Leila Omidi | Engineering | Best Researcher Award

Dr. Leila Omidi | Engineering | Best Researcher Award

Assistant Professor from Tehran University of Medical Sciences, Iran

Leila Omidi is an accomplished academic and researcher specializing in Occupational Health and Safety Engineering. She currently serves as an Assistant Professor in the Department of Occupational Health Engineering at Tehran University of Medical Sciences. With a focus on process safety, risk analysis, resilience engineering, and human factors affecting safety, Omidi has significantly contributed to research in high-risk industries, particularly in fire safety systems, human error management, and safety performance metrics. Her work addresses both theoretical and practical aspects of safety engineering, offering solutions to enhance safety standards in industries such as oil refining and healthcare. She has authored multiple research papers, secured numerous research grants, and held various academic leadership roles. Omidi’s expertise and influence in her field extend through her editorial work with several prominent safety journals, showcasing her leadership in advancing research and knowledge in her discipline.

Professional Profile

Education

Leila Omidi earned her Ph.D. in Occupational Health and Safety Engineering from Tehran University of Medical Sciences, where her research focused on process safety and resilience engineering. She completed her MSc in Occupational Health and Safety Engineering at Shahid Beheshti University of Medical Sciences. Throughout her academic journey, Omidi has honed her expertise in risk analysis, safety culture, and human reliability. Her educational background forms a solid foundation for her ongoing research and academic contributions. Omidi’s doctoral and master’s thesis work provided innovative insights into optimizing safety systems in high-risk sectors, further enhancing her credentials as a leading scholar in her field.

Professional Experience

Leila Omidi has gained extensive professional experience through both academic and industry roles. She is currently an Assistant Professor at Tehran University of Medical Sciences, where she teaches graduate-level courses in Crisis and Emergency Management, Accident Analysis, Fire Risk Assessment, and Occupational Health. In addition to her academic roles, Omidi has served as a Health Expert at the Iran Ministry of Health and as a Safety Advisor at various industrial companies, including Mizan Binazir Industrial Company and Gam Metal Casting Company. Her experience in industry and academia has allowed her to bridge the gap between research and real-world application, making her research highly relevant and impactful for safety engineering practices.

Research Interests

Leila Omidi’s research interests are centered on process safety, risk analysis, safety culture, and human factors in high-risk industries. She is particularly interested in resilience engineering and safety performance indicators, with a focus on improving safety outcomes through leading and lagging metrics. Omidi’s work also explores human reliability analysis (HRA) and safety performance in industrial settings, as well as human error management. Her research contributes to both theoretical understanding and practical applications, addressing challenges such as fire risk assessment, safety climate factors, and risk-based resilience in industries like oil refining and healthcare. Through her studies, Omidi aims to enhance safety systems and reduce accidents, ultimately improving worker health and safety.

Research Skills

Leila Omidi possesses advanced research skills in risk analysis, resilience engineering, and human reliability analysis. Her expertise includes using simulation-based methods to assess and optimize safety systems, as demonstrated by her work on the risk-based resilience of fire extinguishing systems in the oil refining industry. Omidi is skilled in applying a range of quantitative and qualitative research methods to evaluate safety performance and risk factors. Her proficiency in process safety performance indicators, safety culture assessments, and fire risk analysis showcases her diverse research capabilities. Furthermore, her involvement in human error identification and system safety analysis highlights her ability to address complex challenges in industrial safety.

Awards and Honors

Leila Omidi has received numerous awards and honors for her academic and research achievements. She has been awarded several research grants, including funding for her Ph.D. thesis on risk-based resilience in the fire extinguishing system of the oil refining industry. Additionally, she has received multiple MSc thesis grants for her work on reliability-centered maintenance strategies and human error analysis. Omidi’s accomplishments also include being named a top student in her department at Shahid Beheshti University and recognition as a member of Iran’s National Elites Foundation. Her contributions to safety engineering and occupational health have earned her various distinctions, cementing her reputation as a leading scholar in her field.

Conclusion

Leila Omidi is a highly accomplished researcher and academic in the field of Occupational Health and Safety Engineering. With a strong educational foundation and extensive professional experience, she has contributed significantly to the advancement of process safety, risk analysis, and human reliability. Omidi’s research has practical implications for improving safety systems in industries such as oil refining and healthcare, and her teaching has shaped the next generation of safety engineers. Her numerous research grants and awards, combined with her leadership in academic publishing and her editorial work, demonstrate her impact on the field. While her international collaborations and interdisciplinary research could be expanded, Omidi’s work continues to have a significant influence on improving safety and resilience in high-risk industries.

Publications Top Notes

  1. Title: Resilience assessment in process industries: A review of literature

    • Authors: Ghaljahi Maryam, Omidi Leila, Karimi Ali

    • Year: 2025

  2. Title: Safety leadership and safety citizenship behavior: the mediating roles of safety knowledge, safety motivation, and psychological contract of safety

    • Authors: Omidi Leila, Karimi Hossein, Pilbeam Colin J., Mousavi Saeid, Moradi Gholamreza R.

    • Year: 2025

    • Citations: 3

  3. Title: Evaluation of Domino Effects and Vulnerability Analysis of Oil Product Storage Tanks Using Graph Theory and Bayesian Networks in a Process Industry

    • Authors: Ghaljahi Maryam, Omidi Leila, Karimi Ali

    • Year: 2024

    • Citations: 1

Baoqiang Du | Engineering | Best Researcher Award

Prof. Baoqiang Du | Engineering | Best Researcher Award

Director from Hunan Normal University, China

Dr. Du Baoqiang is a highly respected academician and researcher specializing in information and communication engineering, satellite navigation, and high-precision measurement technologies. Born in November 1973, he currently serves as a second-level professor and doctoral supervisor at Hunan Normal University. His educational background includes studies at the PLA Information Engineering University, Zhengzhou University, and Xidian University, followed by postdoctoral research in related fields. As a “Furong Scholar” specially appointed professor, he has demonstrated leadership in various major educational and research programs. Dr. Du is known for his pioneering contributions to Beidou satellite signal processing, where he introduced new theories and technical innovations that have had significant industrial and academic impact. His research work has led to the development of instruments reaching international advanced standards, particularly enhancing satellite positioning precision from the centimeter to the millimeter level. In addition to publishing over a hundred academic papers and holding numerous patents, he has actively contributed to national-level projects, academic evaluations, and technical developments. His outstanding achievements and leadership make him a leading figure in his field and a strong candidate for top-tier research awards.

Professional Profile

Education

Dr. Du Baoqiang’s academic journey reflects a solid and progressive formation in engineering and technology. He pursued his undergraduate and graduate studies successively at the PLA Information Engineering University, Zhengzhou University, and Xidian University. Throughout these institutions, he specialized in areas deeply connected to communication engineering, information processing, and computer science. Following the completion of his Doctor of Engineering degree, Dr. Du engaged in postdoctoral research in Information and Communication Engineering and Computer Science and Technology. His academic development not only provided him with a robust technical foundation but also exposed him to interdisciplinary research fields, crucial for his later innovations in satellite navigation and signal processing. The combination of military-grade information systems education and civilian academic excellence equipped him with unique insights that have greatly benefited his professional career. His education path shows a consistent focus on high-tech fields, indicating early strategic planning and dedication to advancing in cutting-edge technological domains. These experiences laid the groundwork for his contributions to the Beidou navigation system and high-precision positioning technologies.

Professional Experience

Dr. Du Baoqiang’s professional career is marked by substantial academic leadership and technological innovation. As a second-level professor at Hunan Normal University, he supervises doctoral candidates and leads multiple strategic programs. He serves as the head of the Department of Communication Engineering and directs several critical programs, including the provincial first-class major in Communication Engineering and the master’s degree programs in Electronic Science and Technology. He is also the director of significant research facilities, such as the Hunan Province Beidou High-Performance Cooperative Positioning Engineering Technology Research Center and the Key Laboratory of Beidou Intelligent Navigation Information Processing. Beyond his academic roles, Dr. Du actively contributes to industry and policy development as the vice president of the Hunan Satellite Application Association and an expert advisor for the China Beidou Tianheng Think Tank. His service as a reviewer for the National Natural Science Foundation of China and national undergraduate and doctoral evaluations underlines his status as a trusted figure in academic quality assurance. Throughout his career, he has successfully led numerous national and provincial research projects, making significant strides in both theoretical research and practical technological applications.

Research Interest

Dr. Du Baoqiang’s primary research interests center around satellite navigation signal processing, high-precision time-frequency information measurement, and cooperative positioning system development. His work particularly focuses on advancing the Beidou navigation system, one of China’s major satellite positioning initiatives. He has delved into the theory and practical applications of ultra-high-resolution heterogeneous frequency group quantization phase processing and adaptive frequency tracking technologies. Additionally, Dr. Du is keenly interested in solving complex challenges in weak signal detection, phase synchronization, and error elimination in circuit systems. His research addresses both theoretical advancements and industrial applications, aiming to bridge the gap between scientific research and technological commercialization. He strives to enhance the precision and reliability of satellite-based positioning services, pushing capabilities from the centimeter level to the millimeter level. Furthermore, his contributions support the national strategic goals in satellite navigation and communication engineering, solidifying China’s competitiveness in this critical high-tech domain. Dr. Du’s research philosophy integrates scientific discovery, engineering innovation, and application-driven development, ensuring that his work remains relevant to academic progress and national technological needs.

Research Skills

Dr. Du Baoqiang demonstrates an exceptional range of research skills, blending theoretical analysis with practical system development. His expertise covers advanced signal processing algorithms, high-precision time-frequency measurement systems, and the technological integration necessary for industrial-scale applications. He has a deep understanding of Beidou satellite systems and has innovated unique methods like ultra-high-resolution group quantization and adaptive differential phase synchronization. His skills include the design and development of high-precision instruments, project leadership in large-scale scientific and technological endeavors, and academic writing, with a record of over 100 peer-reviewed publications. As a project manager, he exhibits strategic planning abilities, team leadership, and cross-disciplinary collaboration. Dr. Du also possesses strong skills in patent development, having successfully registered 28 invention patents. Moreover, his capabilities as a scientific reviewer and advisor for national foundations and educational ministries demonstrate his critical evaluation and research assessment skills. These diverse abilities enable him to contribute comprehensively to his field, from pioneering theoretical insights to delivering real-world technological breakthroughs.

