Hamed Pahlavani | Engineering | Best Researcher Award

Dr. Hamed Pahlavani | Engineering | Best Researcher Award

CFD & Process Engineer from Dal Engineering Group, Turkey

Dr. Hamed Pahlavani is a distinguished Mechanical Engineer and Computational Fluid Dynamics (CFD) specialist with expertise spanning biomedical simulations, reactive multiphase flows, and energy system optimization. Currently serving as a Process & CFD Engineer at Dal Engineering Group in Istanbul, Turkey, he combines high-level academic research with real-world industrial applications. Dr. Pahlavani’s work integrates computational modeling of blood flow dynamics in cerebral aneurysms with fluid-structure interaction (FSI) techniques, as well as combustion modeling for alternative fuels in large-scale energy systems. With a robust foundation in OpenFOAM and other numerical tools, he has developed custom solvers and predictive models, making significant contributions to cardiovascular modeling, energy optimization, and environmental engineering. His innovative approaches and research outputs are featured in several peer-reviewed journals. In addition to his scientific contributions, he has been an active participant in industry-sponsored and TÜBİTAK-funded projects. His cross-disciplinary knowledge, proficiency in simulation platforms, and commitment to solving critical engineering challenges demonstrate both academic and practical excellence. Fluent in English, Turkish, and Persian, Dr. Pahlavani has also presented his work internationally, earning recognition within both academia and industry. His combination of deep technical acumen, innovative thinking, and collaborative mindset makes him a standout candidate for the Best Researcher Award.

Professional Profile

Education

Dr. Hamed Pahlavani holds a Ph.D. in Mechanical Engineering from Istanbul Technical University, Turkey, awarded in January 2022. His doctoral dissertation, titled “Modeling of Two-Phase Blood Flow and Fluid-Structure Interactions in Cerebral Aneurysms”, focused on applying advanced CFD techniques and FSI to model blood rheology and arterial wall deformation. He utilized state-of-the-art simulation tools such as OpenFOAM, CALCULIX, and preCICE, running high-performance computing (HPC) environments to address complex, patient-specific geometries. Prior to this, he completed a Master of Science in Mechanical Engineering from the same institution in 2015. His M.Sc. thesis involved the design and simulation of a refrigerator cabinet based on the solidification process of polyurethane foam, emphasizing multiphase reactive flows and chemical kinetics using ANSYS Fluent. Dr. Pahlavani began his academic journey with a Bachelor of Science degree from Azad University of Khoy, Iran, in 2012, laying a strong foundation in classical mechanical engineering principles. His educational background reflects a consistent trajectory of excellence, with progressive specialization in simulation-based design, energy systems, and biomedical engineering. The combination of solid academic preparation and advanced computational modeling skills has positioned him to tackle both fundamental and applied engineering problems across multiple sectors.

Professional Experience

Dr. Hamed Pahlavani has accumulated valuable professional experience across both industrial and academic domains. Since November 2023, he has been working as a Process & CFD Engineer at Dal Engineering Group in Istanbul, where he leads simulation projects focused on the combustion of alternative fuels and calcination processes in cement calciners. He has applied OpenFOAM’s Euler–Lagrange framework to model solid fuel behavior, reaction kinetics, and pollutant formation. He also performs 1D heat and mass balance modeling to support plant optimization efforts and has participated in field measurements to validate simulation outputs with real-world data. Prior to this, from October 2021 to May 2023, Dr. Pahlavani served as a CFD, Combustion, and Thermal Systems Engineer at Turaş GAS A.Ş., where he focused on improving domestic gas burner performance using CFD tools, achieving notable reductions in emissions and increases in thermal efficiency. His earlier engagements included roles in academic projects sponsored by TÜBİTAK and the Turkish Ministry of Industry. These roles required him to blend research and development with engineering applications, often collaborating with multidisciplinary teams. His professional record illustrates his capacity to translate complex simulation data into actionable outcomes for environmental and industrial improvements.

Research Interests

Dr. Pahlavani’s research interests lie at the intersection of computational modeling, thermal-fluid sciences, and biomedical engineering. A central theme in his research is Computational Fluid Dynamics (CFD), particularly applied to multiphase and turbulent reactive flows, combustion systems, and fluid-structure interactions (FSI). His work on alternative fuel combustion explores the behavior of solid fuels such as TDF, rubber, SRF, and petcoke, focusing on processes like drying, devolatilization, and char oxidation using custom reaction models. In the biomedical field, he specializes in non-Newtonian blood flow modeling and its interactions with arterial structures, enabling in-depth investigations of cerebral aneurysms, thrombosis risks, and blood rheology using advanced simulation techniques. Additional interests include optimization of energy systems, gas-solid interactions, phase change modeling, and biomedical flow simulations in patient-specific geometries. His focus is both analytical and practical, using computational methods to simulate real-world behavior in mechanical systems, energy conversion units, and biological tissues. The cross-domain applicability of his research makes it highly relevant to healthcare innovation, renewable energy development, and environmental sustainability. Dr. Pahlavani’s ongoing work continues to address critical challenges in these fields through innovative simulation-based methodologies.

Research Skills

Dr. Pahlavani possesses an extensive array of research and technical skills that position him at the forefront of simulation-based engineering. He is highly proficient in OpenFOAM, an open-source CFD platform where he develops and customizes solvers for turbulent and multiphase flows, including complex chemical reactions and phase transitions. He has utilized CALCULIX for structural analysis and preCICE for coupling fluid and solid domains, enabling sophisticated fluid-structure interaction (FSI) simulations. His programming capabilities include C++ and Python, allowing him to tailor numerical models and automate simulation workflows. Additionally, he is experienced with ANSYS Fluent, ICEM CFD, Tecplot, Paraview, and CAD tools such as CATIA v5 and SolidWorks. These tools have been critical in simulating complex systems ranging from domestic gas burners to cement calciners and blood flow in cerebral arteries. His ability to integrate 1D process modeling with full-scale CFD simulations enhances his capacity for system-wide energy optimization and emissions reduction. Dr. Pahlavani also possesses strong data validation skills, conducting on-site measurements to ensure simulation accuracy. His blend of coding expertise, engineering judgment, and validation techniques reflects a well-rounded research skill set with high translational value.

Awards and Honors

Dr. Hamed Pahlavani has received notable awards and honors in recognition of his contributions to computational modeling and engineering innovation. He served as the Principal Researcher for a TÜBİTAK-funded project titled “Computational Modelling of Deep Vein Thrombosis” (Project No. 117M430), which involved simulating thrombus formation using CFD-FSI coupling techniques in patient-specific geometries. This project not only demonstrated his academic leadership but also showcased the medical relevance of his research. He also contributed significantly to an industry-sponsored project titled “CFD Modeling of Reaction and Injection Molding of Polyurethane Foam in Refrigerators”, supported by the Ministry of Industry and Arçelik Inc. (Project No. 01213.STZ.2012-1). These honors reflect his capacity to attract funding and execute impactful projects that bridge science and industry. In addition to research awards, Dr. Pahlavani’s technical papers and conference presentations have received recognition at scientific meetings, further validating the quality and relevance of his work. His demonstrated success in securing competitive funding, combined with strong industry collaboration, underlines his innovative approach to solving engineering challenges and his potential for continued leadership in computational mechanics.

Conclusion

In conclusion, Dr. Hamed Pahlavani exemplifies a modern, research-driven mechanical engineer with an exceptional portfolio that blends academic rigor with industrial relevance. His contributions span diverse domains, from biomedical flow simulations to advanced combustion modeling and energy system optimization. With a Ph.D. from Istanbul Technical University, multiple peer-reviewed publications, and hands-on experience in both experimental validation and computational design, he brings a rare depth of understanding to complex fluid dynamics and multiphysics systems. His leadership in TÜBİTAK- and industry-funded projects, combined with technical mastery of tools such as OpenFOAM, preCICE, and CALCULIX, further reinforces his excellence in research execution and impact delivery. Dr. Pahlavani’s work not only pushes the frontiers of CFD and biomedical engineering but also contributes significantly to sustainability efforts by improving combustion efficiency and reducing emissions in industrial systems. His multilingual proficiency and international collaborations position him as a globally relevant researcher capable of addressing multidisciplinary challenges. Based on his accomplishments and forward-looking research agenda, Dr. Pahlavani is an outstanding candidate for the Best Researcher Award. His innovative thinking, problem-solving skills, and dedication to societal advancement through engineering research mark him as a leader of the future.

Publications Top Notes

  1. Effect of red blood cell concentration on the blood flow in patient-specific aneurysms
    2025 | Pahlavani, H.; Ozdemir, I.B.
  2. Interactions between non-Newtonian blood flow and deformable walls of a patient-specific aneurysm
    2025 | H. Pahlavani; I.B. Ozdemir
  3. Neural network predictive models to determine the effect of blood composition on the patient-specific aneurysm
    2023 | Quadros, J.D.; Pahlavani, H.; Ozdemir, I.B.; Mogul, Y.I.
  4. CFD models for aneurysm analyses and their use in identifying thrombosis formation and risk assessment
    2022 | Pahlavani, H.; Ozdemir, I.B.; Yildirim, D.
  5. Effects of forebody geometry on side forces on a cylindrical afterbody at high angles of attack
    2020 | Serdaroglu Timucin; Pahlavani Hamed; Ozdemir I. Bedii
  6. Effects of air vents on the flow of reacting polyurethane foam in a refrigerator cavity
    2018 | Özdemir, İ.B.; Pahlavani, H.

Snekhalatha Umapathy | Engineering | Excellence in Research Award

Prof. Dr. Snekhalatha Umapathy | Engineering | Excellence in Research Award

Professor and Head from SRM Institute of Science and Technology, India

Dr. Snekhalatha Umapathy is a distinguished Professor in the Department of Biomedical Engineering at SRM Institute of Science and Technology. With a research career spanning over a decade, she has made substantial contributions to biomedical instrumentation, biosensors, medical image and signal processing, and artificial intelligence applications in healthcare. She has authored over 145 publications, including 55 in SCI-indexed journals and 54 in the Web of Science, showcasing her consistent academic productivity. Her research is highly interdisciplinary, integrating engineering, medicine, and advanced computing techniques. Dr. Umapathy’s work has led to the granting of five patents and the publication of three more, underscoring her commitment to innovation and translational research. She has successfully supervised six Ph.D. scholars and continues to mentor three more, indicating her dedication to academic leadership and student development. Her most recent studies focus on quantum machine learning and wearable biosensors, areas of increasing importance in personalized medicine. Through her extensive involvement in international conferences, book publications, and impactful journals, she maintains a strong academic presence. Overall, Dr. Umapathy stands out as a highly accomplished researcher whose work bridges fundamental research and clinical application, positioning her as a leading expert in the biomedical engineering domain.

