Ayman AL-Quraan | Engineering | Best Researcher Award

Assoc. Prof. Dr. Ayman AL-Quraan | Engineering | Best Researcher Award

Associate Professor at Yarmouk University, Jordan

Dr. Ayman A. Al-Quraan, born in Abu Dhabi, UAE in 1986, is an Associate Professor in the Department of Electrical Power and Energy at Yarmouk University in Irbid, Jordan. He earned his Ph.D. in Electrical and Computer Engineering from Concordia University, Montreal, in 2016. After completing his doctoral studies, he undertook a brief postdoctoral position at Concordia University before joining Yarmouk University in 2017. He is the founder of the Power and Energy Research Lab at Yarmouk University and has significantly contributed to research in the fields of power systems and renewable energy. His research interests focus on optimizing hybrid renewable energy systems (HRES) and developing capacity determination and energy management strategies. Dr. Al-Quraan has served in various editorial roles for top-tier international journals and has received several research grants and funding for his projects. He is also recognized for his extensive academic contributions, having published several articles in well-respected journals and conferences. His work in renewable energy optimization and system modeling reflects his commitment to addressing global energy challenges through research and innovation.

Professional Profile

Education:

Dr. Ayman A. Al-Quraan completed his academic journey with a Ph.D. in Electrical and Computer Engineering from Concordia University in Montreal, Canada, in 2016. Prior to this, he obtained his Master’s degree in Electrical Power Engineering in 2011 and his Bachelor’s degree in Electrical Power Engineering in 2009, both from Yarmouk University, Jordan. His academic pursuits reflect a strong foundation in power engineering, with particular emphasis on energy systems and optimization. During his doctoral studies, Dr. Al-Quraan conducted advanced research in the field of urban wind energy estimation, contributing to the understanding of renewable energy potential in urban environments. His graduate studies at Yarmouk University were marked by excellence, as evidenced by scholarships and awards, including the King Abdullah Fund Grant during his undergraduate years. The combination of his diverse educational background and solid academic performance has positioned Dr. Al-Quraan as a leading figure in the power and energy sector, fostering significant contributions to both research and teaching. His doctoral research, in particular, allowed him to engage deeply with renewable energy technologies, a key area in his ongoing work at Yarmouk University.

Professional Experience:

Dr. Ayman A. Al-Quraan has extensive professional experience in both academic and industry settings. After completing his doctoral studies at Concordia University, he joined Yarmouk University in 2017, where he currently serves as an Associate Professor in the Department of Electrical Power and Energy. He has held various roles at Yarmouk University, including Assistant Professor and Research Assistant, and has contributed to the development of the university’s Power and Energy Research Lab. Additionally, he has participated as a Principal Investigator in several research projects, such as those focused on optimizing Hybrid Renewable Energy Systems (HRES), receiving funding from Yarmouk University for his innovative work. Dr. Al-Quraan’s professional background also includes industry experience at the National Electrical Power Company (NEPCO) in Jordan, where he worked as an Electrical Substation Engineer from 2008 to 2009. His industry experience complements his academic roles, allowing him to bridge the gap between theoretical research and practical application. Furthermore, Dr. Al-Quraan’s role as an editor and guest editor for several international journals, including those in the renewable energy field, further demonstrates his significant impact on the academic and professional community.

Research Interests:

Dr. Ayman A. Al-Quraan’s research interests lie at the intersection of renewable energy systems, power optimization, and energy management strategies. His work primarily focuses on the development and optimization of Hybrid Renewable Energy Systems (HRES), specifically addressing the challenges of integrating multiple energy sources, such as solar and wind, into a cohesive system for efficient power generation. He has conducted extensive research on predictive control and capacity determination strategies for renewable energy systems, aimed at maximizing energy yield and ensuring sustainability in both connected and isolated systems. Additionally, Dr. Al-Quraan is interested in the application of optimization techniques to solve complex energy management problems, such as those found in off-grid systems and urban energy solutions. His interdisciplinary approach combines electrical engineering, energy optimization, and control systems. As a Principal Investigator (PI) for a project related to n-layers optimization for HRES, Dr. Al-Quraan continues to push the boundaries of research in energy systems. His expertise in modeling and control has led to significant contributions to the understanding and development of efficient energy solutions that are critical to addressing global energy demands.

