Subhash Chandra Panja | Mechanical Engineering | Best Faculty Award

Prof. Subhash Chandra Panja | Mechanical Engineering | Best Faculty Award

Professor at Jadavpur University, India

Dr. Subhash Chandra Panja is a renowned academic and researcher in the field of Mechanical Engineering, currently serving as a Professor in the Department of Mechanical Engineering at Jadavpur University, Kolkata, India. With an extensive career spanning over two decades, Dr. Panja has made significant contributions to the domains of Reliability and Quality Engineering, Industrial Engineering, Operations Management, Quantitative Techniques, and Machine Learning. He has been actively involved in academic research and consultancy, with a focus on practical applications in industries such as railway signaling, high-speed machining, and solar phenomena. Throughout his career, Dr. Panja has supervised numerous PhD and M.Tech students and has been the principal investigator in various research projects funded by prestigious organizations. His work is highly respected for its innovation and impact on both academic and industrial practices.

Professional Profile

Education

Dr. Panja completed his Bachelor of Engineering (B.E.) in Mechanical Engineering from Jadavpur University, Kolkata, in 1997. He pursued a Master of Technology (M.Tech) in Reliability and Quality Engineering from the Indian Institute of Technology (IIT) Kharagpur, India, in 1999. Following this, he earned his Doctor of Philosophy (Ph.D.) in Engineering Science from the Department of Industrial Engineering and Management at IIT Kharagpur in 2008. His education has laid a solid foundation for his subsequent contributions to mechanical and industrial engineering research.

Professional Experience

Dr. Subhash Chandra Panja’s professional career spans various teaching and research roles. He has served as a Lecturer at multiple institutions, including JIS College of Engineering, Asansol Engineering College, and the Institute of Technology and Marine Engineering. He began his tenure at Jadavpur University in 2007, where he has steadily advanced through the ranks from Lecturer to Associate Professor and, eventually, Professor in 2015. His work has significantly shaped the Department of Mechanical Engineering, contributing to its growth in both teaching and research excellence. Dr. Panja’s extensive experience in academia, paired with his consultancy work, reflects his leadership and commitment to the advancement of engineering education and practice.

Research Interests

Dr. Panja’s research interests lie at the intersection of Reliability and Quality Engineering, Industrial Engineering, and Operations Management. He focuses on the optimization of industrial processes, including the analysis of machine tool reliability, railway signaling systems, and solar phenomena. Dr. Panja is also deeply engaged in applying machine learning techniques to improve the efficiency and productivity of manufacturing processes, particularly in high-speed machining and 3D printing. His interdisciplinary approach blends traditional engineering with modern computational techniques, making his work highly relevant to both academia and industry.

Research Skills

Dr. Panja possesses a diverse set of research skills, including expertise in quantitative analysis, reliability modeling, and optimization techniques. He is proficient in using advanced software tools for data analysis, machine learning, and simulation, which he applies to solve complex engineering problems. His research also involves experimental work, particularly in the areas of high-speed machining, material behavior analysis, and industrial process optimization. Dr. Panja’s ability to integrate theory with practical applications has made him a valuable researcher in both academic and industrial domains.

Awards and Honors

Throughout his career, Dr. Subhash Chandra Panja has received several recognitions for his contributions to research and academia. Notably, he has been awarded research funding from the Department of Science and Technology and Biotechnology, West Bengal Government, for his work on mechanical behavior analysis of 3D printed materials. Additionally, he has been involved in high-impact consultancy projects, including a project to modernize casting shops for Braithwaite Co. and Ltd. His applied research in areas like reliability analysis and optimization of industrial processes has garnered respect within the academic community and industry. Furthermore, Dr. Panja’s dedication to student mentorship has contributed to the success of numerous PhD and M.Tech scholars under his supervision.

Conclusion

Dr. Subhash Chandra Panja is highly deserving of the Best Faculty Award for Research, thanks to his long-standing contributions to Mechanical Engineering and Industrial Engineering. His leadership in research projects, extensive mentorship, and impactful consultancy work exemplify the qualities of an exceptional academic. By expanding his international collaborations and publishing in higher-impact journals, Dr. Panja can elevate his global standing and continue to contribute significantly to both academia and industry.

Publication Top Notes

  1. Reliability analysis of cutting tools using transformed inverse Gaussian process-based wear modelling considering parameter dependence
    • Authors: Das, M., Naikan, V.N.A., Panja, S.C.
    • Year: 2024
  2. Analysis of mesostructural characteristics and their influence on tensile strength of ABS specimens manufactured through fused deposition modeling
    • Authors: Sahoo, S., Panja, S.C., Sarkar, D., Saha, R., Mandal, B.B.
    • Year: 2024
  3. A review of cutting tool life prediction through flank wear monitoring
    • Authors: Das, M., Naikan, V.N.A., Panja, S.C.
    • Year: 2024
  4. Reliability analysis of PVD-coated carbide tools during high-speed machining of Inconel 800
    • Authors: Das, M., Naikan, V.N.A., Panja, S.C.
    • Year: 2024
    • Citations: 3
  5. Signaling Relay Contact Failure Analysis with 3D Profilometry, SEM and EDS
    • Authors: Sau, S., Kumar, S., Patra, S.N., Panja, S.C.
    • Year: 2024
  6. Development of high specific strength acrylonitrile styrene acrylate (ASA) structure using fused filament fabrication
    • Authors: Rakshit, R., Kalvettukaran, P., Acharyya, S.K., Panja, S.C., Misra, D.
    • Year: 2023
    • Citations: 1
  7. An Improved Prediction of Solar Cycle 25 Using Deep Learning Based Neural Network
    • Authors: Prasad, A., Roy, S., Sarkar, A., Panja, S.C., Patra, S.N.
    • Year: 2023
    • Citations: 7
  8. Analysis of Axle Counter Performance: A Case Study of Kolkata Metro Railway
    • Authors: Sau, S., Kumar, S., Sarkar, D., Panja, S.C., Patra, S.N.
    • Year: 2023
  9. Study of Distribution and Asymmetry in Soft X-ray Flares over Solar Cycles 21–24
    • Authors: Amrita Prasad, Roy, S., Panja, S.C., Patra, S.N.
    • Year: 2022
    • Citations: 1
  10. An Experimental Investigation of Surface Roughness and Print Duration on FDM Printed Polylactic Acid (PLA) Parts
  • Authors: Rakshit, R., Ghosal, A., Paramasivan, K., Misra, D., Panja, S.C.
  • Year: 2022
  • Citations: 2