Professional Profile

Education

Dr. Snekhalatha Umapathy’s academic background is rooted in a strong foundation in engineering and interdisciplinary science. She pursued her higher education in fields that aligned closely with biomedical innovation, integrating elements of electronics, instrumentation, and life sciences. Although specific degree titles and institutions are not listed here, her progression to a professorial role and active research leadership indicates the successful completion of undergraduate and postgraduate degrees in relevant engineering disciplines, followed by a doctorate (Ph.D.) in a field closely related to biomedical engineering. Her educational pathway has allowed her to explore the integration of engineering principles with human physiology, medical diagnostics, and therapeutic technologies. Through rigorous training and advanced coursework, she has developed specialized expertise in areas such as biosensor technology, medical imaging, signal processing, and artificial intelligence applications in medicine. This academic training has been critical in enabling her to publish in high-impact journals, supervise doctoral research, and secure patents in the biomedical technology space. Her educational journey reflects both depth and diversity, providing her with the tools necessary to contribute meaningfully to multidisciplinary research and academic mentorship within the global biomedical engineering community.

Professional Experience

Dr. Snekhalatha Umapathy currently serves as a Professor in the Department of Biomedical Engineering at SRM Institute of Science and Technology, a role that reflects her vast academic experience and leadership capabilities. Over the years, she has played a pivotal role in driving research innovation, mentoring students, and establishing industry-academic linkages within the university setting. Her responsibilities include supervising doctoral scholars, delivering advanced courses in biomedical instrumentation and AI in healthcare, and leading funded research initiatives. With more than 145 publications and several patents to her name, she has consistently demonstrated a capacity to translate academic inquiry into practical, real-world applications. In addition to her research and teaching duties, she actively participates in organizing conferences, delivering keynote addresses, and collaborating with interdisciplinary teams for technological development. Her professional experience extends beyond academia, encompassing collaborative projects with clinicians, engineers, and researchers to design medical devices and diagnostic systems. Dr. Umapathy’s work ethic, combined with her technical insight and administrative contributions, positions her as a highly effective academic leader. Her commitment to fostering innovation and knowledge transfer has not only elevated the research profile of her department but has also contributed significantly to the broader biomedical engineering landscape in India.

Research Interests

Dr. Snekhalatha Umapathy’s research interests lie at the intersection of engineering, healthcare, and computational science. Her primary focus areas include biosensors, point-of-care diagnostic devices, biomedical signal and image processing, and the integration of deep learning and quantum machine learning techniques into healthcare applications. She is particularly interested in developing non-invasive diagnostic tools and wearable biosensors that can monitor biomarkers for diseases such as diabetes, chronic kidney disease, and Alzheimer’s. Her work in medical image processing includes automated classification and detection using AI, contributing to early diagnosis and improved patient outcomes. Dr. Umapathy also explores the use of novel materials, such as graphene-based sensors, in creating affordable and scalable healthcare solutions. A forward-thinking researcher, she is actively investigating the potential of quantum machine learning algorithms to enhance the accuracy and efficiency of medical diagnostic systems. By bridging the gap between technology development and clinical utility, her research addresses pressing global health challenges while contributing to the scientific advancement of biomedical instrumentation and artificial intelligence. Her interdisciplinary approach allows for innovative problem-solving and has led to significant academic recognition, industry relevance, and translational impact.

Research Skills

Dr. Snekhalatha Umapathy possesses a rich array of research skills that position her as a leader in the field of biomedical engineering. She is highly skilled in advanced signal and image processing techniques, enabling her to extract meaningful data from complex physiological signals and imaging modalities. Her expertise in deep learning, convolutional neural networks (CNNs), and machine learning allows her to develop predictive models for disease diagnosis, particularly in applications such as Alzheimer’s detection and rheumatoid arthritis classification. She is also proficient in working with quantum computing frameworks to apply quantum machine learning techniques, which is a highly specialized and emerging area in medical diagnostics. In the laboratory, she demonstrates strong capabilities in biosensor design, materials characterization, and experimental modeling, especially in breath analysis using graphene-based sensor arrays. Dr. Umapathy’s analytical and programming skills extend to MATLAB, Python, and simulation tools used in biomedical signal modeling. In addition, she is experienced in writing grant proposals, publishing scholarly articles, and securing intellectual property rights through patents. Her collaborative approach and project management skills further enhance her ability to lead multidisciplinary teams and contribute meaningfully to high-impact, solution-oriented research.

Awards and Honors

Dr. Snekhalatha Umapathy has been recognized for her academic and research contributions through several awards and honors, although the specific names of the awards are not listed in the provided details. The granting of five patents and the publication of three more reflects her recognition as an innovator in biomedical technology. Her consistent presence in high-impact journals such as Scientific Reports, Analytical Chemistry, and Biomedical Signal Processing and Control suggests acknowledgment by the global academic community. Additionally, her role as a Ph.D. supervisor and her involvement in international conferences and book publications are indicators of her esteemed position in the academic world. It is highly likely that she has received internal and external recognition from academic institutions, professional societies, and funding agencies for her work. Dr. Umapathy’s interdisciplinary research combining AI, biosensing, and biomedical instrumentation places her at the forefront of emerging health technologies. These honors not only validate her research excellence but also serve as an inspiration for future scholars in the field. Her achievements in innovation, publication, and mentoring further solidify her reputation as a leading academic figure in biomedical engineering.

Conclusion

Dr. Snekhalatha Umapathy exemplifies excellence in biomedical engineering through her innovative research, prolific publication record, and dedication to academic mentorship. Her work spans crucial areas such as biosensor development, AI-driven diagnostics, and quantum machine learning, addressing some of the most pressing healthcare challenges of our time. With a robust portfolio of SCI-indexed publications, multiple patents, and successful Ph.D. supervisions, she embodies the qualities of a high-impact researcher. Her collaborative and interdisciplinary approach ensures her work remains both scientifically rigorous and practically relevant. Dr. Umapathy’s research not only advances academic knowledge but also holds tangible benefits for clinical practice and public health. She has established herself as a thought leader, mentor, and innovator who is shaping the future of biomedical research and education. As the healthcare landscape evolves toward personalized and technology-driven care, her contributions are poised to play an influential role. Her candidacy for any prestigious research award, including the Excellence in Research Award, is not only well justified but highly recommended. Her continued dedication to innovation, education, and societal impact makes her a beacon of research excellence in India and beyond.

Publications Top Notes

  • Title: Artificial intelligence-based automated detection of rheumatoid arthritis

  • Title: Computer-aided diagnosis of early-stage Retinopathy of Prematurity in neonatal fundus images using artificial intelligence
    Journal: Biomedical Physics and Engineering Express
    Year: 2025

  • Title: CNN Transformer for the Automated Detection of Rheumatoid Arthritis in Hand Thermal Images
    Citations: 1

  • Title: Artificial intelligence based real time colorectal cancer screening study: Polyp segmentation and classification using multi-house database
    Journal: Biomedical Signal Processing and Control
    Year: 2025
    Citations: 15

  • Title: Corrigendum: Early detection of Alzheimer’s disease in structural and functional MRI
    Journal: Frontiers in Medicine
    Year: 2024

  • Title: Design and Development of Portable Body Composition Analyzer for Children
    Journal: Diagnostics
    Year: 2024

  • Title: ADVANCING COLORECTAL POLYP DETECTION: AN AUTOMATED SEGMENTATION APPROACH WITH COLRECTSEG-UNET
    Authors: [Not specified]
    Journal: Biomedical Engineering Applications Basis and Communications
    Year: 2024
    Citations: 4

  • Title: Tongue image fusion and analysis of thermal and visible images in diabetes mellitus using machine learning techniques
    Journal: Scientific Reports
    Year: 2024
    Citations: 8

  • Title: Exploring Reduction Techniques for Graphene Oxide: A Comparative Study of Thermal and Chemical Methods
    Journal: Chemistry Select
    Year: 2024
    Citations: 1

  • Title: RA-XTNet: A Novel CNN Model to Predict Rheumatoid Arthritis from Hand Radiographs and Thermal Images: A Comparison with CNN Transformer and Quantum Computing
    Journal: Diagnostics
    Year: 2024
    Citations: 4

Jidong Jia | Engineering | Best Researcher Award

Dr. Jidong Jia | Engineering | Best Researcher Award

Hebei University of Technology, China

Jidong Jia is a dedicated and innovative researcher specializing in the fields of intelligent robotics, robot dynamics, human-robot interaction, and adaptive wall-climbing robots. His research has significantly contributed to the development of precise dynamic modeling, intelligent perception, and safety control mechanisms in collaborative robotics. Dr. Jia’s work addresses essential challenges in robot stability, safe human-machine interaction, and intelligent robotic operations in complex environments. His ability to integrate multi-objective optimization, neural network compensation, and dynamic identification methods into practical robotic systems makes his research highly impactful and relevant. Dr. Jia has published extensively in high-impact international journals and conferences, with notable works focusing on magnetic-wheeled wall-climbing robots, dynamic parameter identification, obstacle avoidance, and coupling dynamics in mobile manipulators. His academic excellence has been consistently recognized through prestigious awards, including the Wiley China Excellent Author Program and the Outstanding Doctoral Dissertation Award from Hebei University of Technology. Through his research, Dr. Jia is contributing to advancing intelligent robot design, improving safety in human-robot collaboration, and enhancing robotic performance in real-world applications. His innovative thinking and continuous pursuit of technological breakthroughs highlight his potential to be a leading figure in the robotics community.