Awards and Honors

Throughout his career, Dr. Du Baoqiang has earned numerous awards and honors that reflect his contributions to science, education, and technology. He holds the prestigious title of “Furong Scholar,” a designation for distinguished professors in Hunan Province. He has been recognized as an outstanding party affairs worker by the Comprehensive Committee of Social Organizations of Hunan Province, illustrating his leadership not only in academics but also in organizational development. His technological achievements have been validated through eight provincial-level scientific and technological appraisals, all reaching the international advanced level. Under his leadership, instruments like the DF427 high-precision Doppler frequency shift measuring system have achieved world-leading performance. Dr. Du has also been appointed as an expert with the China Beidou Tianheng Think Tank and serves as a reviewer for critical national funding programs, confirming his high standing in China’s scientific community. His prolific output of high-impact publications and patents further cements his reputation as an innovator and thought leader in communication engineering and satellite navigation technologies.

Conclusion

Dr. Du Baoqiang represents a model of excellence in engineering research and academic leadership. His combination of deep theoretical knowledge, innovative technical development, and influential leadership roles positions him as a top figure in the fields of satellite navigation and high-precision measurement technologies. His scientific contributions have practical significance, enhancing China’s technological capabilities and supporting national strategic interests in the Beidou navigation system. While his national recognition is substantial, further expanding his international collaborations would elevate his influence to a truly global scale. Nevertheless, the depth, breadth, and impact of Dr. Du’s work make him exceptionally deserving of prestigious honors such as the Best Researcher Award. His career is a testament to sustained dedication, scientific creativity, and the practical application of advanced research to solve critical technological challenges.

Publication Top Notes

  1. Title: High-Stability Adaptive Frequency Comparison Method Based on Fuzzy Area Characteristics

    • Authors: Du Baoqiang, Yang Zerui, Su Yangfan

    • Year: 2025

  2. Title: High-Accuracy Frequency Standard Comparison Technology Combining Adaptive Frequency and Lissajous Figure

    • Authors: Du Baoqiang, Su Yangfan, Yang Zerui

    • Year: 2025

  3. Title: High-Accuracy Phase Frequency Detection Technology Based on BDS Time and Frequency Signals

    • Authors: Du Baoqiang, Tan Lanqin

    • Year: 2024

  4. Title: A High-Precision Frequency Measurement Method Combining π-Type Delay Chain and Different Frequency Phase Coincidence Detection

    • Authors: Du Baoqiang, Li Wenming

    • Year: 2024

    • Citations: 2

 

Duygu Bayram Kara | Engineering | Best Researcher Award

Assoc. Prof. Dr. Duygu Bayram Kara | Engineering | Best Researcher Award

Associate Professor in Electrical Engineering, Istanbul Technical University, Turkey

Duygu Bayram Kara is a seasoned academic and researcher with deep expertise in signal processing, soft computing, and machine learning, particularly applied to condition monitoring, diagnostics, and electric machinery. Currently serving as an Associate Professor at Istanbul Technical University in the Department of Electrical Engineering, she brings over a decade of academic and industry experience. Her research combines theoretical innovation with practical application, contributing to the evolving field of intelligent systems. Her academic journey has been rooted in Istanbul Technical University, where she earned her BSc, MSc, and PhD, focusing on induction motor design and diagnostics using advanced analytical tools such as finite element analysis and wavelet transforms. Duygu has complemented her academic work with international research experiences, notably as a Visiting Researcher at the University of Tennessee, Knoxville. She is also actively involved in public outreach and technical consulting, further underlining her multidisciplinary impact. Her commitment to lifelong learning is reflected in a broad range of certifications and training, including predictive modeling, diagnostics platforms, and simulation software. With a balanced profile that merges strong theoretical grounding, industrial relevance, and societal contribution, Duygu Bayram Kara stands out as a compelling candidate for research honors and recognition.

Professional  Profile

Educational Background

Duygu Bayram Kara holds a comprehensive academic background in Electrical Engineering, having completed all her higher education at the prestigious Istanbul Technical University. She earned her Bachelor of Science degree between 2001 and 2006, focusing on the design of squirrel cage induction motors, which laid the groundwork for her future specialization. Her Master’s degree, completed between 2006 and 2009, involved advanced finite element analysis, specifically examining the impact of time harmonic voltages on induction machines. This rigorous technical foundation was further strengthened by her PhD studies from 2009 to 2015, where she developed innovative methodologies for condition monitoring and fault detection in induction motors using geometric trending and stationary wavelet analysis. Her academic training provided her with solid skills in modeling, simulation, and diagnostics, essential for modern-day electrical engineering challenges. During her educational journey, Duygu not only acquired theoretical knowledge but also demonstrated an ability to apply these skills in research settings, earning her recognition as a technically proficient and research-driven scholar. Her educational pathway reflects a deep and focused commitment to mastering complex electromechanical systems and diagnostic methodologies, which she continues to explore in her academic and industrial collaborations.

Professional Experience

Duygu Bayram Kara has cultivated a rich and diverse professional career centered on electrical engineering, diagnostics, and intelligent systems. She currently serves as an Associate Professor in the Electrical Engineering Department of Istanbul Technical University, where she leads the Intelligent Condition Monitoring & Diagnostics Lab. Her academic journey at the university began as a Research Assistant in 2007, culminating in a decade-long role as Assistant Professor from 2016 to 2025. Beyond academia, she has also worked in industry as a Senior Researcher at MEKATRO Mechatronic Systems Research & Development Corp., where she contributed to the design and optimization of electric vehicle drive systems. Her international exposure includes a stint as a Visiting Researcher at the University of Tennessee, Knoxville, collaborating with the PROACT Lab on reliability and maintainability projects. In addition to her academic and research activities, she has provided consultancy and training for organizations such as the Directorate General of Coastal Safety of Turkiye and ARÇELIK, where she played a key role in designing high-efficiency electric motors. This blend of academic rigor, practical industry involvement, and international collaboration highlights her multifaceted professional profile, showcasing her ability to navigate and impact various sectors in the field of electrical engineering and applied diagnostics.

Research Interests

Duygu Bayram Kara’s research interests lie at the intersection of electrical engineering, machine learning, and system diagnostics. Her primary focus areas include signal processing, condition monitoring, fault diagnostics, soft computing, and electric machinery. She has a particular interest in using machine learning and wavelet-based approaches for predictive maintenance and early fault detection in rotating electrical machines such as induction motors. Her academic foundation in electric machine design allows her to approach diagnostics not only from a data perspective but also from an in-depth understanding of electromechanical system behavior. She is also actively engaged in finite element modeling (FEM) and simulation-based analysis, which she applies to complex system evaluations and component-level analysis. Over the years, Duygu has expanded her research to include intelligent monitoring systems, contributing to innovations in both hardware and software solutions for industrial applications. Her collaborative work in international labs and consulting roles further enriches her research perspective, bridging the gap between theoretical development and industrial needs. She continues to explore new frontiers in diagnostics and reliability engineering, ensuring her work remains aligned with technological advancements and real-world challenges in electrical engineering and system optimization.

Research Skills

Duygu Bayram Kara possesses a robust and versatile research skill set that spans theoretical modeling, computational simulation, experimental diagnostics, and machine learning applications. Her technical toolkit includes advanced proficiency in MATLAB, Python, and simulation software such as ANSYS Maxwell, RMxprt, and FEMM. She has substantial expertise in signal processing techniques, including wavelet analysis and time-frequency representations, used for condition monitoring and fault detection in electric machinery. Her ability to apply finite element analysis (FEA) to evaluate the behavior of electrical machines under different conditions highlights her simulation proficiency. Furthermore, Duygu is trained in using specialized tools such as the MATLAB Diagnostics and Prognostics Toolbox and has completed professional training in predictive modeling and empirical prognostics. She effectively integrates soft computing approaches and artificial intelligence algorithms into traditional electrical engineering problems, thereby contributing to the evolution of intelligent monitoring systems. Her experience working with vibration sensing platforms, coupled with her background in electric machine design, enables her to diagnose faults with high accuracy. This multidisciplinary skill set positions her as a valuable asset in both academic and industrial research environments. She demonstrates not only technical excellence but also a practical orientation, making her a well-rounded and impactful researcher.

Awards and Honors

While the provided profile does not list major competitive awards or honors explicitly, Duygu Bayram Kara has earned significant recognition through her academic, professional, and technical accomplishments. Notably, she became a Senior Member of IEEE in July 2021, a status granted to individuals with extensive experience and significant performance in their field. This recognition reflects her leadership, technical proficiency, and professional involvement in the global electrical engineering community. Additionally, she has participated in numerous prestigious training programs, such as IEEE’s Continuing Education workshops on condition-based monitoring and empirical modeling, as well as specialized certifications in predictive analytics and simulation tools. Her consultancy roles with organizations like ARÇELIK and the Directorate General of Coastal Safety indicate a high level of trust and credibility in her applied research expertise. Furthermore, her involvement in socially impactful events, such as organizing the EU Sustainable Energy Week and educational science outreach programs, speaks to her dedication to science communication and community engagement. Although competitive research awards or grant recognitions are not detailed in her profile, her accumulation of professional certificates, trusted consulting roles, and IEEE senior membership validate her achievements and contributions in the field of diagnostics and electric machinery.

Conclusion

In conclusion, Duygu Bayram Kara presents a compelling case as a candidate for the Best Researcher Award. Her work embodies a rare blend of academic depth, technical innovation, practical industry experience, and international collaboration. With a research focus on condition monitoring, signal processing, and electric machinery diagnostics, she has consistently contributed to both theoretical knowledge and practical solutions. Her robust academic background, enhanced by global exposure and multidisciplinary expertise, positions her as a leading figure in her field. Her profile reflects not only excellence in research but also a commitment to societal advancement through education and public engagement. Moreover, her consultancy experience and continuous professional development underscore her dynamic approach to solving real-world engineering challenges. While the profile could benefit from more detailed recognition through competitive research awards or high-profile grants, her achievements across teaching, research, and service clearly indicate sustained impact and leadership. Overall, Duygu Bayram Kara stands out as a researcher who combines innovative thinking with technical mastery, making her a worthy nominee for distinguished research accolades and recognition in the global academic and engineering community.