 

Wesam Rababa | Engineering | Best Researcher Award

Mr. Wesam Rababa | Engineering | Best Researcher Award

Graduated Student at King Fahd University of Petroleum and Minerals, Saudi Arabia 

Wesam Rababa is a dedicated architectural professional specializing in sustainable design and green building practices. With a strong focus on environmental sustainability, Wesam integrates eco-friendly principles into architectural designs, creating structures that are both efficient and comfortable. His expertise spans project development, energy efficiency, CO₂ emissions, and passive design, all of which are central to advancing green architecture. Wesam’s professional experiences are diverse, covering roles in teaching, interior design, architectural engineering, and project management across Jordan and Saudi Arabia. Recognized for his academic excellence, he has contributed to sustainability-focused research and holds multiple certifications in sustainable assessment, energy auditing, and environmental product declarations. As a committed member of the architectural community, Wesam is also a part of the Jordan Engineers Association and has led the Jordanian community at King Fahd University. With a solid academic foundation and a passion for sustainable design, Wesam Rababa is actively shaping the future of architecture in an environmentally conscious direction.

Education

Wesam Rababa has a strong academic background in architecture with a focus on sustainability. He completed his Master’s degree in Architecture Science from King Fahd University of Petroleum and Minerals in Saudi Arabia in 2023, supported by a fully funded scholarship. His Master’s studies equipped him with advanced knowledge in sustainable design practices, allowing him to address environmental challenges in architecture. Before this, Wesam earned his Bachelor’s degree in Architecture Engineering from Yarmouk University in Jordan in 2020, where he graduated with First Honor and a GPA of 3.844/4. His undergraduate studies emphasized sustainability and green buildings, laying a solid foundation for his career in sustainable architecture. These achievements reflect his academic dedication and commitment to environmental sustainability, supported by his excellent performance and academic honors. Wesam’s educational journey highlights his dedication to learning and the critical role that sustainable design principles play in modern architecture.

Professional Experience

Wesam Rababa has held diverse roles in architectural and educational settings, demonstrating his commitment to sustainable design and project management. His recent role as a Planning Engineer at PHASE in Khobar, Saudi Arabia, involves overseeing project timelines, coordinating design and construction teams, and managing project risks and budgets. Wesam has also served as an Architect at Minimalist for Design in Jordan, where he developed design concepts and detailed 3D models, focusing on functionality and sustainability. In academia, he contributed as a Teaching Assistant at King Fahd University of Petroleum and Minerals, preparing course materials and teaching courses like Architectural Design Studio and Digital Communication. His teaching extended to Yarmouk University and the TAFE Arabia training institute, where he guided students in AutoCAD and engineering drawing. His professional journey showcases a blend of practical architectural work and academic contributions, highlighting his versatile skills in design, project planning, and education.

Research Interests

Wesam Rababa’s research interests center around sustainable architecture and energy efficiency. He is deeply invested in exploring ways to reduce CO₂ emissions and enhance energy efficiency within buildings. His work focuses on passive design principles, which aim to naturally regulate building temperatures through architectural design elements, reducing reliance on mechanical systems. Wesam is also interested in green buildings and facade retrofit strategies, especially in hot climates, where energy efficiency can make a significant environmental impact. His interest in sustainable assessment rating systems and life cycle assessment underscores his commitment to designing environmentally responsible buildings. Wesam’s research aligns with the pressing need for sustainable solutions in the built environment, addressing both ecological and functional aspects of architecture. By focusing on innovative strategies that prioritize sustainability, he is actively contributing to the advancement of environmentally friendly architectural practices.

Research Skills

Wesam Rababa possesses a broad set of research skills essential for advancing sustainable architectural practices. His technical proficiency in sustainability programs such as IES and Envi_Met supports his research in energy-efficient design and environmental analysis. Wesam is skilled in using advanced architectural software, including Revit, AutoCAD, and SketchUp, which are crucial for developing detailed and accurate design models. Additionally, he is proficient in visualization tools like Lumion, Illustrator, and Photoshop, enabling him to create compelling presentations of his sustainable designs. His knowledge of the Mostadam AP sustainability rating system and certifications in life cycle assessment (LCA) and energy auditing further complement his skill set, allowing him to conduct comprehensive sustainability evaluations. Wesam’s expertise in design, energy efficiency, and sustainable assessment tools highlights his capacity to conduct impactful research in green architecture, making him a valuable contributor to the field.

Awards and Honors

Wesam Rababa has received numerous accolades in recognition of his academic and professional achievements. His commitment to excellence in architecture was honored with First Honor recognition in his Bachelor’s degree in Architecture Engineering at Yarmouk University. He was awarded a fully funded MSc scholarship from King Fahd University of Petroleum and Minerals in Saudi Arabia, reflecting his academic potential and dedication to sustainability. Wesam also received a scholarship from the China Scholarship Council, emphasizing his academic standing. In competitions, he achieved top ranks, including fifth place in the Smart Campus Competition at King Fahd University in 2023. His project on “Lightweight Concrete Block” advanced to the final stage of the Shamal Star Competition, underscoring his innovative approach to sustainable construction. These awards and honors highlight Wesam’s dedication, innovation, and commitment to sustainable design, establishing him as a promising architect and researcher in his field.

Conclusion

Wesam Rababa demonstrates a strong candidacy for a Best Researcher Award, especially in fields centered on sustainability and environmentally conscious architectural design. With a robust foundation in sustainable practices, academic excellence, and contributions to sustainability research, they embody the qualities valued in a researcher committed to ecological impact. If they continue to expand their research outputs and engage in collaborative projects, Wesam’s contributions could further their influence and strengthen their case for recognition in sustainable architectural research awards.

Publication Top Notes

  1. Façade Retrofit Strategies for Energy Efficiency Improvement Considering the Hot Climatic Conditions of Saudi Arabia
    Journal: Applied Sciences
    Publication Date: November 1, 2024
    Author(s): Wesam Rababa

 

 

SaiTeja Chopparapu | Engineering | Best Researcher Award

SaiTeja Chopparapu | Engineering | Best Researcher Award

Assistant Professor at St. PETERS Engineering College, India.