Professional Profile

Education

Jidong Jia has pursued a comprehensive educational journey in mechanical engineering and robotics at prestigious Chinese institutions. He began his academic path at Shandong University, where he earned his Bachelor of Science in Mechanical Engineering from September 2010 to June 2014. During this period, he developed a strong foundation in mechanical systems and engineering design. He continued his higher education at the Hebei University of Technology, where he completed an integrated MD-PhD program in Mechanical Engineering from September 2015 to January 2022. This intensive program allowed him to specialize further in intelligent robotic systems, collaborative robot dynamics, and safe human-robot interactions. Complementing his doctoral studies, Dr. Jia participated in a Joint Doctoral Training program at Harbin Institute of Technology (C9 League) from September 2017 to January 2022, focusing on cutting-edge technologies in robot modeling, disturbance estimation, and control mechanisms. His education provided him with a unique interdisciplinary skill set, blending theoretical knowledge with practical research applications. This strong academic background has equipped Dr. Jia with the expertise to address complex challenges in robot dynamics, intelligent operations, and adaptive mechanisms, positioning him to make significant contributions to the robotics field.

Professional Experience

Throughout his academic career, Jidong Jia has gained substantial professional experience through extensive research, development, and collaborative projects within the field of robotics. His research at the Hebei University of Technology and Harbin Institute of Technology focused on developing precise robot dynamic models, safe human-robot interaction mechanisms, and intelligent control systems. Dr. Jia’s hands-on experience includes the design of magnetic-wheeled wall-climbing robots, the creation of adaptive climbing mechanisms, and the implementation of dynamic force estimation and control systems for collaborative robots. His work is highly application-driven, addressing real-world challenges such as facade maintenance, unstructured terrain operations, and obstacle navigation in complex environments. Dr. Jia has led the development of robotic systems that incorporate deep visual reinforcement learning, artificial potential field-based motion planning, and dynamic stability evaluation methods. His involvement in multiple funded research projects and contributions to high-impact journals and international conferences reflect his growing influence in the robotics research community. Dr. Jia’s ability to balance theoretical development with practical engineering solutions has established him as a skilled and promising researcher in robot dynamics, intelligent systems, and safety-focused robotic operations.

Research Interest

Jidong Jia’s primary research interests lie in robot dynamics, human-robot interaction, intelligent robotic operations, and adaptive mechanism design. He focuses on solving critical challenges related to the precise dynamic modeling of collaborative robots, disturbance force estimation, and safe interaction control mechanisms in uncertain environments. His work addresses the growing demand for safety, precision, and adaptability in next-generation robotic systems, particularly those operating in human-centered and unstructured scenarios. Dr. Jia has extensively explored high-load wall-climbing robots, developing intelligent perception systems and control methods for robots navigating complex facades and obstacles. Additionally, his research emphasizes self-stabilizing control strategies and anti-overturning mechanisms for composite robots functioning in dynamic terrains. Dr. Jia’s interests also include robotic learning, neural network compensation, proprioceptive sensing, and dynamic force field mapping. His integration of artificial intelligence with mechanical design allows robots to perceive, adapt, and interact safely and efficiently. Moving forward, Dr. Jia aims to advance research in intelligent autonomous robots, hybrid control systems, and real-time adaptive robotic behaviors that contribute to the safe deployment of collaborative robots in various industrial and social applications.

Research Skills

Jidong Jia possesses a wide range of advanced research skills essential for cutting-edge developments in intelligent robotics. He has expertise in robotic system modeling, particularly in the precise identification of dynamic parameters under multiple uncertainties. Dr. Jia is proficient in developing hybrid dynamic models that incorporate neural network-based error compensation and has successfully proposed online identification and compensation approaches to enhance robotic performance. His skills extend to multi-objective optimization, control theory, and artificial potential field-based motion planning for obstacle avoidance. Dr. Jia is experienced in robotic perception systems, utilizing deep visual reinforcement learning to enable robots to autonomously perceive and navigate complex environments. He has demonstrated capabilities in designing adaptive mechanisms, magnetic-wheeled climbing robots, compliant suspension systems, and anti-overturning mobile manipulators. His technical proficiency includes the development of momentum-based disturbance observers, force-position hybrid control strategies, and proprioceptive sensing-based identification methods. Dr. Jia’s skill set reflects his ability to integrate mechanical engineering principles with intelligent control, simulation, and optimization technologies, allowing him to build safe, efficient, and adaptive robotic systems capable of complex real-world operations.

Awards and Honors

Jidong Jia has received several prestigious awards and honors in recognition of his outstanding academic achievements and research contributions. He was selected for the Wiley China Excellent Author Program in 2025, a distinction awarded to exceptional authors for impactful publications. His doctoral research was acknowledged with the Outstanding Doctoral Dissertation Award from Hebei University of Technology in 2023, underlining the significance of his contributions to robotics and dynamic modeling. In 2022, Dr. Jia’s work was further recognized with the Outstanding Paper Award from the Chinese Journal of Mechanical Engineering, reflecting his ability to produce influential and high-quality research. Earlier in his academic journey, he was awarded the National Scholarship in 2019 by the Ministry of Education of China, a highly competitive honor granted to the top 1% of students nationwide for academic excellence and research potential. These accolades not only validate Dr. Jia’s innovative work in robotics but also emphasize his consistent dedication to advancing knowledge and solving complex engineering problems. His recognition at national and international levels highlights his growing reputation as a talented and impactful researcher in the field.

Conclusion

In conclusion, Dr. Jidong Jia stands out as an accomplished and promising researcher whose contributions significantly advance the fields of intelligent robotics, dynamic modeling, and safe human-robot interactions. His comprehensive educational background, extensive research experience, and innovative problem-solving approach position him as a leader in designing adaptive, intelligent, and safety-conscious robotic systems. Dr. Jia has demonstrated excellence in both theoretical and applied aspects of robotics, contributing to the development of wall-climbing robots, compliant mechanisms, and dynamic anti-overturning solutions for mobile manipulators. His outstanding academic performance and numerous awards further validate his impact and potential. Moving forward, Dr. Jia’s work is expected to play a vital role in shaping the next generation of collaborative robotic systems capable of operating in complex, dynamic, and human-centric environments. By expanding his research through international collaborations and focusing on the translation of his innovations into industrial applications, he can further elevate his influence in the global robotics community. Dr. Jidong Jia’s impressive body of work and forward-thinking research agenda make him an excellent candidate for prestigious recognitions such as the Best Researcher Award.

Publication Top Notes

  1. Development of an Omnidirectional Mobile Passive‐Compliant Magnetic‐Wheeled Wall‐Climbing Robot for Variable Curvature Facades
    Authors: Pei Jia, Jidong Jia, Manhong Li, Minglu Zhang, Jie Zhao
    Year: 2025

  2. Design and Analysis of a Push Shovel‐Type Hull‐Cleaning Wall‐Climbing Robot
    Authors: Pei Yang, Jidong Jia, Lingyu Sun, Minglu Zhang, Delong Lv
    Year: 2024

  3. Innovative Strain Measuring Device with Flex Sensor for Twisted and Coiled Actuator and Dexterous Hand Application
    Authors: Man Wang, Xiaojun Zhang, Minglu Zhang, Manhong Li, Chengwei Zhang, Jidong Jia
    Year: 2024

  4. Enhanced Robot Obstacle Avoidance Strategy: Efficient Distance Estimation and Collision Avoidance for Hidden Robots
    Authors: Xiaojun Zhang, Minglong Li, Jidong Jia, Lingyu Sun, Manhong Li, Minglu Zhang
    Year: 2024

  5. Magnetic Circuit Analysis of Halbach Array and Improvement of Permanent Magnetic Adsorption Device for Wall-Climbing Robot
    Authors: Shilong Jiao, Xiaojun Zhang, Xuan Zhang, Jidong Jia, Minglu Zhang
    Year: 2022

  6. Improved Dynamic Parameter Identification Method Relying on Proprioception for Manipulators
    Authors: Jidong Jia, Minglu Zhang, Changle Li, Chunyan Gao, Xizhe Zang, Jie Zhao
    Year: 2021

  7. Research Progress and Development Trend of the Safety of Human-Robot Interaction Technology
    Authors: Jidong Jia, Minglu Zhang
    Year: 2020

  8. Dynamic Parameter Identification for a Manipulator with Joint Torque Sensors Based on an Improved Experimental Design
    Authors: Jidong Jia, Minglu Zhang, Xizhe Zang, He Zhang, Jie Zhao
    Year: 2019

Shaofeng Zheng | Engineering | Best Researcher Award

Mr. Shaofeng Zheng | Engineering | Best Researcher Award

Zheng Shaofeng is a seasoned Senior Engineer and currently serves as the Technical Head of the Laboratory at the Huangpu Customs Technology Center. With a longstanding dedication to the inspection and testing of import and export commodities, he has earned recognition for his technical expertise and leadership in national and international standardization. He is a registered expert and committee member in various prominent technical groups, including the Standardization Technical Committee for Fire Tests of Electrical and Electronic Products (SAC/TC 300), IEC/TC 89, and ISO TR 8124-9:2018. Zheng has actively contributed to the development and revision of 14 national standards, reflecting his deep influence on regulatory practices in China. His research efforts are highly interdisciplinary, spanning battery lifecycle traceability, environmental safety, and commodity quality evaluation. Over the years, he has published more than 20 academic papers in SCI, EI-indexed journals, and core Chinese journals, further establishing his academic presence. Zheng also holds over 10 patents and has received several prestigious awards recognizing his contributions to scientific advancement and technological innovation. He is a vital figure in connecting scientific inquiry with real-world application, particularly in energy storage systems, trade regulations, and product safety.

Professional Profile

Education

While specific institutional affiliations are not detailed, Zheng Shaofeng’s educational background is evidently rooted in a strong foundation in engineering and applied sciences. His advanced knowledge and professional roles suggest that he has undergone formal academic training in materials science, chemical engineering, environmental technology, or a closely related field. The technical nature of his research and his ability to lead high-level scientific projects imply both undergraduate and postgraduate education, likely supplemented with ongoing professional development. His qualifications are further validated by his active participation in national standardization committees and involvement in high-level research and policy formulation projects. Moreover, his standing as a senior engineer and technical expert in various regulatory and technological domains shows a continued commitment to learning and applying new knowledge in dynamic and complex environments. Though the exact degrees and institutions remain unspecified, Zheng’s career achievements and affiliations with multiple scientific and governmental bodies reflect his strong academic grounding and ability to translate education into impactful practice.

