Manuel Otero Mateo | Engineering | Best Researcher Award

Dr. Manuel Otero Mateo | Engineering | Best Researcher Award

University Professor at University of Cadiz, Spain

Manuel Otero Mateo is a highly accomplished academic professional with extensive experience in the field of industrial engineering. He currently serves as a Professor Titular at the Universidad de Cádiz (UCA), specializing in mechanical engineering, industrial design, and project management. With a robust educational background and over 15 years of teaching experience, Manuel has contributed significantly to both academia and industry. His work is recognized in the realms of safety, ergonomics, risk prevention, and project management, with a focus on industrial processes and organizational efficiency. His research output includes a substantial number of publications in highly regarded journals, and he has been awarded multiple research periods, reflecting the quality and impact of his work. His involvement in both academia and private industry showcases his ability to bridge theory and practice.

Professional Profile

Education

Manuel Otero Mateo holds a Doctorate in Engineering and Architecture from the Universidad de Cádiz (2013). He also completed his DEA in Manufacturing Engineering at the Universidad de Málaga (2011). His earlier academic achievements include a degree in Industrial Organization Engineering (2004) and a Technical Industrial Engineering qualification (2001), both from the Universidad de Cádiz. Additionally, he is a certified Professional in Project Management (PDP) by the International Project Management Association (IPMA), with certification valid from 2017 to 2027.

Professional Experience

Manuel’s professional journey spans both academia and the private sector. He has held the position of Professor Titular de Universidad at UCA since 2023, and has an extensive history in academia, including roles at the Universidad de Sevilla and other institutions. Before transitioning to full-time teaching, he worked in industry as an Expert in PLC Systems at the Industrial Tobacco Center of Cádiz (Altadis S.A. and Imperial Tobacco Group), where he was involved in over 20 engineering projects related to industrial processes and automation systems. His industry experience complements his academic work, bridging the gap between theoretical knowledge and real-world application.

Research Interests

Manuel’s research interests primarily focus on industrial engineering, particularly in areas related to risk prevention, ergonomics, and safety. He has a strong focus on human factors and organizational processes, developing methods and techniques for evaluating individual performance in organizations. His work also delves into industrial processes, including time-motion studies, industrial engineering management, and the integration of advanced technologies in project and process management. He has contributed to numerous studies on the implementation of safety and ergonomic improvements in various industrial sectors, particularly those involving complex construction projects and manufacturing processes.

Research Skills

Manuel Otero Mateo’s research skills encompass a wide range of methodologies in industrial engineering and organizational management. He is proficient in evaluating and improving industrial processes, particularly in safety, ergonomics, and risk assessment. His research also involves quantitative and qualitative methods for assessing organizational efficiency, safety risks, and project management success. His skills include data analysis, process optimization, and the application of advanced engineering methodologies in industrial settings. Additionally, Manuel is experienced in guiding doctoral and master’s level research, having supervised multiple thesis projects and contributed significantly to the academic development of his students.

Awards and Honors

Throughout his career, Manuel Otero Mateo has received several accolades recognizing his contributions to both research and education. He has been awarded multiple research periods by CENAI, including two six-year research periods, which highlight his sustained contributions to the field. Additionally, he has received two quinquenios for teaching excellence, demonstrating his consistent performance in delivering high-quality education. His work has been recognized through various professional certifications, including his certification as a Professional in Project Management by IPMA. His research output, particularly in the form of publications in leading academic journals, has also been acknowledged with a notable citation record, further cementing his position as a leader in his field.

Conclusion

Manuel Otero Mateo is an outstanding candidate for the Best Researcher Award, with a well-rounded profile combining extensive teaching experience, strong research output, and recognition in both academia and industry. His continuous dedication to improving occupational safety and enhancing industrial processes, combined with his ability to mentor and guide future researchers, showcases his exceptional contributions to engineering. With a slight focus on expanding international collaborations and developing more industry-related innovations, he could further elevate his status in the global research community.