Saiteja Chopparapu is an emerging researcher and educator with expertise in electronics and communication engineering. Driven by a passion for innovation, he has completed a PhD (submitted in October 2023) and holds an MTech in Sensor System Technology. As an Assistant Professor at St. Peters Engineering College, he instructs students in Digital Electronics, IoT Architecture, and Image Processing, blending theoretical and practical knowledge. His academic background and professional experience demonstrate a keen ability to conduct research, mentor students, and stay abreast of technological advancements. Saiteja’s skills extend to managing labs and guiding students in hands-on learning, emphasizing his dedication to fostering a supportive, inclusive learning environment. His technical proficiencies, internships, and continuous skill development through various FDPs highlight his commitment to growth in his field. Saiteja’s ultimate goal is to contribute significantly to advancements in electronics and sensor technologies through research, teaching, and collaboration.

Profile

Scopus

Education

Saiteja Chopparapu has a solid academic foundation, culminating in a PhD in Electronics and Communication Engineering from GITAM University, submitted in October 2023. He also holds an MTech in Sensor System Technology from Vellore Institute of Technology (VIT), where he achieved an impressive 8.49 CGPA in 2019. His undergraduate degree is in Electronics and Communication Engineering from Dhanekula Institute of Engineering and Technology, affiliated with JNTUK, where he earned a respectable 65.33% in 2017. Prior to university, he excelled in Intermediate MPC at Sri Chaitanya Junior College with an 88.4% and achieved an 84.67% in SSC at Ratnam High School. This progressive academic trajectory showcases his commitment to mastering electronics and communication, establishing a strong basis for both his research and teaching pursuits.

Professional Experience

Saiteja has recently embarked on an academic career as an Assistant Professor at St. Peters Engineering College, affiliated with JNTUH. Since February 2024, he has taught courses such as Digital Electronics, IoT Architecture, and Image Processing, integrating his research and industry knowledge into the classroom. In addition to his teaching duties, he serves as a lab-in-charge for first-year B.Tech students, where he provides foundational instruction in C programming and supports students in developing core problem-solving skills. His experience includes hands-on internships, including a 9-month tenure at RCI, DRDO, where he contributed to GUI development for capacitive-based sensors, and a 30-day internship at Effectronics Pvt. Limited focusing on equipment testing and fault elimination in signaling systems. These experiences enhance his teaching and research capabilities, showcasing a well-rounded skill set in academia and applied engineering.

Research Interests

Saiteja’s research interests lie at the intersection of electronics, sensor technologies, and IoT systems. With a background in Sensor System Technology and Electronics and Communication Engineering, he is especially passionate about advancing sensor-based innovations that support IoT and automated systems. He is enthusiastic about exploring new trends and technological advancements in electronics that can improve both industrial applications and day-to-day devices. Saiteja’s current focus includes the development of capacitive-based sensors, a technology he worked on during his internship with RCI, DRDO. His commitment to staying informed on cutting-edge methodologies is further evidenced by his participation in various IEEE conferences and workshops, where he has engaged with topics such as IoT, microelectronics, and PCB design. Saiteja aims to drive transformative research in electronics, contributing to the evolution of intelligent systems and sustainable technology solutions.

Research Skills

Saiteja possesses a strong set of research skills, evidenced by his ability to lead projects and secure funding. His technical skills span software and programming languages, including MATLAB, Simulink, Python, and Embedded C, which enable him to tackle complex problems in sensor technology and electronics. His proficiency in developing GUIs, gained during his time at RCI, DRDO, showcases his capability in integrating software with hardware applications, a valuable skill for sensor-based IoT research. Saiteja is an effective communicator, both in written and verbal forms, allowing him to present his research clearly and engage with a wide array of audiences. His dedication to professional development is evident from his completion of over 40 FDP programs on diverse topics, indicating a proactive approach to skill enhancement and staying updated on evolving technologies in his field.

Awards and Honors

Throughout his academic journey, Saiteja has earned several accolades that underscore his dedication to excellence. He received a Certificate of Merit for securing second place in the DIET Techno Fest’s technical exhibition in 2015, where he showcased his technical acumen among his peers. He has also demonstrated leadership by organizing events and exhibitions during his school and university days. In addition to his technical achievements, Saiteja was the runner-up in a group dance performance at DIET’s Annual Day in 2016-17, reflecting his well-rounded abilities and active involvement in extracurricular activities. His participation in numerous workshops and conferences, including IEEE and IoT workshops, further illustrates his commitment to continuous learning and professional development. Saiteja’s achievements highlight both his academic prowess and his willingness to engage in collaborative and diverse learning experiences.

Conclusion:

Saiteja Chopparapu demonstrates strong academic qualifications, relevant technical skills, and a commitment to teaching and research, which are aligned with the requirements for the Best Researcher Award. However, enhancing their profile through more extensive research publications, impactful awards, and community-oriented projects would strengthen their competitiveness for this award. Based on their current achievements, they are a promising candidate, though further research contributions would solidify their fit for the award.

Publications Top Notes

“Enhancing Visual Perception in Real-Time: A Deep Reinforcement Learning Approach to Image Quality Improvement”

Authors: Chopparapu, S., Chopparapu, G., Vasagiri, D.

Year: 2024

Journal: Engineering, Technology and Applied Science Research

Volume: 14, Issue: 3, Pages: 14725–14731

Citations: 0

“A Hybrid Facial Features Extraction-Based Classification Framework for Typhlotic People”

Authors: Chopparapu, S., Joseph, B.S.

Year: 2024

Journal: Bulletin of Electrical Engineering and Informatics

Volume: 13, Issue: 1, Pages: 338–349

Citations: 2

“An Efficient Multi-Modal Facial Gesture-Based Ensemble Classification and Reaction to Sound Framework for Large Video Sequences”

Authors: Chopparapu, S., Seventline, J.B.

Year: 2023

Journal: Engineering, Technology and Applied Science Research

Volume: 13, Issue: 4, Pages: 11263–11270

Citations: 4

“A Hybrid Learning Framework for Multi-Modal Facial Prediction and Recognition Using Improvised Non-Linear SVM Classifier”

Authors: Saiteja, C., Seventline, J.B.

Year: 2023

Journal: AIP Advances

Volume: 13, Issue: 2, Article: 025316

Citations: 8

“GUI for Object Detection Using Voila Method in MATLAB”

Authors: Chopparapu, S.T., Beatrice Seventline, J.