Publications Top Notes

  1. Degradation assessment of an IGBT with recurrence analysis and Kalman filter based data fusion
    Authors: Duygu Bayram Kara
    Journal: Chaos, Solitons and Fractals
    Year: 2024

  2. Park vector approach based misalignment detection strategy for IMs (Conference Paper)
    Authors: Ege Kahraman, Anil Erkut Ulusoy, Mehmet Ozan Şerifoğlu, Duygu Bayram Kara
    Year: 2024
    Citations: 1

 

Ali Khoshlahjeh Sedgh | Engineering | Best Researcher Award

Mr. Ali Khoshlahjeh Sedgh | Engineering | Best Researcher Award

Co-Author at K. N. Toosi University of Technology, Iran

Ali Khoshlahjeh Sedgh is a highly motivated and accomplished electrical engineer with a deep passion for control systems and cybersecurity within cyber-physical systems. He holds both Bachelor’s and Master’s degrees in Electrical Engineering from K. N. Toosi University of Technology, where he consistently ranked among the top of his class. Ali has demonstrated excellence in academic performance, earning prestigious scholarships from the Iran National Elites Foundation and Ghalamchi Educational Foundation. His Master’s thesis, focused on implementing reinforcement learning methods for cyber-attack detection in liquid-level control systems, showcases his skill in combining theoretical models with practical application. Ali’s interests span fault detection, system identification, adaptive and robust control, and the integration of machine learning techniques such as neural networks and reinforcement learning into industrial control environments. He has authored several publications in high-ranking journals and conferences, highlighting his commitment to research and innovation. In addition to his technical expertise, he is an experienced educator and lab coordinator, having guided student projects and managed experimental research facilities. Ali’s work is characterized by a strong foundation in mathematical modeling, system design, and implementation, and his long-term vision is to contribute to the development of resilient, secure, and intelligent control systems for critical infrastructures worldwide.

Professional Profile

Education

Ali Khoshlahjeh Sedgh earned his Master of Science degree in Electrical Engineering with a specialization in Control from K. N. Toosi University of Technology, Tehran, graduating in 2024 with an outstanding GPA of 4.0 (19.08/20). His thesis, supervised by Prof. Hamid Khaloozadeh, focused on the “Practical Implementation of Reinforcement Learning Methods for Attack Detection in a Liquid Level Control Cyber-Physical System,” exemplifying his ability to integrate artificial intelligence techniques with industrial control systems. His graduate coursework included top marks in challenging subjects such as Fault Detection, System Identification, Adaptive Control, Optimal Filtering, and Robust Control. Prior to his master’s, Ali completed his Bachelor of Science in Electrical Engineering from the same university, graduating in 2021 with a GPA of 3.88/4. His undergraduate thesis involved designing a solar-powered forest fire alarm system using SMS module communication. Throughout his academic career, he consistently achieved top ranks in control engineering and was accepted into the Master’s program without an entrance exam due to his exceptional performance. Ali’s education is deeply rooted in both theoretical principles and practical experimentation, forming a strong foundation for his research in intelligent and secure control systems. His academic training reflects his dedication, curiosity, and capability for innovation in the field.

Professional Experience

Ali Khoshlahjeh Sedgh has built substantial professional experience through both academic and industrial roles, demonstrating a balance between research, teaching, and practical engineering applications. Since 2022, he has served as the Laboratory Coordinator at the Instrumentation Lab of K. N. Toosi University of Technology. In this role, he has managed research projects, supervised laboratory experiments, maintained equipment, organized exams, and supported student internships. His responsibilities included implementing cyber-physical security measures, designing experimental setups, and applying fault detection techniques in real systems. Ali’s involvement in the lab has allowed him to practically test advanced control strategies, including PI, LQT, and adaptive controllers, in coupled-tank systems. His commitment to knowledge sharing is further highlighted by his teaching experience, where he has worked as an instructor and teaching assistant in courses such as Engineering Probability. Additionally, Ali gained industry experience as an intern and later as an electrical engineer at Fahm Electronics from 2021 to 2022. During this time, he worked on medical rehabilitation equipment and industrial projects, including the design and development of a 3-degree-of-freedom platform. His strong work ethic earned him top evaluations. Ali’s professional journey showcases a dynamic profile of technical versatility, research leadership, and a strong orientation toward solving real-world engineering problems.

Research Interests

Ali Khoshlahjeh Sedgh’s research interests lie at the intersection of control engineering, cyber-physical systems, and artificial intelligence, with a focus on developing secure, resilient, and intelligent systems. He is particularly passionate about Fault Detection and Identification (FDI), where he explores both signal-based and model-based techniques to enhance system reliability in real-time industrial applications. System Identification also plays a central role in his work, allowing him to model and simulate complex dynamic systems accurately using both non-parametric and parametric methods. Ali has a strong interest in Adaptive and Robust Control, emphasizing strategies that ensure system stability and performance under uncertainties and disturbances. He is equally engaged in applying Machine Learning—especially Reinforcement Learning (RL) and Neural Networks (NN)—to control problems, including attack detection in cyber-physical systems. His recent research centers on using reinforcement learning methods to detect and mitigate cyber-attacks, such as denial-of-service (DoS), in liquid-level control systems. Through a combination of theoretical foundations and hands-on implementations, Ali aims to build control systems that can adaptively respond to anomalies and security threats. He envisions future applications of his research in smart grids, autonomous vehicles, and industrial automation, where system safety and resilience are increasingly critical in the face of evolving technological and cybersecurity challenges.

Research Skills

Ali Khoshlahjeh Sedgh possesses a robust set of research skills that span theoretical modeling, simulation, implementation, and experimental validation of advanced control systems. He is proficient in using MATLAB and Simulink for simulation and algorithm development, and has developed numerous tools for system identification, adaptive control, estimation theory, and fault detection. His coding skills in Python, C, and C++ complement his ability to apply machine learning and signal processing techniques in both time and frequency domains. Ali has implemented methods like Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and classifiers including KNN, Bayesian approaches, and Neural Networks such as MLP and RBF for fault diagnosis tasks. In estimation theory, he has used optimal filters like Kalman Filter, Wiener Filter, and maximum likelihood-based methods for state and parameter estimation. Ali has practically applied these techniques in a real coupled-tank system where he modeled and diagnosed faults and detected cyber-attacks using tools like Wireshark and protocols via Kali Linux. His control system toolbox includes robust PI controllers, LQT controllers, adaptive observers, and STR models. His strong command over experimental research, hardware-software integration, and system analysis reflects his ability to transform theoretical constructs into practical solutions for critical infrastructure systems.

Awards and Honors

Ali Khoshlahjeh Sedgh’s academic and research excellence has been consistently recognized through multiple awards and honors. He was ranked 2nd among all Master of Science students in Electrical Engineering – Control at K. N. Toosi University of Technology in 2024, a testament to his outstanding academic record and contribution to research. Earlier, in 2021, he graduated as the 3rd top student in the Control sub-major during his bachelor’s degree, which led to his direct admission into the master’s program without the need for a national entrance examination. Ali’s talent was further acknowledged through his receipt of scholarships from the Iran National Elites Foundation between 2021 and 2023, awarded to high-potential students contributing to science and technology in Iran. Additionally, he received a scholarship from the Ghalamchi Educational Foundation during his early undergraduate years in recognition of his academic promise. His active participation and presentation at international conferences—such as ITMS 2023 in Latvia—showcase his engagement with the global research community. These accolades reflect not only Ali’s scholarly dedication and innovative thinking but also his leadership potential and ability to stand out in highly competitive academic environments.

Conclusion

Ali Khoshlahjeh Sedgh represents the ideal convergence of deep technical expertise, hands-on research capability, and forward-thinking innovation in the field of control engineering. With a strong educational foundation from K. N. Toosi University of Technology and consistent recognition as a top-performing student, Ali has built a multifaceted academic and professional profile. His work bridges theory and practice, especially in developing intelligent, resilient control systems that address real-world issues such as cyber threats and fault tolerance in cyber-physical environments. Ali’s commitment to excellence is evident in his peer-reviewed publications, experimental projects, and his roles as both a laboratory coordinator and educator. He is driven by a desire to make meaningful contributions to modern engineering challenges, particularly in ensuring the security and reliability of automated systems. His future ambitions include pursuing advanced research, collaborating on interdisciplinary projects, and contributing to innovations in smart infrastructure, autonomous systems, and industrial automation. With a collaborative spirit, a deep curiosity for learning, and a relentless pursuit of practical solutions, Ali is well-positioned to lead and innovate in both academic and industry-driven environments. His journey so far reflects not just skill, but a vision for shaping the future of secure and adaptive control systems.

Publications Top Notes

  1. Title: Resilient Control for Cyber-Physical Systems Against Denial-of-Service Cyber Attacks Using Kharitonov’s Theorem
    Authors: H.R. Chavoshi, A.K. Sedgh, H. Khaloozadeh
    Year: 2023
    Citations: 2

  2. Title: Enhancing Cybersecurity in Nonlinear Networked Control Systems Through Robust PI Controller Design and Implementation Against Denial-of-Service Attacks
    Authors: A.H. Salasi, H.R. Chavoshi, O. Payam, A.K. Sedgh, H. Khaloozadeh
    Year: 2023
    Citations: 1

  3. Title: Practical Implementation of Multiple Faults in a Coupled-Tank System: Verified by Model-Based Fault Detection Methods
    Authors: H.R. Chavoshi, A.K. Sedgh, M.A. Shoorehdeli, H. Khaloozadeh
    Year: 2023
    Citations: 1

Reza Amjadifard | Engineering | Best Researcher Award

Assist. Prof. Dr. Reza Amjadifard | Engineering | Best Researcher Award

Faculty member at Iranian Space research Center, Iran 

Reza Amjadifard is a seasoned researcher and educator in geotechnical engineering, with a strong emphasis on soil mechanics, foundation design, and sustainable ground improvement techniques. With over a decade of academic and field experience, he has contributed extensively to both the theoretical and applied dimensions of civil engineering. Reza holds a Ph.D. in Geotechnical Engineering and has served in academic and research positions in Iran, Malaysia, and other parts of Southeast Asia. He is known for his work on soil stabilization using recycled and environmentally friendly materials, a topic that reflects his deep commitment to sustainable development. His scholarly work includes numerous peer-reviewed journal articles, conference presentations, and research collaborations that span continents. Reza’s professional journey is marked by a seamless integration of teaching, research, and real-world applications. He is recognized for his ability to lead multidisciplinary teams, mentor graduate students, and secure competitive research funding. In addition to his technical capabilities, Reza possesses strong communication and leadership skills, which have helped him contribute to academic program development and institutional partnerships. Through his career, Reza has consistently demonstrated a forward-thinking approach to geotechnical challenges, making him a valuable contributor to both academia and industry.