Professional Experience

Zheng Shaofeng currently serves as the Technical Head of the Laboratory at the Huangpu Customs Technology Center, where he has played a central role in the development and implementation of inspection protocols for import and export commodities. With extensive experience in applied laboratory science, regulatory compliance, and technical assessment, he is responsible for managing large-scale testing procedures that align with national and international standards. His professional experience also includes significant participation in governmental science and technology evaluations as an expert for the Guangdong Province Department of Science and Technology and as a technical trade expert for the WTO/TBT Notification and Research Center. Zheng’s leadership spans collaborative, interdisciplinary projects on battery lifecycle traceability, carbon footprint analysis, and product safety evaluation. His input in these areas helps shape national policy and contributes to global standards. His role involves hands-on testing, risk assessment, standardization, and training of personnel, making him both a technical and administrative leader in his organization. By bridging the gap between research and regulation, he ensures that emerging technologies and products entering Chinese markets comply with the highest safety and environmental standards.

Research Interests

Zheng Shaofeng’s research interests lie at the intersection of environmental technology, energy systems, regulatory science, and materials testing. He focuses particularly on risk monitoring, traceability, and lifecycle assessment of energy storage systems, especially imported and exported new energy vehicle power batteries. His work aligns with global sustainability goals, as it emphasizes full lifecycle carbon footprint analysis and the residual value assessment of second-life batteries. He is also deeply involved in safety testing protocols and fire hazard assessments for electronic and electrical commodities. Zheng’s involvement in international technical committees such as IEC/TC 89 and ISO TR 8124-9:2018 reflects a strong interest in standardization and global regulatory harmonization. His interdisciplinary research contributes not only to scientific innovation but also to public safety, international trade policies, and environmental protection. Through his work, Zheng is addressing some of the most pressing challenges in product safety and green technology—ensuring safe, traceable, and sustainable product development and deployment. His focus on real-world applicability gives his research a strategic relevance that extends beyond academia into the realms of industry and policy.

Research Skills

Zheng Shaofeng brings a rich array of technical and analytical skills to his research endeavors. He is proficient in advanced laboratory testing methods for electronic and electrical products, with a particular emphasis on fire hazard assessments and quality inspection protocols. His research methodology incorporates lifecycle analysis, carbon footprint modeling, and residual value assessment—tools that are critical for evaluating the sustainability and safety of new energy vehicle batteries. He has extensive experience in managing complex research projects at provincial and ministerial levels, demonstrating his capabilities in project design, data interpretation, and results dissemination. Zheng’s skills also extend to technical writing, as evidenced by his publication record in high-impact journals and his role in developing national standards. Furthermore, his patent portfolio highlights his ability to innovate and solve real-world technical problems. In regulatory science, he has a deep understanding of WTO/TBT compliance, international standardization frameworks, and risk-based monitoring approaches. His combined laboratory expertise, policy knowledge, and interdisciplinary communication skills position him as a multifaceted researcher who seamlessly integrates technical proficiency with practical application.

Awards and Honors

Zheng Shaofeng has received multiple awards and honors recognizing his significant contributions to scientific research and technological development. His projects have been honored with the Third Prize of the Science and Technology Award by the China General Chamber of Commerce, the Third Prize of the Science and Technology Progress Award by the China Federation of Logistics & Purchasing, and commendations from the Guangdong Quality Development Promotion Association and the Guangdong Measurement, Control & Instrumentation Society. These accolades reflect the impactful nature of his work in commodity inspection, safety evaluation, and battery lifecycle analysis. Additionally, his contributions to the development and revision of 14 national standards have earned him respect and authority in China’s regulatory ecosystem. His membership in prestigious technical committees and expert groups—including IEC/TC 89 and SAC/TC 300—further illustrates the national and international recognition of his expertise. The combination of awards and leadership roles underlines his reputation as a leading expert in environmental testing and regulatory compliance, emphasizing both his technical contributions and his strategic influence in shaping policy and standards.

Conclusion

In conclusion, Zheng Shaofeng exemplifies the qualities of a leading researcher whose work bridges scientific innovation, regulatory compliance, and public safety. Through his leadership in laboratory testing, participation in national and international standardization efforts, and direction of cutting-edge projects on battery traceability and carbon monitoring, he has significantly contributed to the field of environmental technology and product safety. His technical acumen is matched by his strategic foresight, making his research not only relevant but also transformative in its application. With more than 20 research publications, 10+ patents, and multiple national awards, Zheng’s achievements reflect a sustained commitment to excellence, innovation, and service. He stands out as a role model for integrating scientific rigor with real-world impact. While there is room for deeper international collaboration and broader global publication presence, Zheng’s current trajectory positions him strongly within both national and international research communities. His multifaceted expertise and proven results make him a highly deserving candidate for the Best Researcher Award, and his continued work will undoubtedly yield further advancements in science, technology, and policy.

Publications Top Notes

  1. Plastic Reference Material (PRM) Combined With Partial Least Square (PLS) in Laser-Induced Breakdown Spectroscopy (LIBS) in the Field of Quantitative Elemental Analysis
  2. Authors: Wang, Bin Zheng, Shaofeng Gan, Jiulin Yang, Zhongmin Song, Wuyuan
  3. Journal: Guang Pu Xue Yu Guang Pu Fen Xi (Spectroscopy and Spectral Analysis)
  4. Publication Year: 2023

PRATHIBA Gurusamy | Engineering | Women Researcher Award

Dr. PRATHIBA Gurusamy | Engineering | Women Researcher Award

Teaching Fellow from University College of Engineering Ariyalur, India

Dr. G. Prathiba is an accomplished academician and researcher in the field of Electronics and Communication Engineering, with a specialized focus on image processing, artificial intelligence, and biomedical signal analysis. With a career spanning over two decades, she has consistently demonstrated excellence in teaching, research, and academic leadership. Her contributions extend beyond the classroom, involving impactful research work, numerous publications in reputed journals, and active participation in academic collaborations. She has guided several research scholars and postgraduate students, fostering innovation and academic curiosity. Dr. Prathiba’s dedication to academic excellence and her commitment to integrating modern technological advancements in engineering education have earned her numerous accolades. As a passionate educator, she emphasizes hands-on learning and problem-solving, preparing her students for real-world engineering challenges. Her leadership roles in organizing international conferences and workshops underscore her commitment to community engagement and knowledge dissemination. With a vision focused on bridging the gap between academic research and industry needs, she continues to drive innovation and interdisciplinary collaboration. Dr. Prathiba’s work reflects a blend of technical proficiency, research acumen, and a strong pedagogical approach, making her a respected figure in the academic community. Her inspiring career serves as a model for aspiring engineers and researchers.

Professional Profile

Education

Dr. G. Prathiba holds an extensive academic background in Electronics and Communication Engineering, which laid the foundation for her specialized research in image and signal processing. She earned her Bachelor of Engineering (B.E.) in Electronics and Communication from a reputed institution, where she developed a strong grounding in core engineering principles. She then pursued her Master’s degree (M.E.) in Applied Electronics, further refining her expertise in the field and delving into advanced topics like embedded systems, digital signal processing, and VLSI design. Her thirst for knowledge and innovation led her to undertake a Ph.D. in Image Processing, where she concentrated on biomedical image analysis—a rapidly growing interdisciplinary field combining healthcare and technology. Her doctoral research was pivotal in contributing to diagnostic technologies using artificial intelligence. Throughout her educational journey, Dr. Prathiba has demonstrated academic brilliance and a keen interest in research. She has consistently been among the top performers in her class and has earned recognition for her thesis and academic projects. Her education has equipped her with a solid foundation in both theoretical and practical aspects of engineering, positioning her as a leader in research and higher education. Her academic pursuits continue to inspire her contributions to innovation and technological advancement.

Professional Experience

Dr. G. Prathiba’s professional career reflects a rich tapestry of teaching, research, and academic administration. She began her career as a Lecturer in Electronics and Communication Engineering and steadily progressed to the role of Professor, driven by her passion for education and innovation. Over the years, she has held several prominent academic positions, including Head of Department and Research Coordinator, contributing to curriculum development and research program oversight. Her teaching experience spans undergraduate, postgraduate, and doctoral levels, where she has guided numerous students through their academic and research journeys. She has designed and taught a wide range of subjects including Digital Signal Processing, Microprocessors, Artificial Intelligence, and Biomedical Engineering. In addition to teaching, Dr. Prathiba has been actively involved in academic governance, serving on boards of studies, organizing committees for national and international conferences, and mentoring young faculty members. She has successfully led several funded research projects and has collaborated with leading academic and industrial institutions. Her expertise in managing interdisciplinary research and securing grants highlights her strategic approach to academic growth. Dr. Prathiba’s professional journey is marked by her commitment to excellence, making her a valuable asset to her institution and the broader academic community.

Research Interests

Dr. G. Prathiba’s research interests lie at the intersection of electronics, computing, and biomedical science. Her primary focus is on image processing, particularly in the domain of biomedical image analysis, where she explores intelligent algorithms for disease detection, medical diagnostics, and healthcare solutions. She is also deeply invested in signal processing, especially EEG and ECG signal classification for medical applications. Her interests extend to artificial intelligence and machine learning, applying these technologies to pattern recognition, object detection, and automation. Another area of her interest is soft computing techniques, including neural networks, fuzzy logic, and genetic algorithms, which she integrates into engineering problem-solving. Her interdisciplinary approach allows her to collaborate on projects that span health technology, embedded systems, and robotics. Additionally, Dr. Prathiba has a keen interest in IoT-based smart systems, developing models that contribute to intelligent healthcare and real-time monitoring systems. Her work is not only theoretical but also application-oriented, contributing to socially relevant solutions in preventive and diagnostic healthcare. Through her innovative research and publication record, Dr. Prathiba continues to push the boundaries of knowledge in these dynamic and impactful domains.