Year: 2020

Journal: International Journal of Electrical Engineering and Technology

Volume: 11, Issue: 4, Pages: 169–174

Citations: 2

NIDAL EL BIYARI | Engineering | Women Researcher Award

Dr. NIDAL EL BIYARI | Engineering | Women Researcher Award

PhD student, EUROMED UNIVERSITY OF FEZ, MOROCCO

Dr. Nidal El-Biyari, a PhD student in Mechatronics Engineering at the Euromed University of Fez, is a strong candidate for the Women Best Researcher Award. Her thesis on designing an opto-fluidic biosensor for breast cancer diagnosis demonstrates her commitment to addressing critical healthcare challenges. Dr. El-Biyari has published significant research in top-tier journals, showcasing her innovative approach to biosensing technologies. With practical experience gained from internships and engineering roles, she has developed strong skills in CAD, robotics, and project management. Her teaching experience at the Euromed Polytechnic School reflects her ability to mentor and inspire future engineers. Additionally, her active involvement in organizing academic events and contributions to the UEMF Student Times highlight her dedication to fostering a supportive research community. Overall, Dr. El-Biyari’s impressive achievements and unwavering commitment to advancing engineering make her a deserving recipient of the Women Best Researcher Award.

Profile

Orcid

Education 

Dr. Nidal El-Biyari is currently a PhD student specializing in Mechatronics Engineering at the Euromed University of Fez, where she is focused on developing an opto-fluidic biosensor for breast cancer diagnosis and monitoring. She has a solid educational foundation, having earned her engineering degree in Mechatronics from the Faculty of Science and Technology of Fes, Morocco. Throughout her academic career, Dr. El-Biyari has demonstrated a strong commitment to her studies, completing multiple years in the State Engineer cycle in Mechatronics. She also holds a degree in Mathematics, Computer Science, and Physics, further enhancing her technical proficiency. Her academic journey has been marked by excellence, evident in her achievements and contributions to research in advanced biosensing technologies. Dr. El-Biyari’s diverse educational background and ongoing research efforts position her as a promising leader in her field, contributing significantly to the advancement of medical technologies.

Professional Experiences

Dr. Nidal El-Biyari has cultivated a robust professional foundation in engineering, primarily within the field of mechatronics. She served as an engineer at Floquet Monopole Industrie, where she focused on improving CAD designs and enhancing the functionality of industrial machinery. Her role as an engineer assistant intern at Lesaffre Fes involved working on the HDA 75 separator machine, further sharpening her practical engineering skills. Additionally, her internship at CBGN allowed her to gain insights into the operational principles of various machines in a production environment. Dr. El-Biyari has also demonstrated her commitment to education through her teaching experience at the Euromed Polytechnic School, where she supervised and mentored students in subjects like geometric optics and fluid mechanics. This diverse array of experiences highlights her technical proficiency and dedication to both research and mentoring, making her a valuable asset in any engineering or academic setting.

Research Interests

Dr. Nidal El-Biyari’s research interests are deeply rooted in the development of cutting-edge technologies for healthcare applications, with a focus on biosensing and microfluidic systems. Her primary area of research revolves around the design, modeling, and production of opto-fluidic biosensors, specifically aimed at improving the early diagnosis and monitoring of breast cancer. Additionally, Dr. El-Biyari is passionate about integrating 3D printing technologies with biosensor design, advancing the field of additive manufacturing for biomedical applications. Her work also explores surface plasmon resonance (SPR) biosensors, enhancing their performance for highly sensitive diagnostic tools. Beyond healthcare, she is interested in the intersection of robotics, optics, and mechatronics, particularly in creating automated systems that optimize precision and efficiency. Through her research, Dr. El-Biyari aims to develop innovative solutions that address critical challenges in medical diagnostics, demonstrating a commitment to improving both healthcare technologies and patient outcomes.

 

Research Skills

Dr. Nidal El-Biyari possesses a diverse array of research skills that make her a standout candidate for the Women Best Researcher Award. Her expertise in designing and modeling opto-fluidic biosensors showcases her proficiency in advanced engineering concepts, particularly in biosensing technologies. With a strong foundation in 3D printing, she applies additive manufacturing techniques to enhance the quality of microfluidic chip fabrication. Dr. El-Biyari is adept in utilizing software such as CATIA V5 and SolidWorks for computer-aided design, as well as MATLAB for data analysis and simulations. Her familiarity with surface plasmon resonance (SPR) biosensing reflects her capability in optical engineering, allowing her to explore innovative sensing solutions for medical diagnostics. Moreover, her participation in international conferences and her published works demonstrate her ability to effectively communicate research findings and collaborate with peers in the scientific community. Overall, Dr. El-Biyari’s comprehensive research skills contribute significantly to her ongoing success and impact in her field.

Awards and Honors

Dr. Nidal El-Biyari has received significant recognition for her groundbreaking research in mechatronics and biosensor technology. Her work on developing an opto-fluidic biosensor for breast cancer detection has been presented at renowned international conferences, including the International Conference on Advanced Functional Materials for Optics and the Fifth International Conference on Materials and Environmental Science. She has co-authored several high-impact publications, including in journals like Optical and Quantum Electronics and Sensors International. Dr. El-Biyari was also a finalist in the ENJOYEERING JUNIOR competition, where she showcased her expertise in robotics and engineering design. Her leadership and innovation were further acknowledged through her role in organizing the USMBA FSTF Enterprises Forum and contributing to the editorial committee of the UEMF Student Times. These accolades reflect her dedication to advancing scientific knowledge and her contributions to both research and the academic community.

Conclusion

Overall, Dr. Nidal El-Biyari is an exemplary candidate for the Women Best Researcher Award. Her academic achievements, innovative research contributions, extensive professional experience, and active community involvement collectively demonstrate her exceptional capabilities and commitment to advancing the field of mechatronics engineering. Recognizing her efforts with this award would not only honor her achievements but also inspire future generations of women in research.

Publication Top Notes

Title: Plasmon Induced Transparency and Waveguide Mode Based Optical Biosensor for Self-Referencing Sensing
Journal: Sensors International
Year: 2024
DOI: 10.1016/j.sintl.2024.100283
Contributors: Nidal El Biyari, Ghita Zaz, Latifa Fakri Bouchet, Mohssin Zekriti
Citations: To be determined (as the article was published in 2024, citation count may not be available yet).

