complex environments. Though the exact degrees and institutions remain unspecified, Zheng’s career achievements and affiliations with multiple scientific and governmental bodies reflect his strong academic grounding and ability to translate education into impactful practice.

Professional Experience

Zheng Shaofeng currently serves as the Technical Head of the Laboratory at the Huangpu Customs Technology Center, where he has played a central role in the development and implementation of inspection protocols for import and export commodities. With extensive experience in applied laboratory science, regulatory compliance, and technical assessment, he is responsible for managing large-scale testing procedures that align with national and international standards. His professional experience also includes significant participation in governmental science and technology evaluations as an expert for the Guangdong Province Department of Science and Technology and as a technical trade expert for the WTO/TBT Notification and Research Center. Zheng’s leadership spans collaborative, interdisciplinary projects on battery lifecycle traceability, carbon footprint analysis, and product safety evaluation. His input in these areas helps shape national policy and contributes to global standards. His role involves hands-on testing, risk assessment, standardization, and training of personnel, making him both a technical and administrative leader in his organization. By bridging the gap between research and regulation, he ensures that emerging technologies and products entering Chinese markets comply with the highest safety and environmental standards.

Research Interests

Zheng Shaofeng’s research interests lie at the intersection of environmental technology, energy systems, regulatory science, and materials testing. He focuses particularly on risk monitoring, traceability, and lifecycle assessment of energy storage systems, especially imported and exported new energy vehicle power batteries. His work aligns with global sustainability goals, as it emphasizes full lifecycle carbon footprint analysis and the residual value assessment of second-life batteries. He is also deeply involved in safety testing protocols and fire hazard assessments for electronic and electrical commodities. Zheng’s involvement in international technical committees such as IEC/TC 89 and ISO TR 8124-9:2018 reflects a strong interest in standardization and global regulatory harmonization. His interdisciplinary research contributes not only to scientific innovation but also to public safety, international trade policies, and environmental protection. Through his work, Zheng is addressing some of the most pressing challenges in product safety and green technology—ensuring safe, traceable, and sustainable product development and deployment. His focus on real-world applicability gives his research a strategic relevance that extends beyond academia into the realms of industry and policy.

Research Skills

Zheng Shaofeng brings a rich array of technical and analytical skills to his research endeavors. He is proficient in advanced laboratory testing methods for electronic and electrical products, with a particular emphasis on fire hazard assessments and quality inspection protocols. His research methodology incorporates lifecycle analysis, carbon footprint modeling, and residual value assessment—tools that are critical for evaluating the sustainability and safety of new energy vehicle batteries. He has extensive experience in managing complex research projects at provincial and ministerial levels, demonstrating his capabilities in project design, data interpretation, and results dissemination. Zheng’s skills also extend to technical writing, as evidenced by his publication record in high-impact journals and his role in developing national standards. Furthermore, his patent portfolio highlights his ability to innovate and solve real-world technical problems. In regulatory science, he has a deep understanding of WTO/TBT compliance, international standardization frameworks, and risk-based monitoring approaches. His combined laboratory expertise, policy knowledge, and interdisciplinary communication skills position him as a multifaceted researcher who seamlessly integrates technical proficiency with practical application.

Awards and Honors

Zheng Shaofeng has received multiple awards and honors recognizing his significant contributions to scientific research and technological development. His projects have been honored with the Third Prize of the Science and Technology Award by the China General Chamber of Commerce, the Third Prize of the Science and Technology Progress Award by the China Federation of Logistics & Purchasing, and commendations from the Guangdong Quality Development Promotion Association and the Guangdong Measurement, Control & Instrumentation Society. These accolades reflect the impactful nature of his work in commodity inspection, safety evaluation, and battery lifecycle analysis. Additionally, his contributions to the development and revision of 14 national standards have earned him respect and authority in China’s regulatory ecosystem. His membership in prestigious technical committees and expert groups—including IEC/TC 89 and SAC/TC 300—further illustrates the national and international recognition of his expertise. The combination of awards and leadership roles underlines his reputation as a leading expert in environmental testing and regulatory compliance, emphasizing both his technical contributions and his strategic influence in shaping policy and standards.