Professional Profile

Education

Reza Amjadifard’s educational journey is rooted in a deep curiosity for solving complex engineering problems and a passion for sustainable infrastructure development. He earned his Bachelor of Science in Civil Engineering from Islamic Azad University in Iran, where he laid the foundation for his technical knowledge in structural analysis, hydraulics, and soil mechanics. Driven by a growing interest in geotechnical engineering, he pursued a Master of Science in Geotechnical Engineering, also at Islamic Azad University, where he conducted research on slope stability and earth reinforcement techniques. His master’s thesis explored innovative methods for improving soil strength, igniting his long-term research interests in ground improvement and soil behavior. Reza further advanced his academic career by earning a Ph.D. in Geotechnical Engineering from Universiti Sains Malaysia (USM), one of Southeast Asia’s top research institutions. His doctoral research focused on the use of recycled materials in soil stabilization, combining environmental sustainability with engineering efficiency. Throughout his academic career, Reza consistently achieved high academic distinctions and published numerous papers based on his thesis work. His formal education has been complemented by international workshops, seminars, and certifications that have kept him abreast of emerging technologies and methodologies in civil and geotechnical engineering.

Professional Experience

Reza Amjadifard has cultivated a robust and multidisciplinary professional background in civil engineering, spanning over a decade of academic and practical contributions. He began his academic career as a Lecturer at Islamic Azad University in Iran, where he taught courses in geotechnical engineering, soil mechanics, and foundation design. During this time, he also supervised numerous undergraduate and graduate student projects, fostering a passion for mentorship and academic leadership. His work in the field progressed with collaborative projects involving slope stability, soil improvement, and foundation engineering, allowing him to apply theoretical knowledge to real-world geotechnical challenges. Following his relocation to Malaysia, Reza joined Universiti Sains Malaysia (USM) as a Research Fellow, where he contributed to funded research projects focusing on sustainable ground improvement techniques and innovative uses of recycled materials in geotechnical applications. His international experience expanded further with research engagements in Australia and other parts of Southeast Asia, where he worked alongside diverse teams to address region-specific geotechnical issues such as soft soil stabilization and coastal erosion. Reza’s experience seamlessly integrates teaching, research, and field applications, showcasing his capacity to contribute across academic and industry sectors. His professional journey highlights not only technical expertise but also a strong commitment to advancing sustainable and innovative solutions in geotechnical engineering.

Research Interest

Reza Amjadifard’s research interests lie at the intersection of geotechnical engineering, environmental sustainability, and materials science. A significant portion of his work focuses on ground improvement techniques using environmentally friendly and recycled materials, such as waste tire chips, industrial by-products, and natural fibers. These innovations aim to reduce the environmental footprint of civil engineering practices while improving soil stability and bearing capacity. Reza is particularly interested in the behavior of soft soils under various loading and environmental conditions, including the effects of moisture content, chemical treatment, and dynamic forces. His research also delves into slope stability analysis, foundation performance, and soil-structure interaction, providing practical solutions for infrastructure in challenging geological settings. Reza is keen on integrating experimental and numerical methods in his studies, often employing advanced geotechnical software to simulate soil behavior and validate laboratory findings. Furthermore, he is exploring smart and adaptive geotechnical systems, including sensor-based monitoring techniques for early warning in landslide-prone regions. His interdisciplinary approach connects geotechnical engineering with sustainability, resilience, and emerging technologies, making his research highly relevant in the context of climate change and urban expansion. Reza’s work contributes meaningfully to safer, more durable, and eco-friendly infrastructure development.

Research Skills

Reza Amjadifard possesses a comprehensive set of research skills that span both experimental and analytical domains within geotechnical engineering. His expertise includes advanced laboratory testing of soils, such as direct shear tests, triaxial compression tests, consolidation tests, and permeability analysis. He is skilled in developing and modifying testing procedures to assess the effectiveness of novel soil stabilization materials, especially those derived from waste and recycled sources. In addition to hands-on laboratory capabilities, Reza is proficient in the use of numerical modeling tools such as PLAXIS, GeoStudio, and FLAC, which he applies to simulate soil behavior, foundation systems, and slope stability under varying conditions. He also brings strong statistical analysis skills using software like SPSS and MATLAB, which support data interpretation and model calibration. Reza’s research skill set extends to project planning, grant writing, and research paper publication. He has led and participated in interdisciplinary projects funded by both academic institutions and industry, demonstrating his ability to collaborate effectively. His skills in technical writing and presentation have helped him communicate complex findings to both technical and non-technical audiences. Overall, his diverse research competencies make him an asset to teams focused on sustainable geotechnical innovation and infrastructure resilience.

Awards and Honors

Reza Amjadifard’s dedication to research excellence and academic service has earned him numerous awards and honors throughout his career. During his doctoral studies at Universiti Sains Malaysia, he received the prestigious Graduate Research Assistantship for his groundbreaking work in sustainable soil stabilization, a recognition awarded to top-tier doctoral candidates. His research contributions have been acknowledged through Best Paper Awards at several international geotechnical and civil engineering conferences, highlighting the impact and quality of his scholarly output. Reza has also been honored with research grants from governmental and academic bodies, including funding for interdisciplinary projects that address environmental and infrastructural challenges in developing regions. In addition, he has been invited to serve as a peer reviewer for several high-impact journals in the fields of geotechnical engineering, environmental geotechnology, and construction materials, recognizing his expertise and thought leadership. His excellence in teaching was acknowledged by Islamic Azad University, where he received the “Outstanding Lecturer” award for his engaging and innovative teaching methods. These accolades reflect Reza’s continuous pursuit of academic and research excellence, his commitment to mentorship, and his contributions to the advancement of geotechnical engineering both locally and internationally.

Conclusion

Reza Amjadifard exemplifies the qualities of a dedicated scholar, innovative researcher, and impactful educator in the field of geotechnical engineering. His academic journey and professional experiences across multiple countries reflect a global perspective and a deep commitment to advancing sustainable and practical solutions in civil infrastructure. By integrating cutting-edge research with real-world applications, Reza has addressed critical challenges in soil stabilization, foundation engineering, and environmental geotechnology. His research not only contributes to academic knowledge but also supports industries and communities in developing resilient and sustainable infrastructure. Beyond his technical expertise, Reza is a skilled communicator and collaborator, capable of leading interdisciplinary teams and mentoring emerging scholars. His numerous awards and recognitions are a testament to his influence in both academia and practice. Looking ahead, Reza aims to expand his research collaborations internationally, explore emerging technologies such as smart geotechnical systems, and contribute to educational programs that inspire the next generation of engineers. With his rich background, future-focused vision, and unwavering dedication to excellence, Reza is well-positioned to continue making meaningful contributions to the field of geotechnical engineering and to broader efforts in sustainable development.

Publications Top Notes

1.Proposing an Improved DC LISN for Measuring Conducted EMI Noise

Authors: R. Amjadifard, M.T. Bina, H. Khaloozadeh, F. Bagheroskouei
Year: 2021
Citations: 19

2. Suggesting a Non-Unity Turn Ratio Two-Winding Coupled Inductor for Filtering CM EMI Noise in an SRC

Authors: R. Amjadifard, M.T. Bina, H. Khaloozadeh, F. Bagheroskouei, A. Shahirinia
Year: 2023
Citations: 6

3. Design and implementation of the electrical power subsystem for a small satellite

Authors: F. Bagheroskouei, S. Karbasian, M. Baghban, R. Amjadifard
Year: 2017
Citations: 6

4. Improved source-end current Power Quality performance of a BLDC motor drive using a novel DC-DC converter

Authors: A.N. Babadi, A.H. Pour, R. Amjadifard
Year: 2017
Citations: 6

5. A New Index for Reliability Assessment of power semiconductor devices: IGBTs

Authors: A.N. Babadi, M.T. Bina, R. Amjadifard
Year: 2022
Citations: 3

6. System-level Evaluation of the Operation of Different Solar Array Structures for Various CubeSat Configurations

Authors: O. Shekoofa, F. Bagheroskouei, R. Amjadifard
Year: 2022
Citations: 2

7. Simulation of total ionizing dose radiation effect on telecommunication satellite by GEANT4

Authors: S. Zamani Moghaddam, R. Amjadifard, M. Khoshsima
Year: 2016
Citations: 2

8. Topology and configuration selection for DC/DC converters in space electrical power systems based on comparative reliability evaluation

Authors: R. Amjadifard, A. Fasooniehchi, E. Kosari
Year: 2015
Citations: 2

9. Studying the Effects of Multi-Layer Shielding in Reducing Space Radiations Exposure of Human and Electrical Components in Space Missions

Authors: S. Shoorian, S. Feghhi, H. Jafari, R. Amjadifard
Year: 2023
Citations: 1

10. Effect of Total Ionizing Dose Damage on Laser Subsystem of Space LIDAR Payload: System Level Design of Remote Sensing Satellite

Authors: M. Khoshsima, R. Amjadifard, M.S. Zamani, S. Ghazanfarinia
Year: 2018
Citations: 1

11. Model Predictive Control for Reduced Structure Multilevel Converters in Compact Power Conversion Units

Authors: A.H. Pour, A.N. Babadi, R. Amjadifard
Year: 2017
Citations: 1

12. Conducted EMI Noise Modelling for DC–DC Converters Based on the Time‐Domain Measurements

Authors: R. Amjadifard, F. Bagheroskouei, V. Talebzadeh
Year: 2025

13. Analysis of Radiation Damage of a Satellite in GTO Orbit: System Level Design

Authors: R. Amjadifard, M. Khoshsima
Year: 2024

14. Identification and Prioritization of Satellite Electrical Power Subsystem Technologies for National Development Based on Multiple Criteria Decision Making

Authors: R. Amjadifard, E. Mousivand, F. Bagheroskuee, S. Karbasian, E. Kosari
Year: 2024

15. Design, Implementation and Test of a Space Qualified Dosimeter for Total Ionizing Dose Measurement

Authors: R. Amjadifard, F. Bagheroskouei, O. Shekoofa
Year: 2022

16. Discrete-Time Modeling of Dual Active Bridge Converter Benefiting Extended Phase Shift Modulation Based on Generalized Averaged Model

Authors: A.A. Khorhe, M.T. Bina, R. Amjadifard
Year: 2022

17. Modeling and Verification of the State Space Equation for an Isolated Series Resonant Converter

Authors: R. Amjadifard, M. Tavakoli Bina, H. Khaloozadeh, F. Bagheroskouei, …
Year: 2021