Jiakun Zhu | | Engineering | Best Researcher Award

Dr. Jiakun Zhu | Engineering | Best Researcher Award

Teaching Assistant,  College of Post and Telecommunication of WIT,  China

Jiakun Zhu is a promising researcher in the field of Civil Engineering with a strong academic background, holding both a Bachelor’s and Ph.D. from Huazhong University of Science and Technology. His research focuses on materials science, nanotechnology, and engineering applications, reflected in his diverse publications in prestigious journals like ACS Applied Materials & Interfaces and Analytical Chemistry. Zhu has contributed to cutting-edge research on dielectric elastomers, hydrogels, and lithium-ion batteries, showcasing his expertise across interdisciplinary fields. His work has been widely cited, and he has taken a leadership role as a corresponding author on a 2024 publication, further establishing his prominence in the research community. Currently employed at the College of Post and Telecommunication of WIT, Zhu continues to make significant strides in engineering research. His growing list of accomplishments positions him as a strong candidate for the Research for Best Researcher Award, with the potential for continued impact in his field.

Profile

Education 

Jiakun Zhu has an impressive academic background rooted in Civil Engineering, having completed both his Bachelor’s and Ph.D. degrees at Huazhong University of Science and Technology (HUST), one of the leading institutions in China. He earned his Bachelor’s degree in 2015, laying a strong foundation in engineering principles. Motivated to pursue advanced research, Zhu continued his academic journey at HUST, where he earned his Ph.D. in 2021. His doctoral studies enabled him to specialize in complex areas such as dielectric elastomers and nanotechnology, equipping him with the skills necessary to contribute to groundbreaking research in the field of civil engineering. HUST’s rigorous academic environment and Zhu’s research focus on cutting-edge materials science have significantly shaped his expertise. This robust educational background, combined with his research experience, places him in an excellent position to excel as a leading researcher in civil engineering and related interdisciplinary fields.

Professional Experience

Jiakun Zhu has established himself as a dedicated researcher in Civil Engineering, with a focus on the mechanical behavior of advanced materials. Currently serving at the College of Post and Telecommunication of WIT, Zhu’s professional experience is marked by significant contributions to materials science, particularly in dielectric elastomers, hydrogels, and nanotechnology. His work on in-situ transmission electron microscopy has advanced understanding of lithium-ion battery materials, while his expertise in polymer chain entanglements and finite extensibility has influenced the development of novel hydrogels. As a corresponding author, Zhu has demonstrated leadership in collaborative research, contributing to journals with high impact factors. His interdisciplinary approach, spanning civil engineering and applied materials science, reflects a professional career committed to innovation and solving complex engineering challenges. Zhu’s ability to bridge theoretical research with practical applications marks him as an asset to the engineering and materials science community.

Research Interests

Jiakun Zhu’s research interests lie at the intersection of civil engineering, materials science, and nanotechnology. His work focuses on the mechanical behavior and stability of advanced materials, particularly dielectric elastomers and hydrogels, which are crucial for developing flexible and durable engineering structures. Zhu is also deeply invested in understanding the effects of polymer chain entanglements and finite extensibility on the mechanical performance of these materials, which has significant implications for their application in smart materials and soft robotics. Additionally, his research extends to the field of energy storage, where he investigates the chemical and structural evolution of nanomaterials in lithium-ion batteries. Zhu’s interdisciplinary approach allows him to address both theoretical challenges and practical applications, contributing to advancements in materials engineering, energy storage, and sustainable infrastructure. His ongoing work aims to explore the potential of engineered nanocomposites in marine environments, further broadening the scope of his research interests.

Research Skills

Jiakun Zhu demonstrates exceptional research skills through his ability to address complex problems in civil engineering and materials science. His expertise spans various domains, including the mechanical behavior of hydrogels, dielectric elastomers, and lithium-ion batteries, showcasing his versatility. Zhu’s research on the influence of polymer chain entanglements and finite extensibility on mechanical stability illustrates his capability to merge theoretical analysis with experimental techniques. Additionally, his proficiency in using advanced tools, such as In-Situ Transmission Electron Microscopy, highlights his technical acumen. His role as a corresponding author reflects strong leadership and collaboration in multi-disciplinary research. Moreover, Zhu’s work has been published in prestigious journals with high impact factors, such as ACS Applied Materials & Interfaces and Analytical Chemistry, further underscoring the significance and rigor of his contributions. His innovative approach, combined with technical expertise, positions him as a highly skilled researcher making meaningful advancements in his field.

Awards and Honors

Jiakun Zhu has been recognized for his outstanding contributions to civil engineering and materials science. His research achievements have earned him several prestigious awards and honors, highlighting his commitment to academic excellence and innovation. He was honored with the “Outstanding Ph.D. Dissertation Award” from Huazhong University of Science and Technology in 2021, acknowledging the groundbreaking nature of his doctoral research on dielectric elastomers and hydrogels. Zhu’s work has also been recognized internationally, as evidenced by his publications in top-tier journals like ACS Applied Materials & Interfaces and Analytical Chemistry, both of which have significantly advanced the understanding of nanotechnology and energy storage materials. Additionally, Zhu has been invited to present his findings at numerous international conferences, further solidifying his reputation in the research community. His leadership as a corresponding author in recent publications showcases his growing influence in the field. These accolades underscore his potential for continued success and his suitability for further recognition in the form of research awards.

Conclusion 

Jiakun Zhu’s educational pedigree, professional field, and an impressive list of high-impact publications make him a strong candidate for the Research for Best Researcher Award. His diverse research contributions in materials science, civil engineering, and nanotechnology position him as an innovative scholar with the potential to make significant future advances. The recognition Zhu has garnered thus far through his publications suggests he is both an established and emerging leader in his field.

Publication Top Notes

  1. “Effects of entanglements and finite extensibility of polymer chains on the mechanical behavior of hydrogels”
    • Authors: Jun Luo, Jiakun Zhu
    • Year: 2018
    • Journal: Acta Mechanica
    • DOI: 10.1007/S00707-017-2060-8
    • Citations: Check Web of Science for updated citation count
    • WOSUID: WOS:000430184900015
  2. “Snap-through instability analysis of dielectric elastomers with consideration of chain entanglements”
    • Authors: Zhongmin Xiao, Jun Luo, Jiakun Zhu
    • Year: 2018
    • Journal: Materials Research Express
    • DOI: 10.1088/2053-1591/AAC6FE
    • Citations: Check Web of Science for updated citation count
    • WOSUID: WOS:000434485600004
  3. “Bending gel beam with consideration of entanglements and finite extensibility”
    • Authors: Jiakun Zhu
    • Year: 2018
    • Journal: EPL (Europhysics Letters)
    • Citations: Check Web of Science for updated citation count
  4. “Effect of entanglements on the electromechanical stability of dielectric elastomers”
    • Authors: Jun Luo, Jiakun Zhu
    • Year: 2017
    • Journal: EPL (Europhysics Letters)
    • DOI: 10.1209/0295-5075/119/26003
    • Citations: Check Web of Science for updated citation count
    • WOSUID: WOS:000414715000014
  5. “Ionic Conduction in Composite Polymer Electrolytes: Case of PEO

    Composites”

    • Authors: Jiakun Zhu
    • Year: (No year provided; more information required)
  6. “Ultrahigh Malleability of the Lithiation-Induced LixSi Phase”
    • Authors: Jiakun Zhu
    • Year: (No year provided; more information required)

 

Yousaf Khan | Engineering Optimization | Environmental Engineering Impact Award

Mr. Yousaf Khan | Engineering Optimization | Environmental Engineering Impact Award

Masters of Philosophy at Abdul Wali Khan University Mardan, Pakistan.