Conclusion

In conclusion, Zheng Shaofeng exemplifies the qualities of a leading researcher whose work bridges scientific innovation, regulatory compliance, and public safety. Through his leadership in laboratory testing, participation in national and international standardization efforts, and direction of cutting-edge projects on battery traceability and carbon monitoring, he has significantly contributed to the field of environmental technology and product safety. His technical acumen is matched by his strategic foresight, making his research not only relevant but also transformative in its application. With more than 20 research publications, 10+ patents, and multiple national awards, Zheng’s achievements reflect a sustained commitment to excellence, innovation, and service. He stands out as a role model for integrating scientific rigor with real-world impact. While there is room for deeper international collaboration and broader global publication presence, Zheng’s current trajectory positions him strongly within both national and international research communities. His multifaceted expertise and proven results make him a highly deserving candidate for the Best Researcher Award, and his continued work will undoubtedly yield further advancements in science, technology, and policy.

Publications Top Notes

  1. Plastic Reference Material (PRM) Combined With Partial Least Square (PLS) in Laser-Induced Breakdown Spectroscopy (LIBS) in the Field of Quantitative Elemental Analysis
  2. Authors: Wang, Bin Zheng, Shaofeng Gan, Jiulin Yang, Zhongmin Song, Wuyuan
  3. Journal: Guang Pu Xue Yu Guang Pu Fen Xi (Spectroscopy and Spectral Analysis)
  4. Publication Year: 2023

Mehdi Chemseddine FARAH | Engineering | Best Researcher Award

Assist. Prof. Dr. Mehdi Chemseddine FARAH | Engineering | Best Researcher Award

Telecommunications and Digital Signal Processing Laboratory, Djillali Liabes University, Sidi Bel Abbes, Algeria

Dr. FARAH Mehdi Chemseddine is a Lecturer Class B at the Telecommunications and Digital Signal Processing Laboratory, Djillali Liabes University, Sidi Bel Abbès, Algeria. He specializes in the design and optimization of microwave circuits, with a focus on microstrip technology. His research encompasses the development of compact and efficient microwave components such as hybrid couplers, power dividers, low-pass filters, and diplexers. Dr. Chemseddine has authored several publications in reputable journals, including the Journal of Circuits, Systems and Computers and Telecommunications and Radio Engineering. His work is characterized by innovative approaches to improving electrical performance, selectivity, and reducing the footprint of microwave devices. He has also participated in international conferences, presenting his research findings to the global scientific community. Dr. Chemseddine’s contributions to the field of telecommunications engineering demonstrate his commitment to advancing microwave circuit design and his potential as a leading researcher in this domain.

Professional Profile

Education

Dr. Chemseddine’s academic journey began with a Bachelor’s degree in Exact Sciences in 2008. He then pursued a License in Electrical Engineering, specializing in Communication Networks, which he completed in 2014. In 2016, he obtained a Master’s degree in High-Frequency Communication Systems from Djillali Liabes University. His academic pursuits culminated in earning a Ph.D. in Telecommunication Systems from the same university in 2022. Throughout his educational career, Dr. Chemseddine has demonstrated a strong foundation in electrical and communication engineering principles, which has been instrumental in his research endeavors. His academic background has equipped him with the necessary skills and knowledge to contribute significantly to the field of microwave circuit design.

Professional Experience

Dr. Chemseddine began his professional career as a Maître-Assistant Class B at the Faculty of Electrical Engineering, Department of Telecommunications, Djillali Liabes University, in 2023. In 2024, he was promoted to Maître-Conférence Class B at the same institution. His responsibilities include teaching undergraduate and graduate courses, supervising student research projects, and conducting his own research in microwave circuit design. Dr. Chemseddine has also completed internships, including one at the Hubert Curien Laboratory in Saint-Étienne, France, where he designed and implemented a microwave low-pass filter using planar technology. His professional experience reflects a commitment to both education and research in telecommunications engineering.

Research Interests

Dr. Chemseddine’s research interests are centered on the design and optimization of microwave circuits, particularly using microstrip technology. He focuses on developing compact, efficient, and cost-effective components such as hybrid couplers, power dividers, low-pass filters, and diplexers. His work aims to address challenges in electrical performance, selectivity, and device miniaturization. Dr. Chemseddine employs advanced simulation tools like HFSS and ADS to model and analyze microwave components, ensuring their practical applicability in telecommunications systems. His research contributes to the advancement of microwave engineering by providing innovative solutions for modern communication systems.