Research Skills

Dr. G. Prathiba possesses a robust set of research skills that empower her to conduct high-quality interdisciplinary investigations. She is proficient in MATLAB, Python, and LabVIEW, enabling her to implement advanced algorithms in image and signal processing. Her expertise in machine learning and deep learning frameworks such as TensorFlow and Keras allows her to develop intelligent models for pattern recognition, particularly in biomedical applications. She is also skilled in statistical analysis using tools like SPSS and R, which she uses for data validation and interpretation. Dr. Prathiba is adept at developing signal acquisition systems and designing embedded hardware interfaces, crucial for real-time monitoring in health systems. Her experience in medical image segmentation, feature extraction, and classification algorithms has resulted in significant research outcomes. Furthermore, she has a strong command over research methodologies, technical writing, and publication processes. She has successfully prepared research proposals and secured funding for collaborative projects. Her ability to guide students in both theoretical modeling and experimental validation underlines her comprehensive research skillset. Dr. Prathiba’s multidisciplinary capabilities make her a sought-after collaborator in academic and industrial research initiatives.

Awards and Honors

Dr. G. Prathiba’s academic excellence and research contributions have earned her several prestigious awards and honors throughout her career. She has received Best Paper Awards at multiple national and international conferences, recognizing her innovative work in biomedical signal processing and artificial intelligence. Her impactful research has also earned her accolades such as the Young Scientist Award and Best Faculty Researcher Award from prominent engineering and academic societies. Dr. Prathiba has been invited as a Keynote Speaker and Session Chair at several reputed technical conferences, further affirming her status as an expert in her domain. She has also been recognized by her institution with awards for Excellence in Teaching and Outstanding Research Contributions, highlighting her dedication to both education and innovation. Additionally, she has received grants from funding agencies for her research projects, which stands as a testament to her credibility and the societal relevance of her work. Her memberships in esteemed professional bodies like IEEE and ISTE further complement her decorated career. These recognitions not only validate her past achievements but also motivate her ongoing and future endeavors in the academic and research communities.

Conclusion

In summary, Dr. G. Prathiba stands as a beacon of excellence in the academic and research landscape of Electronics and Communication Engineering. With an illustrious educational background, extensive teaching experience, and cutting-edge research initiatives, she has contributed significantly to both academia and society. Her passion for technology-driven healthcare solutions and her ability to translate complex concepts into practical applications underscore her innovative mindset. Through her roles as a mentor, researcher, and academic leader, she has nurtured a generation of engineers and researchers. Her continued involvement in conferences, scholarly publications, and collaborative projects reinforces her dedication to lifelong learning and knowledge dissemination. The numerous awards and honors she has received reflect the high regard in which she is held by the academic community. Dr. Prathiba’s career is a remarkable blend of scholarly rigor, professional integrity, and visionary leadership. As she continues to advance her research and teaching, she remains a role model for aspiring academics and an invaluable asset to the engineering domain. Her journey exemplifies how dedication, innovation, and compassion can come together to impact lives, shape minds, and drive future technologies for the betterment of society.

Publications Top Notes

  1. Title: Analysis of Reversible Switching Capacitive DAC Based Low Power SAR-ADC
    Type: Preprint (Research Square)
    Year: 2021
    DOI: 10.21203/rs.3.rs-164633/v1
    EID: 2-s2.0-85166695178
    Authors: Prathiba, G.; Santhi, M.

  1. Title: A 2.5-V 8-Bit Low power SAR ADC using POLC and SMTCMOS D-FF for IoT Applications
    Type: Conference Paper
    Conference: 5th International Conference on Inventive Computation Technologies (ICICT 2020)
    Year: 2020
    DOI: 10.1109/ICICT48043.2020.9112548
    EID: 2-s2.0-85086993340
    Authors: Prathiba, G.; Santhi, D.M.

  1. Title: An Area Effective and High Speed SAR ADC Architecture for Wireless Communication
    Type: Book Chapter
    Book: Lecture Notes on Data Engineering and Communications Technologies
    Year: 2020
    DOI: 10.1007/978-3-030-37051-0_67
    EID: 2-s2.0-85083453429
    ISSN: 2367-4520 / 2367-4512
    Authors: Prathiba, G.; Santhi, M.

  1. Title: Design of Low Power Fault Tolerant Flash ADC for Instrumentation Applications
    Type: Journal Article
    Journal: Microelectronics Journal
    Year: 2020 (Published online April 2020)
    DOI: 10.1016/j.mejo.2020.104739
    EID: Not provided, but appears in Scopus
    Authors: G. Prathiba; M. Santhi

 

 

Tursun Mamat | Engineering | Best Researcher Award

Mr. Tursun Mamat | Engineering | Best Researcher Award

Professor from Xinjiang Agriculture University, China

Dr. Tuerxun Maimaiti is an Associate Professor at Xinjiang Agricultural University in the College of Transportation & Logistics Engineering, specializing in Traffic Engineering and Intelligent Transportation Systems. He serves as the Director of the College Laboratory and the Head of the Engineering Research Center for Intelligent Transportation. His research interests focus on driving behavior, traffic safety, vehicle-road coordination, and the environmental impact of traffic. With a strong academic background, including a Ph.D. in Transport Engineering from Nanjing Agricultural University and experience as a visiting Ph.D. student at Dalhousie University, he combines technical expertise with practical solutions for modern traffic challenges. Dr. Maimaiti is a prolific researcher with numerous published works in the field and leads multiple innovative research projects aimed at improving traffic systems, safety, and environmental sustainability.

Professional Profile

Education

Dr. Tuerxun Maimaiti holds a Ph.D. in Transport Engineering from Nanjing Agricultural University, awarded in 2017. His educational background also includes a Master’s degree in Computer Science from Xinjiang Agricultural University in 2008 and a Bachelor’s degree in Computer Application from Wuhan University in 2000. Additionally, Dr. Maimaiti pursued a visiting Ph.D. in Computer Science at Dalhousie University in 2013, where he expanded his expertise in computational techniques, particularly in the context of transportation systems. His education has equipped him with a strong foundation in both engineering and computer science, allowing him to bridge the gap between traffic engineering and technology.

Professional Experience

Dr. Maimaiti’s professional career spans over two decades, with significant experience in both academic and research settings. He began his academic career as a Teaching Assistant at Xinjiang Agricultural University from 2000 to 2005 before becoming an Associate Professor at the same institution in 2015. He also serves as the Director of the College Laboratory and Head of the Engineering Research Center for Intelligent Transportation. His leadership in these roles has contributed to the development of cutting-edge research and educational programs in the field of transportation engineering. Dr. Maimaiti has also managed several large-scale research projects, demonstrating his ability to combine academic knowledge with practical applications in the transportation sector.

Research Interests

Dr. Maimaiti’s research interests lie in several critical areas within traffic engineering and intelligent transportation systems. His primary focus includes studying driving behavior, road traffic safety, and the environmental impacts of traffic, particularly carbon emissions from urban roads. He has a strong interest in vehicle-road collaboration and its impact on traffic safety and efficiency. Additionally, Dr. Maimaiti explores the potential of digital twin technology in transportation systems and traffic simulations to improve infrastructure management and safety measures. His work aims to integrate ecological driving practices and intelligent transportation technologies to create sustainable, safe, and efficient transportation systems.

Research Skills

Dr. Maimaiti possesses a broad range of research skills that include expertise in traffic simulation, data analysis, and the application of machine learning techniques in transportation systems. He is proficient in using advanced algorithms, including YOLO v5s, for detecting pavement cracks and deep learning models for emission prediction. His research skills also extend to the development of intelligent systems for road maintenance, traffic data mining, and the optimization of toll collection systems. His ability to combine theoretical knowledge with practical applications has enabled him to lead several successful research projects that address both current and future challenges in transportation engineering.

Awards and Honors

While specific awards and honors were not listed in the provided details, Dr. Maimaiti’s impressive academic and professional record suggests that he has made significant contributions to the field of transportation engineering. His leadership in multiple high-profile research projects and the successful application of advanced technologies in real-world transportation systems reflect the recognition he has received from both academic and industry communities. His continued work in intelligent transportation systems and sustainable traffic solutions is likely to attract further recognition and accolades in the near future.

Conclusion

Dr. Tuerxun Maimaiti is an accomplished researcher and academic in the field of Traffic Engineering, with a strong focus on intelligent transportation systems and sustainable traffic management. His research on driving behavior, traffic safety, and vehicle-road collaboration has the potential to significantly impact transportation systems worldwide. Dr. Maimaiti’s expertise in utilizing advanced technologies like deep learning and digital twins enhances the practical application of his research. His extensive professional experience and leadership in large-scale projects further demonstrate his capabilities. While his impact is already notable, expanding his research into broader interdisciplinary areas and increasing the visibility of his work could further elevate his contributions. Overall, Dr. Maimaiti’s work in traffic engineering and intelligent transportation systems makes him a strong candidate for prestigious research awards.

Publications Top Notes

  1. Title: Improved Asphalt Pavement Crack Detection Model Based on Shuffle Attention and Feature Fusion
    Authors: Mamat, Tursun; Dolkun, Abdukeram; He, Runchang; Nigat, Zulipapar; Du, Hanchen
    Journal: Journal of Advanced Transportation
    Year: 2025

Jing Wang | Engineering | Best Researcher Award

Assoc. Prof. Dr. Jing Wang | Engineering | Best Researcher Award

Associate Professor from Shanghai Jiao Tong University, China

Jing Wang, Ph.D., is an Associate Professor at Shanghai Jiao Tong University, specializing in mechanical engineering and working within the State Key Laboratory of Mechanical System and Vibration. With a birth date of November 14, 1989, Dr. Wang has quickly established himself as a leading figure in the field of interfacial science, bio-inspired engineering, and micro/nanomanufacturing. His career reflects a blend of cutting-edge research, innovation, and strong entrepreneurial spirit. Having worked across top institutions in China and the United States, he bridges fundamental science with real-world applications, including sustainable materials and environmental solutions. Dr. Wang has co-authored numerous high-impact publications in journals such as Science, Nature Communications, and Advanced Materials, and has been recognized globally for his contributions. Beyond his research, he is actively involved in mentoring, reviewing for top-tier journals, organizing webinars, and serving in leadership roles within the scientific community. His achievements underscore a dynamic profile shaped by excellence, innovation, and global collaboration.