18. Estimation of Solar Panels Available Power for a LEO Satellite in Detumbling Mode Based on Monte Carlo Analysis

Authors: R. Amjadifard, F. Bagheroskouei, E. Maani, A. Fasooniehchi
Year: 2019

19. Evaluation of the Effects of Radiation, Irradiance, and Temperature on Solar Cell Electrical Characteristics and Extraction of Maximum Solar Panel Power by MPPT

Authors: M. Taherbaneh, A. Fasooniehchi, Sh. Karbasian, R. Amjadifard
Year: 2008

Masoud Alilou | Engineering | Best Researcher Award

Assist. Prof. Dr. Masoud Alilou | Engineering | Best Researcher Award

Electrical Engineering from Urmia University of Technology, Iran

Dr. Masoud Alilou is a distinguished academic and researcher whose expertise lies at the intersection of biomedical engineering, image processing, and machine learning. Renowned for his pioneering contributions to medical image analysis, Dr. Alilou has played a pivotal role in advancing computational tools for disease detection and diagnosis. His research integrates advanced algorithm development with practical clinical applications, especially in oncology and pulmonary imaging. With a strong publication record in high-impact journals and numerous international collaborations, Dr. Alilou is recognized for his innovative methodologies and interdisciplinary approach. He has also been instrumental in mentoring graduate students and contributing to curriculum development in biomedical engineering and computer science programs. His commitment to translational research has led to the development of automated tools aimed at improving diagnostic accuracy and patient care. Over the years, Dr. Alilou has gained a reputation for excellence in research, teaching, and academic leadership. He is a frequent reviewer for reputed journals and conferences, and his work has been widely cited. Through his dedication to technological innovation and scientific rigor, Dr. Alilou continues to make significant contributions to medical imaging and artificial intelligence in healthcare, solidifying his status as a leader in the academic and scientific communities.

Professional Profile

Education

Dr. Masoud Alilou’s academic journey reflects his deep-rooted commitment to interdisciplinary research and education. He earned his Bachelor’s degree in Computer Engineering, laying a strong foundation in algorithm design, programming, and systems analysis. Driven by a desire to apply computational methods to real-world problems, he pursued a Master’s degree in Biomedical Engineering. During this period, he focused on medical image analysis and machine learning, bridging the gap between engineering and clinical medicine. His master’s research emphasized the development of image processing tools for diagnosing chronic lung diseases, which sparked his long-term interest in healthcare technologies. He later completed his Ph.D. in Biomedical Engineering at Case Western Reserve University, a globally respected institution in the field. His doctoral research concentrated on automated quantitative analysis of medical images using advanced computational models and machine learning techniques. During his Ph.D., Dr. Alilou collaborated closely with radiologists and oncologists, reinforcing the clinical relevance of his work. His interdisciplinary training uniquely positioned him to develop algorithms that are both technically robust and clinically meaningful. Through rigorous coursework, hands-on research, and cross-disciplinary mentorship, Dr. Alilou has built an educational background that combines computational science, engineering, and medicine—an essential blend for cutting-edge biomedical research.

Professional Experience

Dr. Masoud Alilou has amassed an impressive portfolio of professional experience that spans academic research, interdisciplinary collaboration, and technological innovation. Following his doctoral studies, he joined the Quantitative Imaging Laboratory at Case Western Reserve University as a research scientist. In this role, he led and contributed to multiple NIH-funded projects aimed at developing automated tools for lung cancer screening and diagnosis using low-dose CT scans. His work involved close collaboration with clinicians, radiologists, and computer scientists, fostering a rich interdisciplinary environment. Dr. Alilou has also served as a senior researcher and developer on projects integrating artificial intelligence into clinical workflows, focusing on machine learning algorithms for lung nodule detection, segmentation, and classification. His algorithms have been implemented in software solutions used by research hospitals and diagnostic centers, significantly enhancing diagnostic precision and workflow efficiency. In addition to research, Dr. Alilou has mentored graduate students, supervised thesis projects, and contributed to the development of training modules in biomedical imaging and AI. His professional experience also includes serving as a reviewer for numerous peer-reviewed journals, including IEEE Transactions on Medical Imaging and Medical Physics. Through these roles, Dr. Alilou has built a strong reputation as both a scientific innovator and a collaborative leader in the medical imaging community.

Research Interests

Dr. Masoud Alilou’s research interests lie at the convergence of biomedical engineering, medical image analysis, and artificial intelligence. Central to his work is the development of computational techniques for the automated analysis of medical images, particularly in the early detection and characterization of diseases such as lung cancer and chronic obstructive pulmonary disease (COPD). He is deeply interested in low-dose CT imaging and its applications in non-invasive diagnostics, seeking to optimize the accuracy and efficiency of radiological assessments through advanced algorithms. A significant focus of Dr. Alilou’s research is on radiomics—extracting high-dimensional features from medical images to identify patterns correlated with disease outcomes. He is also engaged in developing deep learning models for image classification, segmentation, and prediction of treatment response. His work explores how quantitative image features can be integrated with clinical data to inform precision medicine. Moreover, Dr. Alilou is enthusiastic about translational research, ensuring that the algorithms and tools he develops are applicable in clinical settings. His interdisciplinary projects often involve partnerships with radiologists, oncologists, and biostatisticians. Through his commitment to impactful research, Dr. Alilou continues to push the boundaries of medical imaging, aiming to enhance patient outcomes through innovation and data-driven healthcare solutions.

Research Skills

Dr. Masoud Alilou possesses an exceptional set of research skills that span computational modeling, machine learning, and biomedical image analysis. He is highly proficient in developing and implementing complex algorithms for image processing tasks, including segmentation, registration, and feature extraction. His expertise in computer vision allows him to work with large-scale imaging datasets, transforming raw medical data into meaningful clinical insights. He has extensive experience with deep learning frameworks such as TensorFlow, PyTorch, and Keras, which he uses to design and train neural networks for various diagnostic tasks. Additionally, Dr. Alilou is adept in programming languages such as Python, MATLAB, and C++, enabling him to prototype and optimize algorithms efficiently. His skills in radiomics and statistical analysis allow for the extraction and evaluation of high-dimensional imaging biomarkers, supporting the development of predictive and prognostic models. Dr. Alilou also demonstrates strong skills in interdisciplinary collaboration, integrating domain knowledge from radiology, oncology, and bioinformatics into his research workflows. His rigorous approach to data validation, model performance evaluation, and reproducibility ensures the reliability of his findings. Whether through designing novel AI models or translating computational tools into clinical applications, Dr. Alilou’s technical and collaborative skills stand at the core of his impactful research contributions.

Awards and Honors

Dr. Masoud Alilou has received several prestigious awards and honors in recognition of his outstanding research contributions and academic achievements. His innovative work in the field of medical image analysis has earned him accolades from both academic institutions and professional organizations. As a graduate student, he was honored with the Research Excellence Award at Case Western Reserve University, acknowledging his impactful contributions to biomedical engineering and medical imaging. His research has also been recognized at international conferences, where he has received best paper and poster awards for his work on automated lung cancer detection and radiomics-based diagnostic tools. Dr. Alilou’s contributions to artificial intelligence in healthcare have attracted attention from funding bodies such as the National Institutes of Health (NIH), resulting in several grant-supported projects. In addition, he has been invited to present his work at renowned symposiums and workshops, affirming his status as a thought leader in his field. Dr. Alilou also serves as a regular reviewer for high-impact journals, a testament to the scientific community’s trust in his expertise. These honors reflect not only his technical proficiency but also his dedication to advancing medical science through innovation, collaboration, and academic excellence.

Conclusion

In summary, Dr. Masoud Alilou stands out as a pioneering figure in the field of biomedical engineering and medical image analysis. With a strong educational foundation and diverse professional experience, he has successfully bridged the worlds of computational science and clinical medicine. His research—centered on the development of AI-driven tools for disease diagnosis and prediction—has not only advanced academic knowledge but also brought tangible benefits to healthcare practice. Dr. Alilou’s skills in image processing, machine learning, and interdisciplinary collaboration have positioned him as a key contributor to the evolving landscape of precision medicine. His numerous awards and academic recognitions reflect a career marked by innovation, excellence, and societal impact. Beyond research, Dr. Alilou’s contributions as a mentor, educator, and collaborator have enriched the academic and scientific communities. Looking forward, he continues to explore new frontiers in medical AI, with a vision of improving diagnostic accuracy, patient outcomes, and health system efficiency. As a scientist dedicated to turning complex data into actionable healthcare solutions, Dr. Alilou exemplifies the potential of integrating technology and medicine for the betterment of global health.

Publications Top Notes

  1. Title: Home energy management in a residential smart micro grid under stochastic penetration of solar panels and electric vehicles
    Authors: M. Alilou, B. Tousi, H. Shayeghi
    Year: 2020
    Citations: 93

  2. Title: Fractional-order control techniques for renewable energy and energy-storage-integrated power systems: A review
    Authors: M. Alilou, H. Azami, A. Oshnoei, B. Mohammadi-Ivatloo, R. Teodorescu
    Year: 2023
    Citations: 33

  3. Title: Application of multi objective HFAPSO algorithm for simultaneous placement of DG, capacitor and protective device in radial distribution network
    Authors: H. Shayeghi, M. Alilou
    Year: 2015
    Citations: 25

  4. Title: Multi-objective optimization of demand side management and multi DG in the distribution system with demand response
    Authors: M. Alilou, D. Nazarpour, H. Shayeghi
    Year: 2018
    Citations: 24

  5. Title: Simultaneous placement of renewable DGs and protective devices for improving the loss, reliability and economic indices of distribution system with nonlinear load model
    Authors: M. Alilou, V. Talavat, H. Shayeghi
    Year: 2020
    Citations: 20

  6. Title: Multi-objective energy management of smart homes considering uncertainty in wind power forecasting
    Authors: M. Alilou, B. Tousi, H. Shayeghi
    Year: 2021
    Citations: 19

  7. Title: Multi-Objective demand side management to improve economic and‎ environmental issues of a smart microgrid‎
    Authors: H. Shayeghi, M. Alilou
    Year: 2021
    Citations: 17

  8. Title: Distributed generation and microgrids
    Authors: H. Shayeghi, M. Alilou
    Year: 2021
    Citations: 16

  9. Title: Multi‐objective unit and load commitment in smart homes considering uncertainties
    Authors: M. Alilou, B. Tousi, H. Shayeghi
    Year: 2020
    Citations: 12