Publications Top Notes

  • Integration of cost and work breakdown structures in the management of construction projects
    • Authors: A Cerezo-Narváez, A Pastor-Fernández, M Otero-Mateo, …
    • Year: 2020
    • Citation: 93
  • Sistemas integrados de gestión
    • Authors: A Pastor Fernández
    • Year: 2013
    • Citation: 65
  • Sistemas integrados de gestión
    • Authors: PDEOY ASEO
    • Year: 2013
    • Citation: 46*
  • Project management competences by teaching and research staff for the sustained success of engineering education
    • Authors: A Cerezo-Narváez, I de los Ríos Carmenado, A Pastor-Fernández, …
    • Year: 2019
    • Citation: 39
  • Standardizing innovation management: An opportunity for SMEs in the aerospace industry
    • Authors: A Cerezo-Narváez, D García-Jurado, MC González-Cruz, …
    • Year: 2019
    • Citation: 33
  • Performance comparison of activity sensitivity metrics in schedule risk analysis
    • Authors: P Ballesteros-Pérez, A Cerezo-Narvaez, M Otero-Mateo, …
    • Year: 2019
    • Citation: 31
  • Development of professional competences for industry 4.0 project management
    • Authors: A Cerezo-Narváez, M Otero-Mateo, A Pastor-Fernandez
    • Year: 2017
    • Citation: 31
  • Impact of the ISO 9001: 2015 standard in the field of engineering. Integration in the SMEs
    • Authors: A Pastor-Fernandez, M Otero-Mateo
    • Year: 2016
    • Citation: 28*
  • Energy, emissions and economic impact of the new nZEB regulatory framework on residential buildings renovation: Case study in southern Spain
    • Authors: A Cerezo-Narváez, JM Piñero-Vilela, EÁ Rodríguez-Jara, M Otero-Mateo, …
    • Year: 2021
    • Citation: 27
  • Training Competences in Industrial Risk Prevention with Lego® Serious Play®: A Case Study
    • Authors: A Cerezo-Narváez, A Córdoba-Roldán, A Pastor-Fernández, …
    • Year: 2019
    • Citation: 24

 

Zhongwei Wu | Engineering | Best Researcher Award

Dr. Zhongwei Wu | Engineering | Best Researcher Award

Lecturer at Yangtze University, China

Dr. Zhongwei Wu is a Lecturer in the College of Petroleum Engineering at Yangtze University. He specializes in geo-energy development with a focus on shale and tight oil reservoirs, CO₂ flooding and storage, and big data applications in energy systems. With over four years of professional experience, he has made significant contributions to hydraulic fracturing and proppant transport models, providing theoretical support for efficient oil and gas extraction. Dr. Wu has managed 18 research projects worth $810,000, authored 26 SCI-indexed journal papers, and holds 20 patents. His research outputs have been cited over 110 times in the last three years. His work is recognized for its practical applications and academic rigor, making him a promising figure in petroleum engineering.

Professional Profile

Education

Dr. Zhongwei Wu holds a Bachelor of Petroleum Engineering from Yangtze University (2009–2013) and a Master’s in Oil and Natural Gas Engineering from China University of Geosciences, Beijing (2013–2016). He completed his Ph.D. in Oil and Gas Field Development Engineering at China University of Petroleum (East China) in 2020, during which he was a visiting doctoral researcher at the University of Alberta (2018–2019). His academic journey reflects a commitment to mastering advanced concepts in petroleum engineering and geo-energy systems.

Professional Experience

Dr. Wu’s career spans academia and research, beginning as a Post-doctoral Fellow at China University of Petroleum (East China) from 2020 to 2022. In November 2022, he joined Yangtze University as a Lecturer in the College of Petroleum Engineering. Over his career, he has led groundbreaking studies on hydraulic fracturing and effective utilization methods in shale/tight oil reservoirs. His consultancy work includes 17 industry-sponsored projects, reflecting his ability to integrate research with real-world applications. Dr. Wu has also served as an editor, reviewer, and conference committee member, contributing to advancing the petroleum engineering field.

Research Interests

Dr. Wu’s research focuses on geo-energy development, particularly shale/tight oil reservoirs and carbon capture, utilization, and storage (CCUS). His interests include optimizing hydraulic fracturing techniques, CO₂ flooding for enhanced oil recovery, and leveraging big data technologies for energy systems. His innovative models on fracture-proppant dynamics and effective utilization range have practical implications for improving oil and gas production efficiency. His work bridges theoretical advancements and industrial applications, driving sustainable energy development.