Research Skills:

Dr. Ayman A. Al-Quraan possesses a robust skill set that allows him to lead cutting-edge research in the fields of power engineering and renewable energy systems. His skills in modeling and optimization techniques have been critical in his work on Hybrid Renewable Energy Systems (HRES), where he applies advanced mathematical models to optimize energy production and consumption. Dr. Al-Quraan is proficient in the use of predictive control systems, which is central to his research on energy management strategies for renewable systems. He is also skilled in wind and solar energy estimation techniques, utilizing tools such as wind tunnels and data collection for urban energy analysis. As an academic editor and reviewer for several international journals, Dr. Al-Quraan demonstrates a keen eye for quality research and contributes his expertise to the scientific community. His ability to collaborate across disciplines, along with his strong knowledge of electrical power systems and renewable energy technologies, further enhances his research capabilities. Dr. Al-Quraan’s technical skills are complemented by his leadership in securing research funding, which has enabled him to spearhead innovative projects in energy optimization.

Awards and Honors:

Dr. Ayman A. Al-Quraan’s academic journey has been marked by numerous awards and honors that reflect his dedication and excellence in research and education. As a graduate student, he was awarded the Graduate Research Assistantship at Concordia University from 2012 to 2016, recognizing his outstanding research capabilities during his Ph.D. studies. He also received a Ph.D. scholarship from Yarmouk University, which supported his doctoral research in renewable energy. His undergraduate and graduate studies were funded by prestigious scholarships, including the King Abdullah Fund Grant, which allowed him to pursue his education with distinction. Dr. Al-Quraan was ranked first in both his Bachelor’s and Master’s degrees in Electrical Power Engineering at Yarmouk University, which is a testament to his academic excellence. These awards highlight Dr. Al-Quraan’s strong commitment to advancing the field of electrical power and energy systems, especially in the areas of renewable energy optimization and energy management strategies. His accomplishments have earned him recognition both locally and internationally, making him a prominent figure in the academic and professional energy sectors.

Conclusion:

Dr. Ayman A. Al-Quraan is an exemplary candidate for the Research for Best Researcher Award due to his profound contributions to the fields of electrical power engineering and renewable energy systems. His expertise in optimizing hybrid energy systems, coupled with his leadership in establishing research labs and securing funding, positions him as a leader in his field. Dr. Al-Quraan’s involvement in prestigious editorial roles and his publication record in top-tier journals further attests to his influence in the academic community. His work on energy management strategies, particularly in the context of hybrid renewable energy systems, has significant implications for sustainable energy solutions. While there are opportunities for further industry collaboration and public outreach, Dr. Al-Quraan’s research continues to drive innovation in energy systems, contributing to the global pursuit of sustainability. With a strong foundation in both academic research and practical experience, he is highly deserving of this prestigious award.