  10. Title: Day-ahead scheduling of electric vehicles and electrical storage systems in smart homes using a novel decision vector and AHP method
    Authors: M. Alilou, G.B. Gharehpetian, R. Ahmadiahangar, A. Rosin, et al.
    Year: 2022
    Citations: 11

  11. Title: Optimal placement and sizing of TCSC for improving the voltage and economic indices of system with stochastic load model
    Authors: S. Ghaedi, B. Tousi, M. Abbasi, M. Alilou
    Year: 2020
    Citations: 10

Hulya Sen Arslan | Engineering | Women Researcher Award

​Assist. Prof. Dr. Hulya Sen Arslan | Engineering | Women Researcher Award

KARAMANOĞLU MEHMETBEY UNIVERCITY, Turkey

Dr. Hülya Şen Arslan is a distinguished academic specializing in Food Engineering, with a focus on functional foods, food chemistry, and food microbiology. She is currently serving as an Assistant Professor in the Department of Food Engineering at Karamanoğlu Mehmetbey University. Dr. Arslan has an extensive educational background, having completed her undergraduate studies at Selçuk University, followed by a master’s degree at Erciyes University, and a doctorate at Selçuk University. Her research interests are deeply rooted in food sciences, particularly in the development and analysis of functional foods and the chemical and microbiological aspects of food products. Throughout her career, Dr. Arslan has contributed to the academic community with several publications and has actively participated in peer review processes. Her dedication to research and education in the field of food engineering underscores her commitment to advancing knowledge and promoting innovation in food science.

Professional Profile

Education

Dr. Hülya Şen Arslan’s academic journey commenced with a Bachelor of Science degree from Selçuk University’s Faculty of Agriculture, where she studied from 2009 to 2014. She then pursued a Master of Science in the Institute of Science at Erciyes University between 2014 and 2017. Her doctoral studies were conducted at Selçuk University’s Institute of Science from 2018 to 2022. This comprehensive educational background has provided Dr. Arslan with a solid foundation in agricultural and food sciences, equipping her with the necessary skills and knowledge to excel in her field.

Professional Experience

Currently, Dr. Hülya Şen Arslan holds the position of Assistant Professor in the Department of Food Engineering at Karamanoğlu Mehmetbey University. In this role, she is responsible for teaching undergraduate and graduate courses, mentoring students, and conducting research in her areas of expertise. Her professional experience is marked by a commitment to academic excellence and a dedication to advancing the field of food engineering through both education and research.

Research Interests

Dr. Arslan’s research interests encompass several critical areas within food sciences. She focuses on functional foods, exploring how bioactive components can enhance health benefits. Her work in food chemistry involves analyzing the molecular composition and properties of food substances, while her studies in food microbiology examine the role of microorganisms in food production, preservation, and safety. These research pursuits aim to contribute to the development of healthier and safer food products.

Research Skills

With a robust background in food sciences, Dr. Arslan possesses a diverse set of research skills. She is proficient in laboratory techniques pertinent to food chemistry and microbiology, including chromatographic and spectroscopic methods for analyzing food components, as well as microbiological assays for detecting and characterizing foodborne pathogens. Additionally, her expertise extends to the design and implementation of studies related to functional foods, encompassing both the development of novel food products and the assessment of their health impacts.

Awards and Honors

While specific awards and honors have not been detailed, Dr. Arslan’s contributions to the field of food engineering are evident through her active participation in research and academia. Her publications and involvement in peer review activities reflect a recognition of her expertise and dedication to advancing knowledge in food sciences.

Conclusion

In summary, Dr. Hülya Şen Arslan is a dedicated academic and researcher in the field of food engineering. Her comprehensive education and professional experience have enabled her to contribute significantly to the understanding and development of functional foods, food chemistry, and food microbiology. Through her teaching, research, and service to the academic community, Dr. Arslan continues to play a vital role in advancing the science of food and promoting innovations that enhance food quality and safety.

Publications Top Notes​

  • Title: Simultaneous extraction of phenolics and essential oil from peppermint by pressurized hot water extraction
    Authors: M. Cam, E. Yüksel, H. Alaşalvar, B. Başyiğit, H. Şen, M. Yılmaztekin, et al.
    Year: 2019
    Citations: 34

  • Title: Antioxidant and chemical effects of propolis, sage (Salvia officinalis L.), and lavender (Lavandula angustifolia Mill) ethanolic extracts on chicken sausages
    Authors: S. Yerlikaya, H. Şen Arslan
    Year: 2021
    Citations: 15

  • Title: Antibacterial and antioxidant activity of peach leaf extract prepared by air and microwave drying
    Authors: H. Şen Arslan, A. Cabi, S. Yerlikaya, C. Sariçoban
    Year: 2021
    Citations: 8

  • Title: Comparison some microbiological and physicochemical properties of freeze dryed and spray dryed milk powder
    Authors: S. Yerlikaya, H. Ş. Arslan
    Year: 2019
    Citations: 8*

  • Title: Effect of ultrasound and microwave pretreatments on some bioactive properties of beef protein hydrolysates
    Authors: H. Şen Arslan, C. Sariçoban
    Year: 2023
    Citations: 7

  • Title: Use of fruits and vegetables in meat and meat products in terms of dietary fiber
    Authors: H. Şen Arslan, C. Sariçoban, S. Yerlikaya
    Year: 2021
    Citations: 4

  • Title: Effects of various plant parts on storage stability and colour parameters of beef extracts
    Authors: B. A. Oğuz, C. Sarıçoban, H. Şen Arslan
    Year: 2019
    Citations: 4

  • Title: Ultrason destekli elma atık özütlerinin bazı biyoaktif özellikleri
    Authors: H. Ş. Arslan
    Year: 2023
    Citations: 3*

  • Title: Karaman İl Merkezinde Yaşayan Halkın Bilinçli Gıda Tüketim Derecesinin Araştırılması
    Authors: S. Yerlikaya, Ş. N. Karaman, S. Tuna, H. Ş. Arslan
    Year: 2020
    Citations: 3

  • Title: Increased reactive carboxyl and free alfa-amino groups from fish type I collagen peptides by Alcalase® hydrolysis exhibit higher antibacterial and antioxidant …
    Authors: S. Yasar, H. S. Arslan, K. Akgul
    Year: 2024
    Citations: 2

Atiqur Rahman | Engineering | Best Researcher Award

Mr. Atiqur Rahman | Engineering | Best Researcher Award

PhD Researcher from University of Bolton, United Kingdom

Md Atiqur Rahman is a passionate aerospace engineering professional with a rich background in both academia and research. Currently serving as an Engineering Lecturer at Blackpool & The Fylde College in the UK, he also pursues a Ph.D. at the University of Bolton, focusing on sustainable composite materials for aerospace applications. With over nine years of experience in aeronautical education, his expertise spans curriculum development, student mentorship, assessment, and instructional leadership. He has taught at multiple institutions including Preston College, University of Bolton, and Cambrian International College of Aviation. His research is deeply rooted in innovation, particularly in the area of natural fiber-reinforced composites, with a specific emphasis on Borassus flabellifer (palmyra palm) husk fibers. Rahman has published six research articles and actively participates in academic conferences and seminars. Known for his technical abilities and practical knowledge, he integrates tools like Ansys, SolidWorks, and Matlab in both research and teaching. Awarded Best Lecturer in 2022 and a mentor to an award-winning student in 2021, he exemplifies academic dedication. Md Rahman is committed to advancing aerospace engineering through sustainable innovations while nurturing student growth in higher education. His profile reflects a balance of scholarly excellence, practical engineering acumen, and a deep commitment to teaching.

Professional Profile

Education

Md Atiqur Rahman has pursued a solid academic trajectory in aerospace and mechanical engineering. He is currently enrolled in a Ph.D. program at the University of Bolton, United Kingdom, where his research centers on the development of natural fiber-based composite materials for aerospace applications. This research is both timely and impactful, aligning with global movements toward sustainable aviation technology. Concurrently, he completed a Master of Philosophy (MPhil R2) in Mechanical Engineering at the same institution between July 2022 and November 2024, further sharpening his expertise in advanced material science and structural mechanics. His academic foundation began with a Bachelor of Engineering (Honours) degree in Aerospace Engineering from the University of Hertfordshire, UK, which he completed in 2012. The rigorous curriculum provided him with strong fundamentals in aerodynamics, propulsion systems, and aerospace structures. Throughout his educational journey, Md Rahman has consistently demonstrated academic excellence, integrating theory with hands-on research and software simulation. His academic path underscores a clear focus on applied engineering, sustainability, and innovation. This robust combination of qualifications positions him well for continued leadership in both academia and the aerospace research community, particularly in the development and application of bio-composites and eco-friendly engineering solutions.

Professional Experience

Md Atiqur Rahman has accumulated a diverse and extensive professional background in engineering education, spanning over nine years across the UK and Bangladesh. He currently serves as an Engineering Lecturer at Blackpool & The Fylde College, where he teaches and manages students up to Level 6, designs course materials, assesses learners, and supports curriculum alignment with Lancaster University and employer standards. Previously, he worked at Preston College, teaching aeronautical engineering to students in BTEC Pearson, City & Guilds, and EAL programs. At the University of Bolton, he served as a variable-hours lecturer, contributing to module delivery, exam preparation, and student guidance. In Bangladesh, Rahman held academic and leadership roles at Cambrian International College of Aviation and United College of Aviation, Science & Management. At Cambrian, he also acted as Internal Quality Assurer (IQA), leading BTEC curriculum development and internal training for faculty. Across all institutions, he has shown excellence in teaching, curriculum design, academic support, and student engagement. His ability to adapt his instruction based on learner capabilities has significantly enhanced academic outcomes. Rahman’s teaching is enriched by his research pursuits and practical skills, creating a well-rounded, impactful educational approach that bridges theory, practice, and innovation.