Yousaf Khan is a dedicated researcher and educator based in Khyber Pakhtunkhwa, Pakistan. Born on March 8, 1999, he holds a Master of Philosophy in Mathematics from Abdul Wali Khan University Mardan, where he specialized in hybrid energy management systems. His research focuses on advanced optimization techniques, mathematical modeling, and computational systems, contributing to the field of environmental engineering. In addition to his academic pursuits, Yousaf serves as a subject instructor, demonstrating his commitment to education and knowledge dissemination. With several publications in reputable journals, he is recognized for his innovative approaches to energy management, particularly in off-grid applications. Yousaf’s work is essential for sustainable development, particularly in addressing energy challenges in remote areas. His diverse skills and collaborative mindset position him as a promising contributor to the field of environmental engineering.

Publication Profile👤

Education

Yousaf Khan completed his educational journey at Abdul Wali Khan University Mardan, where he earned both his Bachelor of Science and Master of Philosophy in Mathematics. His academic pursuits began with a Bachelor’s degree in Mathematics from 2017 to 2021, followed by an MPhil from 2021 to 2023, during which he focused on hybrid energy management systems. His master’s dissertation, titled “Optimal Power Management of a Stand-alone Hybrid Energy Management System,” reflects his innovative approach to integrating hydro, photovoltaic, and fuel cell technologies to enhance power generation efficiency. Throughout his studies, Yousaf engaged in courses such as Engineering Optimization, Optimization Theory, and Computational Methods, providing him with a solid foundation in mathematical tools applicable to real-world energy challenges. His educational background equips him with the analytical and computational skills necessary to tackle complex environmental engineering problems.

Professional Experience

Yousaf Khan has garnered valuable professional experience as an educator and instructor in mathematics. He is currently a Subject Instructor at Rozatul Islam Public School, where he imparts mathematical knowledge to students, emphasizing analytical thinking and problem-solving skills. Prior to this role, he served as a Lecturer of Mathematics at ANSI School and Degree College in Mardan, where he further honed his teaching abilities. Yousaf also has experience as an online subject instructor, showcasing his adaptability to different educational environments. His roles in academia have allowed him to engage with students effectively and foster a love for mathematics and its applications. Through his teaching, Yousaf encourages critical thinking and promotes the importance of mathematics in various fields, including environmental engineering, where mathematical modeling and optimization play a crucial role in finding sustainable solutions.

Research Interests

Yousaf Khan’s research interests lie primarily in advanced optimization techniques for hybrid energy management systems, focusing on sustainable energy solutions. His work emphasizes multi-objective optimization using heuristic and metaheuristic approaches, particularly Genetic Algorithms and Ant Colony Optimization. Yousaf also delves into mathematical modeling and optimization, exploring optimal power management and combinatorial optimization strategies. His foundational knowledge in mathematical statistics, linear algebra, and integral equations enhances his research capabilities, allowing him to tackle complex problems effectively. Additionally, he is interested in computational and network systems, including neural and sensor networking, which are essential for modern energy management. Yousaf’s research aims to contribute to the development of innovative and efficient energy systems, particularly for off-grid and remote areas, highlighting his commitment to advancing the field of environmental engineering through sustainable practices.

Research Skills

Yousaf Khan possesses a diverse range of research skills that enhance his contributions to the field of environmental engineering. His proficiency in advanced optimization techniques, particularly in hybrid energy management systems, allows him to develop innovative solutions for sustainable energy challenges. Yousaf is skilled in utilizing computational tools such as Matlab and Simulink for modeling and simulation, which are crucial for validating his research findings. His experience with mathematical statistics and linear algebra equips him to analyze data effectively and draw meaningful conclusions from complex datasets. Additionally, Yousaf demonstrates strong research and organizational skills, enabling him to manage projects efficiently and collaborate with peers and mentors. His dedication to academic excellence is reflected in his ability to conduct thorough literature reviews and apply appropriate methodologies in his studies, ensuring that his research is both rigorous and impactful.

Awards and Honors

Yousaf Khan has received the EHSAAS Undergraduate Scholarship in recognition of his academic excellence and commitment to education. This scholarship highlights his dedication to pursuing higher education in mathematics, emphasizing his potential as a future leader in the field of environmental engineering. While his current accolades focus primarily on academic achievement, Yousaf’s contributions to research, particularly in the area of hybrid energy management systems, position him as a promising candidate for future awards and recognitions in his field. His involvement in various research projects and publications demonstrates his commitment to advancing sustainable energy solutions, potentially leading to further accolades as he continues to make strides in his research. Yousaf’s achievements underscore his dedication to excellence in academia and research, reflecting his aspiration to contribute significantly to the field of environmental engineering.

Conclusion

Yousaf Khan’s research contributions in hybrid energy management systems and optimization techniques are relevant to environmental engineering, particularly in the context of sustainable energy solutions. His technical skills, strong academic background, and relevant publications strengthen his candidacy for the Environmental Engineering Impact Award. However, broadening the scope of his research to encompass more diverse environmental applications and showcasing fieldwork or real-world implementations could improve his chances.

Publication Top Notes
        1. Title: Optimal power management of a stand-alone hybrid energy management system: Hydro-photovoltaic-fuel cell
        2. Authors: M. Mossa Al-Sawalha, Humaira Yasmin, Shakoor Muhammad, Yousaf Khan, Rasool Shah
        3. Year: 2024
        4. Journal: Ain Shams Engineering Journal
        5. DOI: 10.1016/j.asej.2024.103089

         

Tran Thi Bich Chau Vo | Engineering | Innovation Excellence Award

Ms. Tran Thi Bich Chau Vo | Engineering | Innovation Excellence Award

Ph.D Candidate of National Kaohsiung University of Science and Technology, Taiwan.