Publication Top Notes

  • Title: Urban wind energy: Some views on potential and challenges
    • Authors: T. Stathopoulos, H. Alrawashdeh, A. Al-Quraan, B. Blocken, A. Dilimulati, …
    • Journal: Journal of Wind Engineering and Industrial Aerodynamics
    • Volume: 179
    • Pages: 146-157
    • Citations: 229
    • Year: 2018
  • Title: Comparison of wind tunnel and on-site measurements for urban wind energy estimation of potential yield
    • Authors: A. Al-Quraan, T. Stathopoulos, P. Pillay
    • Journal: Journal of Wind Engineering and Industrial Aerodynamics
    • Volume: 158
    • Pages: 1-10
    • Citations: 80
    • Year: 2016
  • Title: Modelling, design and control of a standalone hybrid PV-wind micro-grid system
    • Authors: A. Al-Quraan, M. Al-Qaisi
    • Journal: Energies
    • Volume: 14 (16)
    • Article Number: 4849
    • Citations: 61
    • Year: 2021
  • Title: Active and reactive power control for wind turbines based DFIG using LQR controller with optimal Gain‐scheduling
    • Authors: A. Radaideh, M. Bodoor, A. Al-Quraan
    • Journal: Journal of Electrical and Computer Engineering
    • Year: 2021
    • Article Number: 1218236
    • Citations: 38
  • Title: Assessment of wind energy resources in Jordan using different optimization techniques
    • Authors: B. Al-Mhairat, A. Al-Quraan
    • Journal: Processes
    • Volume: 10 (1)
    • Article Number: 105
    • Citations: 29
    • Year: 2022
  • Title: Optimal coordination of wind power and pumped hydro energy storage
    • Authors: H. M. K. Al-Masri, A. Al-Quraan, A. AbuElrub, M. Ehsani
    • Journal: Energies
    • Volume: 12 (22)
    • Article Number: 4387
    • Citations: 25
    • Year: 2019
  • Title: Rolling horizon control architecture for distributed agents of thermostatically controlled loads enabling long-term grid-level ancillary services
    • Authors: A. Radaideh, A. Al-Quraan, H. Al-Masri, Z. Albataineh
    • Journal: International Journal of Electrical Power & Energy Systems
    • Volume: 127
    • Article Number: 106630
    • Citations: 22
    • Year: 2021
  • Title: Optimal prediction of wind energy resources based on WOA—A case study in Jordan
    • Authors: A. Al-Quraan, B. Al-Mhairat, A. M. A. Malkawi, A. Radaideh, H. M. K. Al-Masri
    • Journal: Sustainability
    • Volume: 15 (5)
    • Article Number: 3927
    • Citations: 20
    • Year: 2023
  • Title: Minimizing the utilized area of PV systems by generating the optimal inter-row spacing factor
    • Authors: A. Al-Quraan, M. Al-Mahmodi, K. Alzaareer, C. El-Bayeh, U. Eicker
    • Journal: Sustainability
    • Volume: 14 (10)
    • Article Number: 6077
    • Citations: 20
    • Year: 2022
  • Title: Machine learning classification and prediction of wind estimation using artificial intelligence techniques and normal PDF
    • Authors: H. H. Darwish, A. Al-Quraan
    • Journal: Sustainability
    • Volume: 15 (4)
    • Article Number: 3270
    • Citations: 19
    • Year: 2023

 

Junior Lawrence MUNDÉNÉ-TIMOTHÉE | Engineering | Best Extension Activity Award

Mr. Junior Lawrence MUNDÉNÉ-TIMOTHÉE | Engineering | Best Extension Activity Award

Teacher at Higher Normal School of Technical Education (ENSET), University of Douala, Cameroon

Dr. Mundene-Timothée Junior Lawrence is a highly accomplished researcher and academic professional with significant contributions in the fields of agro-food engineering, nutritional biochemistry, and chemical engineering. Currently pursuing a Ph.D. in Process Engineering at the University of Douala, Cameroon, he is also an instructor at the Department of Chemical Engineering within the same institution. Dr. Mundene has demonstrated a remarkable blend of academic excellence, teaching prowess, and innovative research output. His work focuses on sustainable food technologies, utilizing local resources to address food security challenges in sub-Saharan Africa. Additionally, he has published extensively in peer-reviewed journals, tackling issues such as plantain flour processing, traditional dishes, and medicinal plant applications. Recognized with multiple academic awards, he remains dedicated to advancing scientific knowledge while mentoring students and collaborating on impactful projects.

Professional Profile

Education

Dr. Mundene’s academic journey is marked by progressive excellence in engineering and biochemical sciences. He obtained a Ph.D. (ongoing since 2020) in Process Engineering with a specialization in Agro-food Engineering and Nutritional Biochemistry from the University of Douala. His prior achievements include a Master’s in Engineering Sciences (2019) and a DIPET II in Chemical Engineering (2017), both awarded with honors. Earlier qualifications include a Bachelor’s in Biochemistry (2011) and a DIPET I in Chemical Engineering (2015). Throughout his academic career, he has demonstrated consistent academic performance, earning distinctions such as “Best Thesis” and “Major of Class” in his specialization.