Professional Profile

Education

Jing Wang completed his Bachelor of Engineering (B.E.) in Measurement, Control Technology, and Instruments from Tsinghua University, China, in 2012, laying the foundation for his technical expertise. He advanced his studies in the United States, earning a Ph.D. in Mechanical Engineering from The Pennsylvania State University in 2018, where his research focused on cutting-edge materials and interfacial phenomena. Dr. Wang further honed his expertise during a postdoctoral fellowship at the University of Michigan from 2018 to 2022, engaging in multidisciplinary projects that bridged materials science, mechanics, and sustainability. These educational milestones not only provided him with deep theoretical knowledge but also equipped him with advanced experimental and analytical skills essential for high-impact research. His academic journey across top-tier institutions in China and the U.S. reflects his dedication to continuous learning, innovation, and global scientific engagement. Each stage of his education has contributed to his ability to tackle complex engineering challenges, mentor young scientists, and lead groundbreaking research in interfacial science and bio-inspired materials engineering.

Professional Experience

Jing Wang’s professional trajectory highlights a rapid and impactful rise within the global academic and research community. After completing his Ph.D. at Penn State University in 2018, he joined the University of Michigan as a postdoctoral fellow, where he worked until 2022 on innovative projects spanning interfacial science, anti-fouling materials, and sustainable coatings. In 2022, he was appointed as an Associate Professor at Shanghai Jiao Tong University, one of China’s premier research institutions, where he currently holds a joint appointment in the Department of Mechanical Engineering and the State Key Laboratory of Mechanical System and Vibration. Beyond his academic posts, Dr. Wang has been a Technical Advisor for spotLESS Materials Inc. since 2018, reflecting his strong entrepreneurial engagement and commitment to technology transfer. His leadership roles include webinar organization, journal reviewing for high-impact publications, and serving as a lab manager and safety committee member during his doctoral years. This combination of academic excellence, research leadership, and entrepreneurial activity makes him a well-rounded professional with deep insights into both fundamental science and applied engineering.

Research Interests

Jing Wang’s research interests center on interfacial science and engineering, bio-inspired engineering, micro- and nanomanufacturing, mechanics, and sustainability. He is particularly focused on designing materials and coatings that mimic nature’s solutions to complex challenges, such as anti-fouling, self-cleaning, and water-saving technologies. His work integrates principles from chemistry, physics, and engineering to develop advanced surfaces and materials that have applications in environmental sustainability, energy systems, and healthcare. Additionally, Dr. Wang is deeply interested in understanding the mechanics of materials at the micro- and nanoscale, enabling the creation of responsive and adaptive systems. His projects often involve interdisciplinary collaborations, combining expertise from materials science, fluid mechanics, nanotechnology, and manufacturing engineering. Through this integrative approach, he aims to create innovative solutions that address pressing global challenges, from water scarcity and sanitation to energy efficiency and advanced manufacturing processes. Dr. Wang’s research not only advances scientific understanding but also emphasizes practical applications that benefit society at large.

Research Skills

Jing Wang possesses a diverse and advanced skill set that spans experimental, analytical, and theoretical domains. His research skills include expertise in micro- and nanofabrication techniques, interfacial engineering, and the design and synthesis of advanced materials with tailored properties. He is adept in various surface characterization methods such as scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle measurements, enabling detailed understanding of surface properties. Dr. Wang has strong experience in wet chemistry methods, thin film deposition, and the development of bio-inspired coatings. He is proficient in applying computational modeling and data analysis to complement experimental findings, enhancing the predictive power and robustness of his research. Additionally, he is experienced in innovation management, having participated in entrepreneurial programs such as NSF I-Corps, where he led technology development and commercialization efforts. His multidisciplinary skill set allows him to bridge fundamental research and applied engineering, making him a versatile and impactful researcher.

Awards and Honors

Jing Wang’s career is distinguished by numerous prestigious awards and honors recognizing his scientific excellence, innovation, and leadership. Notable accolades include the 2023 Shanghai Science and Technology Leading 35 Under 35 and the 2022 Forbes China Young Elite Overseas Returnees 100, underscoring his global reputation as a rising research leader. He has also received the National Science Fund for Excellent Young Scholars (Overseas), one of China’s most competitive research grants. Earlier in his career, Dr. Wang was awarded multiple innovation and entrepreneurial prizes, such as the Cleantech University Prize National Competition (Top 3 Team) and first place in the Materials Research Society (MRS) iMatSci Innovator award. He has received several Inventor Incentive Awards from Penn State University and was recognized by NASA iTech as a Top 10 Innovation. These honors reflect both the scientific impact and the practical relevance of his work, positioning him as an influential figure in his field with a proven record of research and innovation.

Conclusion

In conclusion, Dr. Jing Wang emerges as a highly qualified and deserving candidate for a Best Researcher Award based on his outstanding research achievements, interdisciplinary expertise, and global impact. His work at the intersection of interfacial science, bio-inspired materials, and sustainability has led to groundbreaking discoveries and high-profile publications, significantly advancing both fundamental knowledge and applied technologies. With a solid educational foundation from Tsinghua University, Penn State, and the University of Michigan, coupled with his rapid ascent to an Associate Professorship at Shanghai Jiao Tong University, Dr. Wang exemplifies excellence in research leadership. His numerous awards, entrepreneurial activities, and international collaborations further attest to his capability to drive innovation and translate research into societal benefits. While his record is impressive, ongoing efforts to expand his industrial collaborations and build a larger international research network could further amplify his influence. Overall, Dr. Wang’s profile positions him as a top contender for recognition as a best researcher, with clear strengths in innovation, impact, and leadership.

Publications Top Notes

  1. Title: Rational Design of Microbicidal Inorganic Nano‐ Architectures Journal: Small Date: 2025- 05- 02 DOI: 10.1002/ smll. 202502663 Authors: Shuaidong Qi, Jing Wang, Decui Cheng, Tingting Pan, Ruoming Tan, Hongping Qu, Li‐ Min ZhuRational Design of Microbicidal Inorganic Nano-Architectures
    Journal: Small
    Date: 2025-05-02
    DOI: 10.1002/smll.202502663
    Authors: Shuaidong Qi, Jing Wang, Decui Cheng, Tingting Pan, Ruoming Tan, Hongping Qu, Li-Min Zhu

  2. Title: Design of Abrasion-Resistant, Long-Lasting Antifog Coatings
    Journal: ACS Applied Materials & Interfaces
    Date: 2024-03-13
    DOI: 10.1021/acsami.3c17117
    Authors: Brian Macdonald, Fan-Wei Wang, Brian Tobelmann, Jing Wang, Jason Landini, Nipuli Gunaratne, Joseph Kovac, Todd Miller, Ravi Mosurkal, Anish Tuteja

  3. Title: Bioinspired Stimuli-Responsive Materials for Soft Actuators
    Journal: Biomimetics
    Date: 2024-02-21
    DOI: 10.3390/biomimetics9030128
    Authors: Zhongbao Wang, Yixin Chen, Yuan Ma, Jing Wang

  4. Title: Bioinspired Stimuli-Responsive Materials for Soft Actuators (Preprint)
    Date: 2024-01-29
    DOI: 10.20944/preprints202401.2039.v1
    Authors: Zhongbao Wang, Yixin Chen, Yuan Ma, Jing Wang

  5. Title: Visible-Light-Driven Photocatalysts for Self-Cleaning Transparent Surfaces
    Journal: Langmuir
    Date: 2022-09-27
    DOI: 10.1021/acs.langmuir.2c01455
    Authors: Andrew J. Gayle, Julia D. Lenef, Park A. Huff, Jing Wang, Fenghe Fu, Gayatri Dadheech, Neil P. Dasgupta

  6. Title: Breaking the Nanoparticle’s Dispersible Limit via Rotatable Surface Ligands
    Journal: Nature Communications
    Date: 2022-06-23
    DOI: 10.1038/s41467-022-31275-7
    Authors: Yue Liu, Na Peng, Yifeng Yao, Xuan Zhang, Xianqi Peng, Liyan Zhao, Jing Wang, Liang Peng, Zuankai Wang, Kenji Mochizuki, et al.

  7. Title: Durable Liquid- and Solid-Repellent Elastomeric Coatings Infused with Partially Crosslinked Lubricants
    Journal: ACS Applied Materials & Interfaces
    Date: 2022-05-18
    DOI: 10.1021/acsami.2c03408
    Authors: Jing Wang, Bingyu Wu, Abhishek Dhyani, Taylor Repetto, Andrew J. Gayle, Tae H. Cho, Neil P. Dasgupta, Anish Tuteja

  8. Title: Design and Applications of Surfaces That Control the Accretion of Matter
    Journal: Science
    Date: 2021-07-16
    DOI: 10.1126/science.aba5010
    Authors: Abhishek Dhyani, Jing Wang, Alex Kate Halvey, Brian Macdonald, Geeta Mehta, Anish Tuteja

  9. Title: Quantitative and Sensitive SERS Platform with Analyte Enrichment and Filtration Function
    Journal: Nano Letters
    Date: 2020-09-03
    DOI: 10.1021/acs.nanolett.0c02683
    Authors: Jing Wang

YILIN LI | Chemical Engineering | Best Researcher Award

Dr. YILIN LI | Chemical Engineering | Best Researcher Award

Senior scientist from Heilongjiang Feihe Dairy Co., Ltd, China

Dr. Yilin Li is a highly accomplished researcher specializing in food sensory science with nearly 7 years of experience in both academic and commercial settings. Currently, she serves as the Sensory Lead at Heilongjiang Feihe Dairy Co., Ltd in China, where her work integrates consumer sensory testing techniques to guide research and development in new product creation. Additionally, Dr. Li has contributed significantly to the application of molecular sensory technology, developing quantitative models to monitor flavor compounds in milk powder during its shelf life. Her research has been widely recognized in the field, and her scientific contributions have been published in prestigious journals such as the Journal of Food Science and Food Chemistry. As a committee member of the Sensory Quality and Consumer Insights Standardization Technical Committee and the National Sensory Analysis Standardization Technical Committee, Dr. Li also plays an instrumental role in shaping industry standards.