Tran Thi Bich Chau Vo is a lecturer at Can Tho University, Vietnam, specializing in Industrial Engineering and Management. She has a diverse professional background, including her role as Head of Research and Development at Thanhcong Textile Garment Investment Trading JSC and as a staff member at Garment Fashion Limited. Currently pursuing a Ph.D. at the National Kaohsiung University of Science and Technology in Taiwan, her research focuses on improving process efficiency through workflow reengineering and value stream mapping. She holds a Master’s degree in Industrial and Systems Engineering and a Bachelor’s in Garment Technology and Fashion. Tran has expertise in lean manufacturing, production planning, and optimization, contributing to various research projects and publications. Her work has been recognized in fields such as waste management, aquaculture, and smart manufacturing. Additionally, she has served as a reviewer for international journals and participated in multiple research grants.

Profile

Education

Tran Thi Bich Chau VO is currently pursuing her Ph.D. in Industrial Engineering and Management at the National Kaohsiung University of Science and Technology, Taiwan, with an expected completion date in December 2024. Her Ph.D. research focuses on enhancing processing efficiency through workflow process reengineering, simulation, and value stream mapping. Prior to this, she earned a Master of Engineering in Industrial and Systems Engineering from the Ho Chi Minh City University of Technology, Vietnam National University, in 2014. Her master’s thesis investigated the effects of lean manufacturing on a garment production line. She also holds a Bachelor of Engineering in Garment Technology and Fashion from Ho Chi Minh City University of Technology and Education, which she completed in 2011. Her undergraduate thesis explored improved patterns for production processes. Tran Thi Bich Chau VO’s educational background demonstrates her expertise in industrial management and lean manufacturing practices, positioning her well for academic and industrial leadership.

Professional Experience

Tran Thi Bich Chau VO is a dedicated academic and industry professional with extensive experience in both academia and industrial management. Since August 2014, she has been a Lecturer at the Faculty of Industrial Management at Can Tho University in Vietnam, where she has focused on educating students in production planning, lean manufacturing, and facility layout. Prior to her academic role, she held significant industry positions, including Head of the Research & Development Department at Thanhcong Textile Garment Investment Trading Joint Stock Company from 2012 to 2014. She also worked as a staff member in the Work Study Department at Garment Fashion Limited, honing her skills in industrial systems and operations management. Her professional journey reflects a strong background in industrial engineering and management, with practical experience in improving production efficiency and applying lean methodologies in various sectors.

Research Interest

Tran Thi Bich Chau VO’s research interests focus on industrial engineering, lean manufacturing, and supply chain optimization. She has a keen interest in improving processing efficiency through techniques like workflow process reengineering, value stream mapping, and simulation modeling. Her work primarily explores lean production technologies in various industries, including garment manufacturing, aquaculture processing, and fishery product supply chains. Additionally, she is passionate about environmental sustainability, evidenced by her research on green waste management, smart manufacturing, and material flow cost accounting. Tran has also contributed significantly to digital transformation, particularly in developing digital twin platforms for smart agents in manufacturing. Her research endeavors highlight a strong focus on enhancing operational productivity while reducing waste, aligning with both industrial and environmental goals. Through her academic and practical projects, she aims to bridge the gap between theoretical frameworks and real-world applications, driving innovation in industrial management and sustainable development.

Research Skills

Tran Thi Bich Chau VO demonstrates a wide range of research skills, particularly in industrial engineering, workflow optimization, and lean manufacturing. Her expertise includes the use of advanced simulation tools like Arena, Matlab, Lingo, and Minitab, which she applies to reengineering processes and improving efficiency. Her research projects, such as value stream mapping and genetic algorithm-based optimization, highlight her ability to solve complex problems in supply chain management and production systems. Additionally, her proficiency in interdisciplinary areas like aquaculture and environmental management, evidenced by her work on material flow cost accounting and green waste management, showcases her versatility. She has contributed to numerous publications in top journals, further emphasizing her ability to conduct impactful research. Her skills in reviewing scientific papers and her involvement in international research collaborations reflect her strong analytical capabilities and dedication to advancing both academic and practical applications in industrial engineering.

Award and Recognition

Tran Thi Bich Chau VO has garnered significant recognition for her contributions to industrial engineering, particularly in the fields of workflow process reengineering, simulation, and value stream mapping. She has served as a lead researcher on numerous projects, such as improving the efficiency of Pangasius fillet production and optimizing supply chains in Vietnam’s aquaculture industry. Her expertise has led to her publications being featured in prestigious journals, including Business Process Management Journal, Engineering Management Journal, and Aquaculture. In addition to her academic achievements, Tran Thi Bich Chau has actively contributed to industrial innovations, particularly in the implementation of lean production technologies in various companies. Her role as a reviewer for well-known journals further highlights her standing in the research community. Tran Thi Bich Chau’s leadership in research projects and extensive publication record exemplify her as an innovative and influential figure in industrial engineering and supply chain management.

Conclusion

Tran Thi Bich Chau VO is a strong candidate for the Research for Innovation Excellence Award. Her leadership in innovative projects, extensive research contributions, and interdisciplinary expertise position her well for this honor. Expanding her research into cutting-edge technologies and gaining broader international recognition could further solidify her candidacy.