Professional Experience

Dr. Mundene’s professional career spans over a decade of experience in teaching, research, and applied engineering. Since 2021, he has been a lecturer at the University of Douala, delivering courses across various engineering topics, including process mechanics, food safety, and chemical reactors. He has also served as a curriculum reviewer for chemical engineering programs and supervised numerous undergraduate and graduate research projects. His industry experience includes internships at Dangote Cement and CIMENCAM, where he applied his engineering expertise in practical settings. Dr. Mundene has further contributed to Cameroon’s academic community by participating in examination oversight roles and coordinating laboratory research initiatives. His multifaceted career reflects a commitment to knowledge dissemination, technical application, and student mentorship.

Research Interest

Dr. Mundene’s research interests are rooted in the nexus of agro-food engineering, sustainability, and nutritional biochemistry. He is particularly focused on developing innovative food processing technologies that utilize local bio-resources to enhance food security and reduce post-harvest losses in sub-Saharan Africa. His work also explores traditional African dishes, seeking to improve their nutritional value while preserving cultural heritage. Additionally, he is interested in the potential of medicinal plants in addressing global health challenges, including COVID-19. Dr. Mundene’s multidisciplinary approach combines process optimization, biochemical analysis, and sustainable resource utilization, making his research highly relevant to contemporary global challenges in food and health systems.

Research Skills

Dr. Mundene is proficient in a range of advanced research tools and methodologies. His technical expertise includes the use of simulation and experimental design software such as Aspen One, CHEMCAD, Design-Expert, and Statgraphics. He is skilled in statistical data analysis using tools like SPSS and XLSTAT, which he applies to optimize engineering processes and analyze nutritional data. Additionally, Dr. Mundene has expertise in quality management systems, including Lean Six Sigma and risk assessment, which he leverages to ensure the precision and applicability of his research outcomes. His ability to integrate theoretical knowledge with practical tools underscores his capability to conduct impactful, solution-oriented research.

Awards and Honors

Dr. Mundene’s excellence in academics and research has been recognized through multiple awards. He earned the “4th Prize of Excellence” at the Summer University of Nutrition in 2022 and the “Best Thesis Award” in Chemical Engineering at the University of Douala in 2017. Earlier, he was named “Major of Class” during his DIPET I program in 2015. These accolades reflect his dedication to academic excellence, innovative research, and professional development. His recognition as a top-performing student and researcher highlights his contributions to advancing scientific knowledge in his fields of expertise.

Conclusion

Dr. Mundene-Timothée Junior Lawrence stands out as an accomplished academic and researcher whose work addresses critical challenges in food security, sustainable resource utilization, and health. His strong educational background, extensive teaching and professional experience, and impactful research contributions make him a valuable asset to the scientific community. With a focus on applied solutions and a commitment to excellence, Dr. Mundene exemplifies the qualities of a leading researcher. His achievements and potential make him a strong candidate for recognition through awards such as the Best Researcher Award.