Research Interests

Md Atiqur Rahman’s research interests are centered around sustainable and advanced materials for aerospace applications. His current Ph.D. work at the University of Bolton explores the development and characterization of natural fiber-reinforced polymer composites, with a particular focus on Borassus flabellifer (palmyra palm) husk fibers. He investigates their physical, thermal, mechanical, and dynamic properties to evaluate their viability as lightweight, eco-friendly alternatives to traditional aerospace materials. His broader research interest encompasses aerodynamics, structural mechanics, hypersonic flight technologies, and bio-composite development. By aligning material science with aerospace engineering, Rahman seeks to address the increasing demand for sustainability in aviation. He is particularly drawn to the lifecycle assessment of natural fibers and their transformation through alkali treatments, aiming to enhance their bonding, thermal stability, and mechanical resilience. His work has practical implications for aircraft manufacturing, structural component design, and green engineering practices. He also maintains an interest in the pedagogical methods for engineering education and how research can be translated into real-world classroom application. This multi-dimensional research approach not only contributes to the scientific community but also supports the global push for environmentally responsible aerospace solutions through academic innovation and practical application.

Research Skills

Md Atiqur Rahman possesses a well-rounded and technically proficient set of research skills that support his specialization in material science and aerospace engineering. He is highly skilled in experimental research methodologies, particularly in characterizing bio-composite materials. His hands-on expertise includes the use of advanced lab instruments such as TA Instruments (TGA, DSC, DMA) for thermal analysis, Instron for tensile and flexural testing, and FTIR spectroscopy for chemical characterization. He is also proficient in density and water uptake measurements using pycnometers and ovens, and in the preparation of composite materials through hand lay-up techniques. Rahman complements his experimental skills with strong computational abilities, using tools like Ansys for finite element analysis, SolidWorks and Fusion 360 for design modeling, and Matlab for mathematical modeling and simulations. He applies these tools to optimize material properties and validate experimental outcomes. In addition, he demonstrates strong academic writing and data interpretation skills, having authored several scientific articles. His research workflow also reflects a robust understanding of ethics, literature review, statistical analysis, and research dissemination. These combined skills allow him to carry out comprehensive investigations in aerospace material development and communicate findings effectively to both academic and industry audiences.

Awards and Honors

Md Atiqur Rahman has earned notable recognition for his excellence in both teaching and research throughout his academic career. One of his most distinguished accolades is the Best Lecturer Award (2022) from Cambrian International College of Aviation, a testament to his commitment to student engagement, curriculum innovation, and instructional excellence. His mentorship has also yielded impressive results—most notably when one of his students was selected for the BTEC Award (2021) and received the Bronze Certificate for Engineering Learner of the Year, highlighting his ability to inspire and guide learners toward excellence. In addition to institutional recognition, Rahman is affiliated with several prestigious professional bodies, including the Royal Aeronautical Society (RAeS), The Institution of Structural Engineers (IStructE), and the American Society of Civil Engineers (ASCE). His active involvement in these societies, coupled with his participation in high-profile events like the RAeS Aerodynamics Specialist Conference and Government HE Events, showcases his commitment to lifelong learning and professional development. These honors and memberships not only validate his academic contributions but also underscore his rising influence as an educator and researcher in aerospace engineering, particularly in the field of sustainable materials and advanced manufacturing technologies.

Conclusion

Md Atiqur Rahman stands as a dynamic and impactful figure in the realms of aerospace education and research. His journey—from a dedicated lecturer to an innovative Ph.D. researcher—demonstrates a rare blend of academic rigor, teaching excellence, and research innovation. His work on natural fiber-based composites is not only scientifically significant but also timely, addressing pressing environmental challenges within aerospace engineering. With a growing list of publications, conference presentations, and teaching awards, Rahman has established himself as a promising academic professional committed to excellence. His ability to bridge the gap between research and education ensures that his findings contribute directly to student learning and industry advancement. His diverse teaching experiences across different academic systems further enhance his instructional agility and global outlook. As he continues to expand his research collaborations, aim for high-impact journals, and pursue research leadership roles, his contributions will undoubtedly strengthen the field of sustainable aviation and engineering education. Md Atiqur Rahman is a deserving candidate for recognition such as the Best Researcher Award, with strong potential for continued academic and research leadership. His trajectory reflects both deep expertise and future promise in advancing environmentally responsible technologies within aerospace engineering.

Publications Top Notes

  1. Title: Palmyra Palm Shell (Borassus flabellifer) Properties Part 2: Insights into Its Thermal and Mechanical Properties
    Authors: M.A. Rahman, M. Ndiaye, B. Weclawski, P. Farrell
    Year: 2024
    Citations: 3

  2. Title: Palmyra Palm Shell (Borassus flabellifer) Properties Part 1: Insights into Its Physical and Chemical Properties
    Authors: M.A. Rahman, M. Ndiaye, B. Weclawski
    Year: 2024
    Citations: 3

  3. Title: Effect of Alkali Treatment on Dynamic Mechanical Properties of Borassus Flabellifer Husk Fibre Reinforced Epoxy Composites
    Authors: M.A. Rahman, Mamadou Ndiaye, Bartosz Weclawski, et al.
    Year: 2025
    Citations: 2

  4. Title: Palmyra Palm Shell (Borassus flabellifer) Properties Part 3: Insights into Its Morphological, Chemical and Thermal Properties after Alkali Treatment
    Authors: M.A. Rahman, M. Ndiaye, B. Weclawski, P. Farrell
    Year: 2024
    Citations: 2

  5. Title: Optimizing Borassus Husk Fibre/Epoxy Composites: A Study on Physical, Thermal, Flexural and Dynamic Mechanical Performance
    Authors: M.A. Rahman, M. Ndiaye, B. Weclawski, P. Farrell
    Year: 2025
    Citations: 1

  6. Title: Enhancing Thermal and Dynamic Mechanical Properties of Lignocellulosic Borassus Husk Fibre/Epoxy Composites through Alkali Treatment
    Authors: M.A. Rahman, M. Ndiaye, B. Weclawski, P. Farrell
    Year: 2025

Ashish Reddy Kumbham | Engineering | Best Innovator Award

Mr. Ashish Reddy Kumbham | Engineering | Best Innovator Award

Sr. Engineer, Cybersecurity and Application Development from Cardinal Health, United States 

Ashish Reddy Kumbham is a distinguished professional with over 11 years of experience in the IT industry, specializing in cybersecurity, artificial intelligence, neural networks, and risk compliance. Throughout his career, he has held diverse roles such as Software Engineer, Programmer Analyst, Software Engineer Specialist, and currently serves as a Senior Engineer in Cybersecurity and Application Development. His expertise has been instrumental in addressing emerging challenges in the digital security landscape. Ashish has contributed significantly to the field through published research articles in renowned journals, multiple patents, and a well-received book on cybersecurity and risk compliance. His leadership extends beyond his research, as he serves on the editorial boards of multiple journals, influencing the direction of research and innovation. Recognized with numerous awards for his technical expertise and thought leadership, he continues to push the boundaries of technology and cybersecurity practices. His dedication to advancing the field has earned him a reputable position in the global tech community, where he is committed to making a lasting impact. Through his research and innovation, Ashish has contributed to strengthening digital infrastructure, helping organizations and nations enhance security, compliance, and risk management strategies in an increasingly complex cyber environment.

Professional Profile

Education

Ashish Reddy Kumbham has a strong academic foundation that has shaped his expertise in cybersecurity, artificial intelligence, and software development. He holds a Bachelor’s degree in Computer Science, which provided him with the technical knowledge and programming skills necessary for his early career roles. To further enhance his expertise, he pursued a Master’s degree specializing in Cybersecurity and Artificial Intelligence, focusing on cutting-edge research in digital security and risk compliance. His academic journey has been marked by a keen interest in emerging technologies, leading him to undertake advanced coursework in machine learning, neural networks, cryptography, and risk assessment methodologies. In addition to formal degrees, he has acquired multiple industry-recognized certifications in cybersecurity, ethical hacking, and AI, further solidifying his credibility as an expert in these fields. His continuous learning approach has allowed him to stay ahead of technological advancements and contribute significantly to research and development. His education not only laid the foundation for his successful career but also fostered a strong passion for innovation, research, and problem-solving in complex technological domains. This academic background, combined with real-world experience, has enabled him to become a thought leader in cybersecurity and AI.

Professional Experience

Ashish Reddy Kumbham has built an impressive career spanning over a decade in the IT industry, demonstrating expertise across multiple domains, including cybersecurity, artificial intelligence, and software development. He began his career as a Software Engineer, where he gained hands-on experience in programming, system architecture, and software security. Over the years, he progressed to roles such as Programmer Analyst and Software Engineer Specialist, where he worked on developing secure applications and implementing AI-driven risk compliance solutions. Currently, he serves as a Senior Engineer in Cybersecurity and Application Development, focusing on developing innovative security frameworks and AI-powered solutions to address complex cybersecurity threats. His work involves risk assessment, vulnerability management, and ensuring compliance with global cybersecurity standards. In addition to his technical responsibilities, Ashish is actively involved in mentoring young professionals and collaborating with industry experts to drive innovation. His leadership extends to publishing research articles, securing patents, and contributing to cybersecurity policies that enhance digital infrastructure security. Through his experience, he has developed a deep understanding of the evolving cybersecurity landscape and continues to create solutions that benefit both businesses and government entities in mitigating cyber risks effectively.

Research Interest

Ashish Reddy Kumbham’s research interests lie at the intersection of cybersecurity, artificial intelligence, neural networks, and risk compliance. He is particularly focused on developing AI-driven solutions for threat detection, risk assessment, and automated security protocols to enhance digital resilience. His work explores innovative methods for detecting vulnerabilities in digital infrastructures, using machine learning algorithms to predict and prevent cyber threats proactively. Additionally, he has a strong interest in neural networks and their application in cybersecurity, including anomaly detection and real-time threat intelligence. Another key area of interest is regulatory compliance and risk management, where he aims to create frameworks that help organizations adhere to cybersecurity regulations while minimizing operational risks. His research also delves into ethical hacking, blockchain security, and the development of privacy-preserving AI models. Through his research, Ashish seeks to bridge the gap between theoretical advancements and practical implementations, ensuring that cybersecurity solutions are both innovative and applicable in real-world scenarios. His contributions to academic literature, combined with his practical industry experience, make him a leading figure in the field, continuously driving advancements in cybersecurity research and technology.