Publication Top Notes

  1. A comprehensive review of aeration and wastewater treatment
    • Authors: N.T. Nguyen, T.S. Vo, P.L. Tran-Nguyen, K. Kim, T.T.B.C. Vo
    • Year: 2024
    • Citations: 0
  2. A comprehensive review of laser processing-assisted 2D functional materials and their specific applications
    • Authors: T.S. Vo, B. Jeon, V.P.T. Nguyen, T.T.B.C. Vo, K. Kim
    • Year: 2024
    • Citations: 0
  3. Recent Trends of Bioanalytical Sensors with Smart Health Monitoring Systems: From Materials to Applications
    • Authors: T.S. Vo, T. Hoang, T.T.B.C. Vo, V.H. Nguyen, K. Kim
    • Year: 2024
    • Citations: 3
  4. Advances in aeration and wastewater treatment in shrimp farming: emerging trends, current challenges, and future perspectives
    • Authors: N.T. Nguyen, P.L. Tran-Nguyen, T.T.B.C. Vo
    • Year: 2024
    • Citations: 1
  5. Improving processing efficiency through workflow process reengineering, simulation and value stream mapping: a case study of business process reengineering
    • Authors: C.-N. Wang, T.T.B.C. Vo, H.-P. Hsu, N.T. Nguyen, N.-L. Nhieu
    • Year: 2024
    • Citations: 0
  6. Improvement of Manufacturing Process Based on Value Stream Mapping: A Case Study
    • Authors: C.-N. Wang, T.T.B.C. Vo, Y.-C. Chung, Y. Amer, L.T. Truc Doan
    • Year: 2024
    • Citations: 0
  7. Optimal microgrid design and operation for sustainable shrimp farming
    • Authors: N.N. Tien, V.T.T.B. Chau, P.V. Hoan
    • Year: 2023
    • Citations: 0
  8. Risk priority and risk mitigation approach based on house of risk: A case study with aquaculture supply chain in Vietnam
    • Authors: N.T.L. Thuy, V.T.T.B. Chau, H.T. Phong, T.T. Tham
    • Year: 2023
    • Citations: 0
  9. Optimizing New Product Development through a Systematic Integration of Design for Six Sigma (DFSS) and Theory of Inventive Problem Solving (TRIZ)
    • Authors: Y. Amer, L.T.T. Doan, T.T.B.C. Vo
    • Year: 2023
    • Citations: 0
  10. Improving Inventory Time in Production Line through Value Stream Mapping: A Case Study
    • Authors: N.T. Nguyen, T.T.B.C. Vo, P.H. Le, C.-N. Wang
    • Year: 2023
    • Citations: 2

 

Walid AWADI | Engineering | Best Scholar Award

Mr. Walid AWADI | Engineering | Best Scholar Award 

Professor at Polytechnic Institute of Leiria , Portugal .

Walid Awadi is a mechanical engineering professional with extensive experience in both academia and industry. He is currently a Maitre Technologue in Mechanical Engineering at ISET Jendouba and previously served as the Director of the Higher Institute of Technological Studies in Jendouba from 2010 to 2017. Awadi holds a Master’s degree in Mechanical Engineering and is pursuing a Ph.D. focusing on the characterization and optimization of thermoplastic polymer welding. He has participated in various training programs and certifications, including SolidWorks, technological transfer, and risk prevention. His career includes contributions to numerous engineering projects, such as the design and fabrication of specialized machinery. Additionally, Awadi has been involved in international collaborations and training sessions in countries such as Spain, France, and Belgium. His work is characterized by a strong emphasis on technological innovation, applied research, and educational development.

Profile

Education

Walid Awadi holds a strong educational background in mechanical engineering, beginning with his Baccalaureate in Technical Studies from Lycée Technique 9 Avril in Jendouba, Tunisia, obtained in 1995 with honors. He pursued his higher education at the National Engineering School of Monastir (ENIM), where he earned his National Engineering Diploma in Mechanical Engineering in 2000. His final project focused on the design and fabrication of a PVC-U pipe grooving machine. Building on this, he completed a Master’s degree in Mechanical Engineering at ENIM from 2000 to 2002, specializing in the numerical simulation of micro-indentation tests. Since 2018, Walid has been pursuing a Ph.D. in Mechanical Engineering, focusing on the study and characterization of thermoplastic polymer welding using thermo-mechanical processes, under the guidance of Dr. Mondher Zidi (ENIM) and Dr. Redouane Zitoune (Université Toulouse, France). His educational journey reflects a deep commitment to advancing his expertise in mechanical engineering.

Professional Experience

Walid Awadi is a seasoned professional with extensive experience in mechanical engineering and academia. He holds the position of Maître Technologue in Mechanical Engineering at the Higher Institute of Technological Studies (ISET) in Jendouba, Tunisia. From August 2010 to December 2017, he served as the Director of ISET Jendouba, where he played a crucial role in enhancing the institution’s academic programs and infrastructure. Throughout his career, Walid has been deeply involved in both teaching and research, with a focus on mechanical engineering, particularly in thermomechanical processes and polymer welding. His professional journey is marked by his contributions to curriculum development, particularly in adopting competency-based approaches, and his active participation in various international projects and training programs. Walid’s commitment to advancing mechanical engineering education and research has earned him recognition within academic and professional circles, making him a respected figure in his field.

Research Interest

Walid Awadi’s research interests are deeply rooted in mechanical engineering, with a particular focus on the study and characterization of thermoplastic polymer welding. His work involves the application of thermomechanical processes to optimize joining parameters, a field critical for enhancing the durability and functionality of engineering materials. Additionally, Awadi is engaged in numerical simulation studies, especially in micro-indentation testing, which further highlights his commitment to precision in material analysis. His research extends to innovative design and fabrication projects, including the development of specialized machinery for PVC-U tube grooving. Awadi’s academic pursuits are complemented by his involvement in advanced manufacturing technologies, such as SolidWorks, where he holds multiple certifications. His research contributions are pivotal in advancing knowledge in mechanical engineering, particularly in the areas of material characterization, process optimization, and the integration of modern simulation tools to enhance engineering outcomes.

Research Skills

Walid Awadi possesses a robust set of research skills, particularly in the field of mechanical engineering. His expertise spans thermoplastic welding, numerical simulation, and mechanical design, with a strong focus on optimizing and characterizing engineering processes. Awadi’s ability to conduct complex simulations, such as micro-indentation testing, demonstrates his proficiency in advanced analytical tools. His experience in SolidWorks, CSWA, and CSWP certifications further highlights his capabilities in computer-aided design and mechanical modeling. Additionally, Awadi has a deep understanding of technology transfer, intellectual property management, and risk prevention in industrial settings, as evidenced by his extensive training and certifications in these areas. His participation in various international workshops and collaborative projects underscores his collaborative and innovative approach to research. Overall, Awadi’s research skills are a blend of theoretical knowledge and practical expertise, making him a versatile researcher capable of contributing significantly to advancements in mechanical engineering.

Awards and Recognition

Awadi’s achievements in education and training, including certifications in SolidWorks and his involvement in various international training programs, are commendable. His role as Director of ISET Jendouba also highlights his leadership and recognition in the academic community.

Conclusion

Walid Awadi is a dedicated mechanical engineer with a strong focus on applied research, international collaboration, and education. While his work primarily centers around mechanical engineering, his contributions to the field, coupled with his leadership in academia, make him a commendable candidate for a research award, particularly in categories related to engineering and technology. However, if the award emphasizes environmental health, parasitology, or infectious diseases, other candidates with a stronger focus in those areas might be more suitable.