Publications Top Notes

  1. Title: Cooking practices, consumption and sensory perception of Ntuba ekōn: a traditional dish consumed in Cameroon
    • Authors: Bouelet Ntsama, Isabelle Sandrine; Nguimbou, Richard; Ngane, Rosalie Annie; Mouangue, Ruben; Njintang, Nicolas; Bissoue, Achille; Mundéné-Timothée Junior Lawrence
    • Year: 2024-11
    • DOI: 10.36400/J.Food.Stab.7.3.2024-014
  2. Title: Plantain flour: production processes, technological characteristics, and its potential use in traditional African dishes – a review
    • Authors: Junior Lawrence Mundéné-Timothée; Achille Nouga Bissoue; Richard Marcel Nguimbou; Samuel Magloire Bissim; Isabelle Sandrine Bouelet Ntsama; Sylvain Parfait Bouopda Tamo; Leonel Fokam; Ruben Mouangue; Nicolas Njintang Yanou
    • Year: 2024-10-03
    • DOI: 10.1002/jsfa.13900
  3. Title: Pharmacognosy, Phytotherapy and Modern Medicine
  4. Title: Therapy Against COVID-19: Medicinal Plant Extracts Can Be a Solution
  5. Title: Effects on the Phagocytosis Modulation of Stems Extract and Triterpenes from Gouania longipetala (Hemsl.), A Plant of The Cameroonian Pharmacopeia
    • Authors: S.P. Bouopda Tamo; S.H. Riwom Essama; O. Ndogo Eteme; T.J.L. Mundéné; J.M. Avina Ze; E. Tchamgoue Ngalani; D.K. Setchaba; B. Nyasse; F.X. Etoa
    • Year: 2019-04-17
    • DOI: 10.30799/jnpr.073.19050101

 

Kailei Liu | Mechanical Engineering | Best Researcher Award

Assist. Prof. Dr. Kailei Liu | Mechanical Engineering | Best Researcher Award

Director of department at Jiangsu University of Technology, China

Dr. Kailei Liu is a distinguished academic and researcher in the field of electro-hydraulic control technology and fluid dynamics, currently serving at the School of Mechanical Engineering, Jiangsu University of Technology, China. His research focuses on energy-efficient hydraulic systems and motion control of engineering machinery, areas critical to sustainable industrial development. Dr. Liu’s contributions include impactful publications in international and Chinese journals and six patents that demonstrate his ability to develop practical engineering solutions. Since joining Jiangsu University of Technology in 2017, he has established himself as a dedicated researcher, contributing significantly to academic advancements and the practical implementation of innovative technologies in hydraulic and motion control systems.

Professional Profile

Education

Dr. Kailei Liu completed his Ph.D. in Mechanical Electrical Engineering from Yanshan University, China, in January 2017. During his doctoral studies, he specialized in energy-efficient hydraulic systems and fluid power dynamics. He also earned his Bachelor’s degree in Mechanical Electrical Engineering from the same university in July 2010. His comprehensive academic training has equipped him with expertise in engineering principles and practical knowledge of fluid dynamics and control technologies, forming a strong foundation for his research and professional endeavors.

Professional Experience

Since January 2017, Dr. Liu has been a faculty member at the School of Mechanical Engineering, Jiangsu University of Technology. In this role, he has contributed to research and education in electro-hydraulic control and engineering machinery. His professional experience includes mentoring students, developing innovative solutions, and engaging in applied research projects. His contributions are further demonstrated through his patents and scholarly publications, which highlight his dedication to addressing real-world engineering challenges and advancing knowledge in his field.

Research Interest

Dr. Liu’s research interests lie in electro-hydraulic control technology, fluid dynamics analysis of hydraulic components, and motion control of engineering machinery. His work is focused on developing energy-efficient and innovative solutions for hydraulic systems, which are critical to various industries, including construction, manufacturing, and transportation. Through his research, Dr. Liu seeks to improve the performance, sustainability, and reliability of hydraulic systems, contributing to advancements in engineering machinery and automation.

Research Skills

Dr. Liu possesses advanced skills in hydraulic system analysis, fluid dynamics, and motion control design. His expertise extends to energy-saving technologies and independent metering control systems, as demonstrated by his scholarly publications and patents. Dr. Liu is proficient in experimental design, computational modeling, and optimization of hydraulic systems. His research emphasizes practical innovation, ensuring that his solutions are not only theoretical but also applicable to industry needs, making him a highly skilled researcher in his field.

Awards and Honors

Dr. Liu has received recognition for his innovative contributions to electro-hydraulic control and motion control technology. His patents, such as those on independent metering systems and rotary drilling rig power matching methods, reflect his ingenuity and commitment to advancing engineering solutions. While specific awards and honors are not detailed in his CV, his impactful research and patents signify his standing as a respected innovator and contributor to mechanical engineering. Expanding his accolades through international recognition remains a promising avenue for further achievements.