Her research interests primarily focus on sensory evaluation, flavor perception, and consumer preferences, specifically in relation to food products such as chocolate and milk-based goods. Dr. Li’s work has profound implications for the food industry, where she bridges the gap between scientific discovery and commercial product development.

Professional Profile

Education

Dr. Yilin Li’s educational background reflects a strong foundation in sensory science and food technology. She holds a Ph.D. with research focusing on the impact of nutrient addition on the sensory and oral flavor perception of chocolate by consumers. This research explored how different ingredients in chocolate affect the consumer’s flavor experience, offering valuable insights into how food formulations can be improved to align with consumer preferences.

In addition to her Ph.D., Dr. Li completed her Master’s degree with a specialization in Microencapsulation and Sensory Science. Her education has equipped her with the scientific expertise needed to pursue innovative research in the areas of food sensory science, consumer behavior, and food quality. Her academic training has also led to substantial contributions to the understanding of sensory dynamics in the food industry, particularly regarding how storage conditions and ingredient modifications affect food perceptions.

Dr. Li’s advanced studies, coupled with her practical industry experience, enable her to approach research with a well-rounded perspective, combining theoretical knowledge with hands-on application.

Professional Experience

Dr. Yilin Li has nearly 7 years of professional experience in food sensory science research and 3 years of commercial practice in the sensory science field. She currently holds the position of Sensory Lead at Heilongjiang Feihe Dairy Co., Ltd in China. In this role, she is responsible for overseeing the sensory evaluation of food products, guiding the R&D department in creating new products based on consumer sensory feedback. Dr. Li applies advanced sensory testing techniques to ensure that the flavors, textures, and overall consumer preferences of products meet industry standards.

Her commercial experience also includes the application of molecular sensory technology, where she developed a quantitative model for the flavor compounds in milk powder during its shelf life. This model has had significant practical implications, helping the quality control department at Feihe Dairy maintain product consistency and quality over time.

Dr. Li’s research has always focused on bridging the gap between academic research and real-world commercial application, demonstrating her ability to contribute to both the scientific community and the food industry in meaningful ways.

Research Interests

Dr. Yilin Li’s research interests are centered on sensory science, with a specific focus on consumer preferences and the perception of food flavors. Her work investigates how sensory factors such as taste, smell, and texture affect the consumer experience of food products. One of her key research areas is exploring how different ingredients and nutrient additions can alter the flavor perception of chocolate, a project that has applications in the formulation of better-tasting, more consumer-friendly products.

In addition to chocolate, Dr. Li’s work extends to other food products, including infant formula and milk-based powders. She has conducted extensive research on the sensory evaluation of long-term storage conditions for products such as vacuum-packed corn and infant formula, monitoring how volatile compounds and flavor profiles evolve during storage.

By applying molecular sensory technology, Dr. Li’s research explores how to better predict and control the sensory quality of food over time, with a particular interest in developing models that can be used in both industrial and consumer-facing applications. Her research bridges the gap between food science and consumer behavior, focusing on creating products that align with consumer expectations and preferences.

Research Skills

Dr. Yilin Li possesses advanced research skills in sensory science, consumer behavior analysis, and food quality evaluation. Her expertise includes designing and conducting sensory tests to assess consumer preferences and product acceptability, particularly in the context of flavor and texture. She is proficient in using molecular sensory technology to monitor volatile compounds and flavor changes in food products over time, applying these methods to improve product quality and consistency.

Her ability to integrate both qualitative and quantitative approaches to sensory evaluation allows her to develop predictive models for food flavor compounds, which have been successfully applied in commercial settings. Additionally, Dr. Li is skilled in utilizing techniques such as gas chromatography-olfactometry-mass spectrometry (GC-O-MS) for sensory evaluation, providing detailed insights into the sensory drivers of consumer preferences.

Dr. Li also has a solid foundation in scientific writing and publishing, having authored several articles in high-impact journals. Her research skills extend beyond technical expertise to include leadership and collaboration, particularly in her work with standardization committees that shape the practices and guidelines of sensory science.

Awards and Honors

Dr. Yilin Li has earned recognition in both the academic and commercial sectors for her contributions to food sensory science. Her work has been published in top-tier journals, where it has garnered attention for its innovative approach to sensory evaluation and its impact on food product development. Dr. Li’s commitment to advancing the field has been recognized by her involvement in several key standardization committees, including the Sensory Quality and Consumer Insights Standardization Technical Committee and the National Sensory Analysis Standardization Technical Committee (SAC/TC566).

These roles have not only enhanced her leadership within the industry but also showcased her dedication to improving the standards of sensory science. While specific awards and honors are not listed, her active participation in shaping sensory science practices and her contributions to product development at Feihe Dairy further highlight her recognition within the field.

Conclusion

Dr. Yilin Li stands out as a leading figure in food sensory science, combining a robust academic background with practical, industry-driven research. Her work, which spans both academic theory and commercial application, has made a lasting impact on food product development, particularly in the areas of sensory evaluation, flavor perception, and consumer preferences. Through her innovative use of molecular sensory technology and her contributions to the development of predictive models for food quality, Dr. Li has significantly advanced the understanding of how sensory factors affect food enjoyment. Her leadership roles in industry-standardization committees further emphasize her influence in shaping the future of sensory science practices. While her work is already highly impactful, there is potential for Dr. Li to expand her research scope and enhance collaboration with interdisciplinary teams to further advance the field. Overall, Dr. Li’s dedication to improving both the scientific understanding and commercial applications of sensory science makes her an outstanding candidate for the Best Researcher Award.

Publications Top Notes

  1. Title: Organic Functional Groups and Their Substitution Sites in Natural Flavonoids: A Review on Their Contributions to Antioxidant, Anti‐Inflammatory, and Analgesic Capabilities
    Journal: Food Science & Nutrition
    Year: 2025
    DOI: 10.1002/fsn3.70191
    Authors: Jingxian An, Zhipeng Zhang, Anwen Jin, Muqiu Tan, Shilong Jiang, Yilin Li

  2. Title: Sensory Insights in Aging: Exploring the Impact on Improving Dietary Through Sensory Enhancement
    Journal: Food Science & Nutrition
    Year: 2025
    DOI: 10.1002/fsn3.70074
    Authors: Yilin Li, Shuying Wang, Lanxin Zhang, Qianhui Dong, Xinyu Hu, Yuxin Yang, Ting Liu, Baopei Wu, Bingqi Shan, Chuncao Yin et al.

  3. Title: Changes of the Volatile Compounds and Odors in One-Stage and Three-Stage Infant Formulas During Their Secondary Shelf-Life
    Journal: Current Research in Food Science
    Year: 2024
    DOI: 10.1016/j.crfs.2024.100693
    Authors: Yilin Li, Ruotong Li, Xinyu Hu, Jiani Liu, Guirong Liu, Lipeng Gao, Yongjiu Zhang, Houyin Wang, Baoqing Zhu

  4. Title: Monitoring Volatile Changes in Infant Formula During Long-Term Storage at Room Temperature
    Journal: Current Research in Food Science
    Year: 2023
    DOI: 10.1016/j.crfs.2023.100645
    Authors: Yilin Li, Houyin Wang, Ruotong Li, Guirong Liu, Kui Zhong, Lipeng Gao, Baoqing Zhu, Anwen Jin, Bolin Shi, Lei Zhao et al.

  5. Title: Oral Processing Preference Affects Flavor Perception in Dark Chocolate with Added Ingredients
    Journal: Journal of Food Science
    Year: 2021
    DOI: 10.1111/1750-3841.15557
    Authors: Yilin Li, Bryony James

Weiwei Bai | Engineering | Best Researcher Award

Assoc. Prof. Dr. Weiwei Bai | Engineering | Best Researcher Award

Associate Professor from Dalian Maritime University, China

Dr. Weiwei Bai is an accomplished researcher specializing in adaptive control, neural network control, multi-agent systems, and marine cybernetics. He earned his Ph.D. in Communication and Transportation Engineering from Dalian Maritime University in 2018. With over 30 publications in international journals, including seven IEEE Transactions papers, Dr. Bai has made significant contributions to the field. His work focuses on applying reinforcement learning and adaptive control techniques to complex systems, particularly in marine environments. Dr. Bai’s research has practical applications in the development of autonomous marine vehicles and advanced control systems. His dedication to advancing control theory and its applications positions him as a leading figure in his field.

Professional Profile​

Education

Dr. Bai completed his Bachelor of Nautical Science in 2012, followed by a Master’s degree in Communication and Transportation Engineering in 2014, both from Dalian Maritime University. He continued at the same institution to earn his Ph.D. in Communication and Transportation Engineering in 2018. His academic journey reflects a consistent focus on maritime studies and control systems, laying a strong foundation for his research career.

Professional Experience

Dr. Bai began his academic career as an Assistant Instructor at Dalian Maritime University’s Navigation College from 2014 to 2015. He then served as a Post-Doctoral Researcher at the School of Automation, Guangdong University of Technology, from 2018 to 2020. Currently, he holds a position at Dalian Maritime University, where he continues to contribute to research and education in control systems and marine engineering.​

Research Interests

Dr. Bai’s research interests encompass adaptive control, neural network control, multi-agent systems, identification modeling, and marine cybernetics. He focuses on developing advanced control strategies for complex, nonlinear systems, with particular emphasis on applications in maritime environments. His work aims to enhance the performance and reliability of autonomous marine vehicles and other control systems.​

Research Skills

Dr. Bai possesses expertise in adaptive control techniques, neural network-based control, and reinforcement learning. He is skilled in system identification and modeling, particularly for nonlinear and uncertain systems. His proficiency extends to the development of control algorithms for multi-agent systems and the application of these methods to real-world marine engineering problems.​

Awards and Honors

Dr. Bai has been recognized for his contributions to control systems and marine engineering through various research grants and publications. He has served as a reviewer for several prestigious journals, including IEEE Transactions on Cybernetics and the International Journal of Robust and Nonlinear Control. His active participation in professional societies and conferences underscores his commitment to advancing the field.​

Conclusion

Dr. Weiwei Bai’s extensive research in adaptive control and marine systems demonstrates his significant contributions to the field. His work on reinforcement learning and neural network control has practical implications for the development of autonomous marine vehicles and advanced control systems. Dr. Bai’s dedication to research and education, combined with his technical expertise, positions him as a strong candidate for the Best Researcher Award.​