Research Skills

Dr. Chemseddine possesses a robust set of research skills in microwave circuit design and telecommunications engineering. He is proficient in using simulation and design tools such as HFSS (High-Frequency Structure Simulator), ADS (Advanced Design System), and MATLAB for modeling and analyzing microwave components. His expertise includes designing microstrip-based devices, optimizing their performance parameters, and validating their functionality through simulations and experimental measurements. Dr. Chemseddine’s skills enable him to develop innovative solutions that meet the demands of modern communication systems, emphasizing efficiency, compactness, and cost-effectiveness. His technical competencies are integral to his contributions to the field of microwave engineering.

Awards and Honors

While specific awards and honors are not detailed in the provided information, Dr. Chemseddine’s selection as a nominee for the Best Researcher Award at the International Research Awards on Science, Health, and Engineering underscores his recognition in the scientific community. His publications in reputable journals and presentations at international conferences further attest to his contributions and standing in the field of telecommunications engineering. These accomplishments reflect his dedication to research excellence and his potential for future accolades in his area of expertise.

Conclusion

Dr. FARAH Mehdi Chemseddine is an emerging researcher in the field of microwave circuit design and telecommunications engineering. His academic background, professional experience, and focused research interests have led to significant contributions in developing compact and efficient microwave components. Through his publications and conference presentations, he has demonstrated a commitment to advancing the field and addressing practical challenges in communication systems. Dr. Chemseddine’s proficiency in simulation tools and design methodologies positions him as a valuable contributor to both academic and industry-related projects. His nomination for the Best Researcher Award highlights his potential and the impact of his work in the scientific community.

Publications Top Notes

  1. Title: A Design of a Compact Microwave Diplexer in Microstrip Technology Based on Bandpass Filters Using Stepped Impedance Resonator
    Authors: M.C. Farah, F. Salah-Belkhodja, K. Khelil
    Journal: Journal of Microwaves, Optoelectronics and Electromagnetic Applications
    Year: 2022
    Citations: 6

  2. Title: A Novel Design of a Wilkinson Power Divider Based on the Circular-Shape Resonator
    Authors: R. El Bouslemti, C.M. Farah
    Journal: Frequenz, Vol. 78 (11-12), pp. 621–631
    Year: 2024
    Citations: 3

  3. Title: A Design of Microstrip Low-pass Filter Using Ground-Plane Coplanar Waveguide (GCPW)
    Authors: F.M. Chemseddine, E. Rahmouna, V. Didier
    Journal: Telecommunications and Radio Engineering
    Year: 2024
    Citations: 1

  4. Title: Design of Wilkinson Power Divider for Mobile and WLAN Applications
    Authors: M.C. Farah, F. Salah-Belkhodja
    Source: Proceedings of the International Conference for Pioneering and Innovative Technologies
    Year: 2023
    Citations: 1

  5. Title: A Design of Microstrip 180 Degree Hybrid Coupler Using T-Shape Structure for Monopulse Radar
    Authors: F.M. Chemseddine, S.B. Faouzi, F.Y. Hadj Aissa
    Journal: Journal of Circuits, Systems and Computers
    Year: 2025

  6. Title: Exploring Corrosion Behavior in Different Environments Using a Passive Microstrip Sensor
    Authors: R. El Bouslemti, M.C. Farah
    Journal: Communication Science et Technologie, Vol. 22 (1), pp. 7–17
    Year: 2024

  7. Title: Conception d’un Coupleur Microondes à Branches en Technologie Microstrip
    Authors: M.C. Farah, F. Salah-Belkhodja, Z. Kaldoune, A. Cheikh
    Journal: Communication Science et Technologie, Vol. 21 (1), pp. 13–33
    Year: 2023

  8. Title: Conception en Technologie Microstrip d’un Diplexeur Microondes Basé sur des Filtres à Saut d’Impédance
    Authors: F.M. Chemseddine
    Year: 2022