Conclusion

Dr. Kailei Liu is a strong candidate for the Best Researcher Award, with significant contributions to electro-hydraulic control systems and energy-efficient hydraulic machinery. His expertise, patents, and academic publications underline his dedication and potential for future advancements. However, to further enhance his candidacy, he could work on expanding his international visibility, building global collaborations, and leading large-scale, interdisciplinary research projects. Addressing these areas would solidify his standing as a globally recognized leader in his field. In conclusion, Dr. Liu’s achievements position him as a competitive nominee for this award, with clear potential for further growth and impact in his research domain.

Publication Top Notes

  1. Analysis of the Influencing Factors on the Oil Film Uniformity of Hydro-viscous Drive Clutch
    • Authors: Xiangping Liao, Langxin Sun, Shaopeng Kang, Kailei Liu, Xinyang Zhu, Ying Zhao
    • Year: 2024
  2. Dynamic Analysis of the Propulsion Process of Tunnel Boring Machines
    • Authors: Xiangping Liao, Ying Zhao, Shaopeng Kang, Kailei Liu, Xinyang Zhu, Langxin Sun
    • Year: 2024
  3. Improvement of Sleeve for Gas Axial Flow Regulating Valve and Analysis of Flow Field Characteristics
    • Authors: Xiuqin Gu, Kailei Liu, Haifang Zhong, Jing Yang, Huabing Zhang, Oluwole D. Makinde
    • Year: 2024
  4. Angle and Force Hybrid Control Method for Electrohydraulic Leveling System with Independent Metering
    • Authors: Kailei Liu, Shaopeng Kang, Zhongliang Cao, Rongsheng Liu, Zhaoxuan Ding, Haipeng Peng
    • Year: 2021

 

NIDAL EL BIYARI | Engineering | Women Researcher Award

Dr. NIDAL EL BIYARI | Engineering | Women Researcher Award

PhD student, EUROMED UNIVERSITY OF FEZ, MOROCCO

Dr. Nidal El-Biyari, a PhD student in Mechatronics Engineering at the Euromed University of Fez, is a strong candidate for the Women Best Researcher Award. Her thesis on designing an opto-fluidic biosensor for breast cancer diagnosis demonstrates her commitment to addressing critical healthcare challenges. Dr. El-Biyari has published significant research in top-tier journals, showcasing her innovative approach to biosensing technologies. With practical experience gained from internships and engineering roles, she has developed strong skills in CAD, robotics, and project management. Her teaching experience at the Euromed Polytechnic School reflects her ability to mentor and inspire future engineers. Additionally, her active involvement in organizing academic events and contributions to the UEMF Student Times highlight her dedication to fostering a supportive research community. Overall, Dr. El-Biyari’s impressive achievements and unwavering commitment to advancing engineering make her a deserving recipient of the Women Best Researcher Award.

Profile

Orcid

Education 

Dr. Nidal El-Biyari is currently a PhD student specializing in Mechatronics Engineering at the Euromed University of Fez, where she is focused on developing an opto-fluidic biosensor for breast cancer diagnosis and monitoring. She has a solid educational foundation, having earned her engineering degree in Mechatronics from the Faculty of Science and Technology of Fes, Morocco. Throughout her academic career, Dr. El-Biyari has demonstrated a strong commitment to her studies, completing multiple years in the State Engineer cycle in Mechatronics. She also holds a degree in Mathematics, Computer Science, and Physics, further enhancing her technical proficiency. Her academic journey has been marked by excellence, evident in her achievements and contributions to research in advanced biosensing technologies. Dr. El-Biyari’s diverse educational background and ongoing research efforts position her as a promising leader in her field, contributing significantly to the advancement of medical technologies.