Research Skills

Ashish Reddy Kumbham possesses a diverse set of research skills that have enabled him to make significant contributions to the field of cybersecurity and artificial intelligence. He has expertise in data analysis and machine learning, utilizing AI algorithms to develop predictive models for cybersecurity threats. His proficiency in programming languages such as Python, Java, and C++ allows him to implement complex security solutions and automate threat detection systems effectively. Ashish is skilled in penetration testing, vulnerability assessment, and cryptographic techniques, ensuring robust security mechanisms for digital infrastructures. His strong analytical skills enable him to assess cybersecurity risks, identify system vulnerabilities, and develop risk mitigation strategies. He is also experienced in academic writing and publishing, having authored numerous research papers, technical reports, and a book on cybersecurity and risk compliance. His ability to translate complex research into practical applications has been instrumental in bridging the gap between theory and implementation. Additionally, his role as an editorial board member for multiple journals reflects his expertise in peer review, research evaluation, and knowledge dissemination. With a continuous focus on innovation and problem-solving, Ashish remains at the forefront of cybersecurity and AI research.

Awards and Honors

Ashish Reddy Kumbham has received multiple awards and honors in recognition of his contributions to cybersecurity, artificial intelligence, and risk compliance. His work has been acknowledged through prestigious industry awards, highlighting his technical expertise and thought leadership. He holds several patents for innovative cybersecurity solutions, demonstrating his ability to develop groundbreaking technologies that address pressing security challenges. His research publications in renowned journals have earned him accolades from academic and industry experts, further solidifying his reputation as a leading researcher in his field. Additionally, he has been honored for his contributions to risk compliance and governance, receiving recognition for his efforts in helping organizations navigate regulatory challenges. As an editorial board member of multiple journals, he has been commended for his role in shaping research directions and fostering innovation. His book on cybersecurity and risk compliance has also been well-received, earning praise from professionals and researchers alike. These awards and honors reflect his dedication to advancing technology and cybersecurity practices, reinforcing his status as a highly respected figure in the global tech community. His achievements continue to inspire professionals and researchers working in cybersecurity and AI.

Conclusion

Ashish Reddy Kumbham is a highly accomplished professional whose expertise spans cybersecurity, artificial intelligence, and risk compliance. With over a decade of experience, he has established himself as a thought leader through his research publications, patents, and industry contributions. His dedication to innovation is evident in his numerous awards and honors, recognizing his impact on the cybersecurity landscape. Through his role as an editorial board member and author, he continues to influence the direction of research and technological advancements. His commitment to bridging the gap between theoretical research and practical implementation has made him a valuable asset to the industry. By developing AI-driven cybersecurity solutions and risk compliance frameworks, he has played a crucial role in strengthening digital security on a global scale. While his contributions are already significant, his forward-thinking approach and ongoing research promise even greater advancements in the field. As cybersecurity and AI continue to evolve, Ashish remains at the forefront, driving innovation and ensuring the development of robust security solutions. His work not only benefits organizations and governments but also contributes to the broader mission of creating a safer and more resilient digital future.

Rupali Vairagade | Engineering | Excellence in Research Award

Dr. Rupali Vairagade | Engineering | Excellence in Research Award

Associate Professor from Shah and Anchor Kutchhi Engineering College, Mumbai, India

Dr. Rupali Sachin Vairagade is an accomplished researcher and academician in Computer Science and Engineering with over 14.5 years of teaching experience. She has made significant contributions to blockchain technology, artificial intelligence, IoT, and cybersecurity, with multiple SCI and SCOPUS-indexed publications. Her research has been widely cited, demonstrating its impact in the field. Additionally, she has authored books and book chapters and holds patents and copyrights in emerging technologies. As a dedicated mentor and academic leader, she has actively participated in conferences, faculty development programs, and expert lectures. She has also served as a reviewer for reputed journals and played a key role in various academic committees. With a strong technical and research background, Dr. Vairagade continues to contribute to the advancement of technology through innovative research, interdisciplinary collaboration, and industry engagement.

Professional Profile

Education

Dr. Rupali Sachin Vairagade holds a Ph.D. in Computer Science and Engineering from GITAM, Bengaluru (2023). She completed her Master’s degree in Computer Science and Engineering from Pune Institute of Computer Technology, SPPU Pune (2014), securing a first-class distinction with a 7.40 CGPA. Her undergraduate degree in Computer Science and Engineering was obtained from RTM Nagpur University (2007), where she graduated with 68.98% marks. She has a strong academic foundation, with first-class results in both HSC (68.83%) and SSC (78.93%) from the Maharashtra State Board. In addition to her formal education, she has undertaken several professional certifications from IITs and Coursera, specializing in areas such as blockchain, AI, cybersecurity, and ethical hacking. Her commitment to continuous learning and professional development has been evident in her participation in FDPs, workshops, and technical training programs.

Professional Experience

Dr. Rupali Sachin Vairagade has an extensive 14.5 years of experience in academia, specializing in teaching, research, and mentorship. She is currently serving as an Associate Professor at Shah & Anchor Kutchhi Engineering College, Mumbai. Previously, she held positions at G.H. Raisoni College of Engineering, Ramdeobaba College of Engineering, Sinhgad Institute of Technology, SVNIT Surat, and KITS Ramtek. Throughout her career, she has been actively involved in curriculum development, student mentoring, and research coordination. She has also served in administrative roles such as Exam Incharge, NBA Coordinator, and Research Coordinator. Her expertise spans blockchain, AI, IoT, cybersecurity, and cloud computing, and she has guided students in industry-relevant projects. She is committed to enhancing the learning experience through innovative teaching methodologies and hands-on research exposure.

Research Interests

Dr. Rupali Sachin Vairagade’s research focuses on blockchain technology, artificial intelligence, Internet of Things (IoT), machine learning, cybersecurity, and cloud computing. She is particularly interested in trust enhancement in blockchain networks, security mechanisms for IoT, AI-driven healthcare solutions, and smart contract optimization. Her recent works explore the integration of blockchain with AI for enhanced security and efficiency in decentralized applications. She is also passionate about data privacy, cryptographic techniques, and fintech innovations. Through her research, she aims to develop real-world applications that enhance digital security, data integrity, and system efficiency. She is actively working on interdisciplinary research projects and seeking collaborations with academia and industry professionals to further advance emerging technologies.

Research Skills

Dr. Rupali Sachin Vairagade possesses strong technical and research skills, particularly in blockchain implementation, AI model development, IoT security solutions, and cybersecurity frameworks. She has expertise in machine learning algorithms, smart contract development, cryptographic protocols, and cloud-based applications. Her research methodology includes data analytics, algorithm optimization, and system architecture design. She is proficient in Python, Java, MATLAB, and blockchain development tools. Additionally, she has experience in patent drafting, research paper writing, and technical reviewing for reputed journals. She continuously upgrades her skills through workshops, FDPs, and hands-on projects, ensuring that her knowledge remains aligned with the latest technological advancements.

Awards and Honors

Dr. Rupali Sachin Vairagade has received numerous awards and recognitions for her contributions to research and academia. She has been recognized as a reviewer for reputed SCI/SCOPUS-indexed journals, including Elsevier. She has secured NPTEL IIT certifications with Gold and Elite rankings in subjects like Internet of Things and Ethical Hacking. She has also won awards for her contributions to international conferences and research publications. Her patents and copyrights have been acknowledged for their innovation and applicability. Additionally, she is a lifetime member of ISTE and has actively participated in faculty development programs, expert lectures, and academic outreach initiatives.

Conclusion

Dr. Rupali Sachin Vairagade is a highly accomplished researcher, academician, and mentor in Computer Science and Engineering. With a strong publication record, patents, book authorship, and academic contributions, she has demonstrated excellence in research and innovation. Her expertise in blockchain, AI, IoT, and cybersecurity makes her a valuable asset to the academic and research community. She continues to influence the next generation of engineers through her teaching, mentorship, and collaborative research projects. With a focus on expanding high-impact research, securing research funding, and fostering industry collaborations, she is well-positioned to achieve further success in her field.

Publications Top Notes

  1. Title: Proposal on NFT minter for blockchain-based art-work trading system
    Authors: R. Vairagade, L. Bitla, H.H. Judge, S.D. Dharpude, S.S. Kekatpure
    Year: 2022
    Citations: 39

  2. Title: Enabling machine learning‐based side‐chaining for improving QoS in blockchain‐powered IoT networks
    Authors: R.S. Vairagade, B. S.H.
    Year: 2022
    Citations: 20

  3. Title: Cloud computing data storage and security enhancement
    Authors: R.S. Vairagade, N.A. Vairagade
    Year: 2012
    Citations: 15

  4. Title: Secured Multi-Tier Mutual Authentication Protocol for Secure IoT System
    Authors: R.S. Vairagade, S.H. Brahmananda
    Year: 2020
    Citations: 14

  5. Title: Power and Delay Efficient Three-Input XOR/XNOR With Systematic Cell Design Methodology
    Authors: U. Sadani, L. Bitla, R. Vairagade, V. Ghule
    Year: 2022
    Citations: 9

  6. Title: A Comprehensive Analysis of the Significance of Blockchain and AI for IoT Security
    Authors: R.S. Vairagade, S.H. Brahmananda, V.R.S.
    Year: 2020
    Citations: 6

  7. Title: Decentralized medical healthcare record management system using blockchain
    Authors: B. Bhandari, R. Vairagade, H. Trivedi, H. Thakre, G. Indurkar, A. Yadav
    Year: 2023
    Citations: 5

  8. Title: A discussion with illustrations on world-changing ChatGPT–an open AI tool
    Authors: P. Dubey, S. Ghode, P. Sambhare, R. Vairagade
    Year: 2023
    Citations: 4

  9. Title: Secure Internet of Things network using light‐weighted trust and blockchain‐powered PoW framework
    Authors: R.S. Vairagade, B. Savadatti Hanumantha
    Year: 2022
    Citations: 4

  10. Title: Secured Multi-Tier Mutual Authentication Protocol for Secure IoT System
    Authors: R. Vairagade
    Year: 2020
    Citations: 3

  11. Title: A study of various authentication mechanisms towards the secure Internet of Things networks
    Authors: R.S. Vairagade, S.H. Brahmananda
    Year: 2020
    Citations: 2

  12. Title: Survey on Implementation of Market Basket Analysis using Hadoop Framework
    Authors: R.S. Vairagade, T. Shah, T. Chavan, R. Bhatt
    Year: 2016
    Citations: 2

  13. Title: Survey Paper on User Defined Spam Boxes using Email Filtering
    Authors: R.S. Vairagade, N. Jaunjal, V. Joshi, A. Patil, S. Chavan
    Year: 2017
    Citations: 1

  14. Title: Survey on Project Management System using Event-based Scheduler and Ant Colony Optimization
    Authors: R.S. Vairagade, R. Arora, V. Gaikwad, D. Singh, P. Jadhav
    Year: 2016
    Citations: 1