  9. Title: Conception en Technologie Microstrip d’un Diplexeur Microondes Basé sur des Filtres à Saut d’Impédance
    Authors: M.C. Farah, F. Salah-Belkhodja
    Year: 2022

Bashar Ibrahim | Engineering | Innovative Research Award

Mr. Bashar Ibrahim | Engineering | Innovative Research Award

Project Engineer from Fraunhofer Institute for Non-Destructive Testing, Germany

Bashar Ibrahim is a skilled engineering professional specializing in materials science, non-destructive testing (NDT), and sensor systems development. Currently employed as a Project Engineer at Fraunhofer IZFP in Saarbrücken, he plays a central role in coordinating and executing applied research projects. His expertise lies in designing and implementing advanced sensor modules, analyzing material structures, and utilizing simulation tools such as FEM to evaluate electromagnetic measurement techniques. With a strong interdisciplinary background, Mr. Ibrahim is capable of integrating mechanical design with data processing to optimize research outcomes. His contributions include the construction of test components using additive manufacturing and the supervision of student assistants in laboratory settings. Fluent in Arabic, German, and English, he brings strong multicultural communication skills to collaborative environments. His academic training, combined with practical industry experience, demonstrates his ability to bridge theoretical knowledge with hands-on technical application. While his profile is currently oriented towards application-focused research, he has potential for further academic impact through publications and knowledge dissemination. Mr. Ibrahim’s work reflects strong potential for innovation, and with greater emphasis on scholarly outputs, he could emerge as a leading contributor in his field. He is a capable, dedicated, and technically sound professional with emerging research strengths.

Professional Profile

Education

Bashar Ibrahim holds a Master of Science degree in Materials Science and Engineering with a specialization in materials technology from the University of Saarland, Germany, completed between 2019 and 2022. His academic focus during the master’s program equipped him with knowledge in advanced materials characterization, mechanical behavior of materials, and data evaluation techniques. Prior to this, he earned a Bachelor of Engineering degree in Mechanical Engineering with a concentration in design and production from Al-Baath University in Homs, Syria (2005–2010). This foundational education emphasized core mechanical engineering principles, including machine design, thermodynamics, and fluid mechanics. Mr. Ibrahim has also pursued professional development through specialized training, such as a fundamentals course in non-destructive testing (BC 3 Q M1) at DGZFP Berlin in 2022. Additionally, he gained hands-on industrial training during his time at Wipotec GmbH in Kaiserslautern, where he worked on 2D and 3D modeling and technical drawing creation. His education is complemented by his earlier self-employed work as a CAD instructor, where he taught software such as Mechanical Desktop, AutoCAD, and SolidWorks. This comprehensive educational background has laid a strong technical and analytical foundation, allowing him to contribute meaningfully to complex, interdisciplinary research projects.

Professional Experience

Bashar Ibrahim’s professional career is anchored in his current role as a Project Engineer at Fraunhofer IZFP in Saarbrücken, Germany, a position he has held since 2022. Here, he leads and coordinates multiple research initiatives, particularly in the areas of sensor technology, data visualization, and non-destructive material testing. His responsibilities include designing test structures via additive manufacturing, developing sensor systems, and performing FEM simulations to optimize electromagnetic testing methods. From 2020 to 2022, he served as a Research Assistant at the same institution, where he contributed to the development of a deflection measurement system for urban cable monitoring and participated in various simulation-based research tasks. His earlier experience includes technical support roles such as at Kern GmbH, where he handled large-format digital printing and material processing, and at Wipotec GmbH, where he worked in the design department focusing on 3D modeling and technical drawing. In addition, from 2010 to 2016, he worked independently as a private CAD instructor in Salamieh, Syria, where he trained professionals and students in mechanical design and simulation software. Mr. Ibrahim’s career trajectory demonstrates consistent growth in technical and research competencies, with increasing responsibility and a clear transition into applied research within a leading European research institution.