Professional Experiences

Dr. Nidal El-Biyari has cultivated a robust professional foundation in engineering, primarily within the field of mechatronics. She served as an engineer at Floquet Monopole Industrie, where she focused on improving CAD designs and enhancing the functionality of industrial machinery. Her role as an engineer assistant intern at Lesaffre Fes involved working on the HDA 75 separator machine, further sharpening her practical engineering skills. Additionally, her internship at CBGN allowed her to gain insights into the operational principles of various machines in a production environment. Dr. El-Biyari has also demonstrated her commitment to education through her teaching experience at the Euromed Polytechnic School, where she supervised and mentored students in subjects like geometric optics and fluid mechanics. This diverse array of experiences highlights her technical proficiency and dedication to both research and mentoring, making her a valuable asset in any engineering or academic setting.

Research Interests

Dr. Nidal El-Biyari’s research interests are deeply rooted in the development of cutting-edge technologies for healthcare applications, with a focus on biosensing and microfluidic systems. Her primary area of research revolves around the design, modeling, and production of opto-fluidic biosensors, specifically aimed at improving the early diagnosis and monitoring of breast cancer. Additionally, Dr. El-Biyari is passionate about integrating 3D printing technologies with biosensor design, advancing the field of additive manufacturing for biomedical applications. Her work also explores surface plasmon resonance (SPR) biosensors, enhancing their performance for highly sensitive diagnostic tools. Beyond healthcare, she is interested in the intersection of robotics, optics, and mechatronics, particularly in creating automated systems that optimize precision and efficiency. Through her research, Dr. El-Biyari aims to develop innovative solutions that address critical challenges in medical diagnostics, demonstrating a commitment to improving both healthcare technologies and patient outcomes.

 

Research Skills

Dr. Nidal El-Biyari possesses a diverse array of research skills that make her a standout candidate for the Women Best Researcher Award. Her expertise in designing and modeling opto-fluidic biosensors showcases her proficiency in advanced engineering concepts, particularly in biosensing technologies. With a strong foundation in 3D printing, she applies additive manufacturing techniques to enhance the quality of microfluidic chip fabrication. Dr. El-Biyari is adept in utilizing software such as CATIA V5 and SolidWorks for computer-aided design, as well as MATLAB for data analysis and simulations. Her familiarity with surface plasmon resonance (SPR) biosensing reflects her capability in optical engineering, allowing her to explore innovative sensing solutions for medical diagnostics. Moreover, her participation in international conferences and her published works demonstrate her ability to effectively communicate research findings and collaborate with peers in the scientific community. Overall, Dr. El-Biyari’s comprehensive research skills contribute significantly to her ongoing success and impact in her field.

Awards and Honors

Dr. Nidal El-Biyari has received significant recognition for her groundbreaking research in mechatronics and biosensor technology. Her work on developing an opto-fluidic biosensor for breast cancer detection has been presented at renowned international conferences, including the International Conference on Advanced Functional Materials for Optics and the Fifth International Conference on Materials and Environmental Science. She has co-authored several high-impact publications, including in journals like Optical and Quantum Electronics and Sensors International. Dr. El-Biyari was also a finalist in the ENJOYEERING JUNIOR competition, where she showcased her expertise in robotics and engineering design. Her leadership and innovation were further acknowledged through her role in organizing the USMBA FSTF Enterprises Forum and contributing to the editorial committee of the UEMF Student Times. These accolades reflect her dedication to advancing scientific knowledge and her contributions to both research and the academic community.

Conclusion

Overall, Dr. Nidal El-Biyari is an exemplary candidate for the Women Best Researcher Award. Her academic achievements, innovative research contributions, extensive professional experience, and active community involvement collectively demonstrate her exceptional capabilities and commitment to advancing the field of mechatronics engineering. Recognizing her efforts with this award would not only honor her achievements but also inspire future generations of women in research.

Publication Top Notes

Title: Plasmon Induced Transparency and Waveguide Mode Based Optical Biosensor for Self-Referencing Sensing
Journal: Sensors International
Year: 2024
DOI: 10.1016/j.sintl.2024.100283
Contributors: Nidal El Biyari, Ghita Zaz, Latifa Fakri Bouchet, Mohssin Zekriti
Citations: To be determined (as the article was published in 2024, citation count may not be available yet).