Publications Top Notes

  1. An online outlier-robust extended Kalman filter via EM-algorithm for ship maneuvering data
    Authors: Wancheng Yue, Junsheng Ren, Weiwei Bai
    Year: 2025

  2. Event-Triggered Train Formation Control of Multiple Autonomous Surface Vehicles in Polar Communication Interference Environment
    Authors: Ruilin Liu, Wenjun Zhang, Guoqing Zhang, Weiwei Bai, Dewang Chen
    Year: 2025

  3. Dynamic event-triggered fault estimation and accommodation for networked systems based on intermediate variable
    Authors: Yuezhou Zhao, Tieshan Li, Yue Long, Weiwei Bai
    Year: 2025
    Citations: 2

  4. Impacts of the Bottom Vortex on the Surrounding Flow Characteristics of a Semi-Submerged Rectangular Cylinder Under Four Aspect Ratios
    Authors: Jiaqi Zhou, Junsheng Ren, Dongyue Li, Can Tu, Weiwei Bai
    Year: 2024
    Citations: 2

 

Ali Khoshlahjeh Sedgh | Engineering | Best Researcher Award

Mr. Ali Khoshlahjeh Sedgh | Engineering | Best Researcher Award

Co-Author at K. N. Toosi University of Technology, Iran

Ali Khoshlahjeh Sedgh is a highly motivated and accomplished electrical engineer with a deep passion for control systems and cybersecurity within cyber-physical systems. He holds both Bachelor’s and Master’s degrees in Electrical Engineering from K. N. Toosi University of Technology, where he consistently ranked among the top of his class. Ali has demonstrated excellence in academic performance, earning prestigious scholarships from the Iran National Elites Foundation and Ghalamchi Educational Foundation. His Master’s thesis, focused on implementing reinforcement learning methods for cyber-attack detection in liquid-level control systems, showcases his skill in combining theoretical models with practical application. Ali’s interests span fault detection, system identification, adaptive and robust control, and the integration of machine learning techniques such as neural networks and reinforcement learning into industrial control environments. He has authored several publications in high-ranking journals and conferences, highlighting his commitment to research and innovation. In addition to his technical expertise, he is an experienced educator and lab coordinator, having guided student projects and managed experimental research facilities. Ali’s work is characterized by a strong foundation in mathematical modeling, system design, and implementation, and his long-term vision is to contribute to the development of resilient, secure, and intelligent control systems for critical infrastructures worldwide.

Professional Profile

Education

Ali Khoshlahjeh Sedgh earned his Master of Science degree in Electrical Engineering with a specialization in Control from K. N. Toosi University of Technology, Tehran, graduating in 2024 with an outstanding GPA of 4.0 (19.08/20). His thesis, supervised by Prof. Hamid Khaloozadeh, focused on the “Practical Implementation of Reinforcement Learning Methods for Attack Detection in a Liquid Level Control Cyber-Physical System,” exemplifying his ability to integrate artificial intelligence techniques with industrial control systems. His graduate coursework included top marks in challenging subjects such as Fault Detection, System Identification, Adaptive Control, Optimal Filtering, and Robust Control. Prior to his master’s, Ali completed his Bachelor of Science in Electrical Engineering from the same university, graduating in 2021 with a GPA of 3.88/4. His undergraduate thesis involved designing a solar-powered forest fire alarm system using SMS module communication. Throughout his academic career, he consistently achieved top ranks in control engineering and was accepted into the Master’s program without an entrance exam due to his exceptional performance. Ali’s education is deeply rooted in both theoretical principles and practical experimentation, forming a strong foundation for his research in intelligent and secure control systems. His academic training reflects his dedication, curiosity, and capability for innovation in the field.

Professional Experience

Ali Khoshlahjeh Sedgh has built substantial professional experience through both academic and industrial roles, demonstrating a balance between research, teaching, and practical engineering applications. Since 2022, he has served as the Laboratory Coordinator at the Instrumentation Lab of K. N. Toosi University of Technology. In this role, he has managed research projects, supervised laboratory experiments, maintained equipment, organized exams, and supported student internships. His responsibilities included implementing cyber-physical security measures, designing experimental setups, and applying fault detection techniques in real systems. Ali’s involvement in the lab has allowed him to practically test advanced control strategies, including PI, LQT, and adaptive controllers, in coupled-tank systems. His commitment to knowledge sharing is further highlighted by his teaching experience, where he has worked as an instructor and teaching assistant in courses such as Engineering Probability. Additionally, Ali gained industry experience as an intern and later as an electrical engineer at Fahm Electronics from 2021 to 2022. During this time, he worked on medical rehabilitation equipment and industrial projects, including the design and development of a 3-degree-of-freedom platform. His strong work ethic earned him top evaluations. Ali’s professional journey showcases a dynamic profile of technical versatility, research leadership, and a strong orientation toward solving real-world engineering problems.

Research Interests

Ali Khoshlahjeh Sedgh’s research interests lie at the intersection of control engineering, cyber-physical systems, and artificial intelligence, with a focus on developing secure, resilient, and intelligent systems. He is particularly passionate about Fault Detection and Identification (FDI), where he explores both signal-based and model-based techniques to enhance system reliability in real-time industrial applications. System Identification also plays a central role in his work, allowing him to model and simulate complex dynamic systems accurately using both non-parametric and parametric methods. Ali has a strong interest in Adaptive and Robust Control, emphasizing strategies that ensure system stability and performance under uncertainties and disturbances. He is equally engaged in applying Machine Learning—especially Reinforcement Learning (RL) and Neural Networks (NN)—to control problems, including attack detection in cyber-physical systems. His recent research centers on using reinforcement learning methods to detect and mitigate cyber-attacks, such as denial-of-service (DoS), in liquid-level control systems. Through a combination of theoretical foundations and hands-on implementations, Ali aims to build control systems that can adaptively respond to anomalies and security threats. He envisions future applications of his research in smart grids, autonomous vehicles, and industrial automation, where system safety and resilience are increasingly critical in the face of evolving technological and cybersecurity challenges.

Research Skills

Ali Khoshlahjeh Sedgh possesses a robust set of research skills that span theoretical modeling, simulation, implementation, and experimental validation of advanced control systems. He is proficient in using MATLAB and Simulink for simulation and algorithm development, and has developed numerous tools for system identification, adaptive control, estimation theory, and fault detection. His coding skills in Python, C, and C++ complement his ability to apply machine learning and signal processing techniques in both time and frequency domains. Ali has implemented methods like Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and classifiers including KNN, Bayesian approaches, and Neural Networks such as MLP and RBF for fault diagnosis tasks. In estimation theory, he has used optimal filters like Kalman Filter, Wiener Filter, and maximum likelihood-based methods for state and parameter estimation. Ali has practically applied these techniques in a real coupled-tank system where he modeled and diagnosed faults and detected cyber-attacks using tools like Wireshark and protocols via Kali Linux. His control system toolbox includes robust PI controllers, LQT controllers, adaptive observers, and STR models. His strong command over experimental research, hardware-software integration, and system analysis reflects his ability to transform theoretical constructs into practical solutions for critical infrastructure systems.

Awards and Honors

Ali Khoshlahjeh Sedgh’s academic and research excellence has been consistently recognized through multiple awards and honors. He was ranked 2nd among all Master of Science students in Electrical Engineering – Control at K. N. Toosi University of Technology in 2024, a testament to his outstanding academic record and contribution to research. Earlier, in 2021, he graduated as the 3rd top student in the Control sub-major during his bachelor’s degree, which led to his direct admission into the master’s program without the need for a national entrance examination. Ali’s talent was further acknowledged through his receipt of scholarships from the Iran National Elites Foundation between 2021 and 2023, awarded to high-potential students contributing to science and technology in Iran. Additionally, he received a scholarship from the Ghalamchi Educational Foundation during his early undergraduate years in recognition of his academic promise. His active participation and presentation at international conferences—such as ITMS 2023 in Latvia—showcase his engagement with the global research community. These accolades reflect not only Ali’s scholarly dedication and innovative thinking but also his leadership potential and ability to stand out in highly competitive academic environments.

Conclusion

Ali Khoshlahjeh Sedgh represents the ideal convergence of deep technical expertise, hands-on research capability, and forward-thinking innovation in the field of control engineering. With a strong educational foundation from K. N. Toosi University of Technology and consistent recognition as a top-performing student, Ali has built a multifaceted academic and professional profile. His work bridges theory and practice, especially in developing intelligent, resilient control systems that address real-world issues such as cyber threats and fault tolerance in cyber-physical environments. Ali’s commitment to excellence is evident in his peer-reviewed publications, experimental projects, and his roles as both a laboratory coordinator and educator. He is driven by a desire to make meaningful contributions to modern engineering challenges, particularly in ensuring the security and reliability of automated systems. His future ambitions include pursuing advanced research, collaborating on interdisciplinary projects, and contributing to innovations in smart infrastructure, autonomous systems, and industrial automation. With a collaborative spirit, a deep curiosity for learning, and a relentless pursuit of practical solutions, Ali is well-positioned to lead and innovate in both academic and industry-driven environments. His journey so far reflects not just skill, but a vision for shaping the future of secure and adaptive control systems.

Publications Top Notes

  1. Title: Resilient Control for Cyber-Physical Systems Against Denial-of-Service Cyber Attacks Using Kharitonov’s Theorem
    Authors: H.R. Chavoshi, A.K. Sedgh, H. Khaloozadeh
    Year: 2023
    Citations: 2

  2. Title: Enhancing Cybersecurity in Nonlinear Networked Control Systems Through Robust PI Controller Design and Implementation Against Denial-of-Service Attacks
    Authors: A.H. Salasi, H.R. Chavoshi, O. Payam, A.K. Sedgh, H. Khaloozadeh
    Year: 2023
    Citations: 1

  3. Title: Practical Implementation of Multiple Faults in a Coupled-Tank System: Verified by Model-Based Fault Detection Methods
    Authors: H.R. Chavoshi, A.K. Sedgh, M.A. Shoorehdeli, H. Khaloozadeh
    Year: 2023
    Citations: 1