Research Interests

Bashar Ibrahim’s research interests are centered on advanced non-destructive testing (NDT) methods, sensor integration, additive manufacturing, and material characterization. His focus lies in the development and application of electromagnetic and vibrational testing systems to evaluate material structures and properties without causing damage. Ibrahim is particularly interested in the design and optimization of multi-module sensor systems for data acquisition and analysis in industrial and research environments. Additionally, he engages in the use of simulation software to model physical phenomena, with an emphasis on the finite element method (FEM) to study electromagnetic responses in materials. He also explores the application of additive manufacturing techniques to produce customized test samples and components for laboratory testing. His interdisciplinary interests span mechanical design, materials engineering, data processing, and digital fabrication, placing him at the convergence of hardware development and computational analysis. He is also drawn to the automation of testing systems and real-time data interpretation, reflecting a strong inclination toward smart manufacturing and Industry 4.0 concepts. Through these interests, Mr. Ibrahim aims to contribute to innovations that improve testing efficiency, accuracy, and integration into broader industrial applications. His research is inherently practical, with a clear orientation toward solving real-world engineering problems.

Research Skills

Bashar Ibrahim brings a diverse and robust set of research skills, making him well-equipped for multidisciplinary engineering projects. His core competencies include non-destructive testing techniques, particularly in the application of electromagnetic methods for assessing material properties. He is adept at conducting FEM simulations using tools such as Comsol and Ansys to model and analyze physical interactions within materials. His programming and data analysis skills in Python, Matlab, and Octave allow him to process complex datasets and visualize results effectively. Mr. Ibrahim has practical experience with sensor system design, including the integration and calibration of multiple measurement modules for real-time data collection. He is also proficient in mechanical design and modeling, using CAD platforms like SolidWorks, AutoCAD, and Mechanical Desktop. His background in additive manufacturing supports the fabrication of experimental setups and prototype components for research testing. Furthermore, he has experience in mentoring and guiding student assistants, indicating his capability in team collaboration and technical training. His ability to bridge computational analysis with physical experimentation is a significant strength, allowing him to contribute both theoretically and practically. These skills collectively empower him to work effectively in experimental research, data-driven engineering, and innovation-driven projects.

Awards and Honors

While there is currently no formal documentation of major awards or honors in Bashar Ibrahim’s profile, his ongoing work at Fraunhofer IZFP—a renowned research institution—demonstrates a level of trust and recognition in his professional capabilities. Being employed in a project engineering capacity at such a prestigious institute suggests that he has consistently met high standards of technical and research performance. His selection for participation in specialized training programs, such as the DGZFP course on non-destructive testing, further reflects his commitment to professional development and his potential for recognition in the future. Additionally, his earlier role as an independent CAD instructor and his involvement in supervising student assistants imply acknowledgment of his subject matter expertise and leadership potential. Although formal awards are not currently listed, Mr. Ibrahim’s work ethic, multidisciplinary skills, and contributions to applied research projects position him well for future accolades, especially if he continues to increase his scholarly output through publications, conference participation, or patents. With continued growth in academic visibility and project leadership, he is likely to gain formal honors that reflect his ongoing innovation in materials science and sensor-based technologies.

Conclusion

Bashar Ibrahim is a technically competent and professionally driven researcher with a strong foundation in mechanical engineering, materials science, and non-destructive testing. His current role at Fraunhofer IZFP places him at the forefront of applied research in sensor systems, FEM-based simulations, and data-driven material analysis. His practical experience is complemented by a strong academic background and continuous professional development, including specialized training and mentorship roles. While his contributions are primarily focused on application-oriented research, his skills, initiative, and interdisciplinary approach make him a promising candidate for innovation-driven recognition. To fully meet the criteria of an Innovative Research Award, further emphasis on academic dissemination—through publications, patents, or technical conferences—would strengthen his profile. Nonetheless, Mr. Ibrahim has already demonstrated the capacity to contribute meaningfully to the field and to solve complex engineering challenges. With a growing track record and potential for increased scholarly output, he stands out as a candidate with emerging research excellence and innovation potential. His career path reflects both competence and ambition, making him a strong contender for future research-based honors and awards.

Publication Top Notes

  1. Title: Complete CASSE acceleration data measured upon landing of Philae on comet 67P at Agilkia
    Authors: Arnold, Walter K.; Becker, Michael M.; Fischer, Hans Herbert; Knapmeyer, Martin; Krüger, Harald
    Journal: Acta Astronautica
    Year: 2025