Research Skills

Dr. Wu demonstrates expertise in advanced modeling and simulation techniques for hydraulic fracturing and CO₂ flooding. He is skilled in designing and conducting laboratory experiments to validate theoretical frameworks. His proficiency in data analysis and big data applications enhances his ability to optimize energy systems. Additionally, his experience managing multi-million-dollar research projects highlights his project management and collaborative skills, ensuring impactful outcomes in petroleum engineering research.

Awards and Honors

Dr. Wu has received recognition for his outstanding contributions to petroleum engineering. He holds one institutional award and has established a functional MoU with a collaborating university, emphasizing his commitment to collaborative research. With over 110 citations in three years and a growing H-index of 12, his work is gaining increasing recognition in academia and industry. His innovations, backed by 20 patents and numerous publications, reflect his leadership in advancing geo-energy development technologies.

Conclusion

Zhongwei Wu stands out as a promising researcher in the field of geo-energy development and CCUS. His expertise in shale/tight oil reservoirs, coupled with significant contributions through patents, publications, and industry projects, solidifies his position as a strong contender for the Best Researcher Award. By addressing areas of improvement, particularly in international collaborations and visibility at scientific forums, he can further strengthen his candidature and global impact.

Publication Top Notes

  1. Influence of reservoir heterogeneity on immiscible water-alternating-CO2 flooding: A case study”
    • Authors: Jia, P.; Cui, C.; Wu, Z.; Yan, D.
    • Year: 2024
    • Journal: Energy Geoscience
    • Volume/Issue: 5(3), Article 100272
    • Citations: 1
  2. “A novel method to determine the optimal threshold of SEM images”
    • Authors: Zhang, Z.; Cui, C.; Wu, Z.
    • Year: 2024
    • Journal: Marine and Petroleum Geology
    • Volume: 163, Article 106804
    • Citations: 1
  3. “Screening and field application of microbial-flooding activator systems”
    • Authors: Yao, X.; Gai, L.; Feng, Y.; Ma, J.; Wu, Z.
    • Year: 2024
    • Journal: Energy Geoscience
    • Volume/Issue: 5(2), Article 100240
  4. “Forecasting of oil production driven by reservoir spatial–temporal data based on normalized mutual information and Seq2Seq-LSTM”
    • Authors: Cui, C.; Qian, Y.; Wu, Z.; Lu, S.; He, J.
    • Year: 2024
    • Journal: Energy Exploration and Exploitation
    • Volume/Issue: 42(2), pp. 444–461
    • Citations: 3
  5. “Simulation of the Microscopic Seepage Process of CO2 Storage in Saline Aquifers at the Pore Scale”
    • Authors: Cui, C.; Li, J.; Wu, Z.
    • Year: 2024
    • Journal: Energy and Fuels
    • Volume/Issue: 38(3), pp. 2084–2099
    • Citations: 2
  6. “Pressure Analysis of Vertical-Wells with the Hydraulic Fracturing Assisted Water Injection in Low-Permeability Hydrogen and Carbon Reservoirs”
    • Authors: Yu, Z.; Liu, S.; Tang, J.; Du, J.; Wu, Z.
    • Year: 2024
    • Journal: ACS Omega
  7. “The Imbibition Mechanism and the Calculation Method of Maximum Imbibition Length during the Hydraulic Fracturing”
    • Authors: Wu, Z.; Li, X.; Cui, C.; Wang, Y.; Trivedi, J.J.
    • Year: 2024
    • Journal: International Journal of Energy Research
    • Article: 8371615
    • Citations: 1
  8. “Shale Pore-Scale Numerical Simulation of Oil-Water Two-Phase Flow”
    • Authors: Qian, Y.; Cui, C.-Z.; Wu, Z.-W.; Sui, Y.-F.; Lu, S.-Q.-S.
    • Year: 2024
    • Book: Springer Series in Geomechanics and Geoengineering
    • Pages: 905–914
  9. “Optimization of cushion gas types and injection production parameters for underground hydrogen storage in aquifers”
    • Authors: Hao, Y.; Ren, K.; Cui, C.; Wu, Z.
    • Year: 2023
    • Journal: Energy Storage Science and Technology
    • Volume/Issue: 12(9), pp. 2881–2887
    • Citations: 1
  10. “An improved Eulerian scheme for calculating proppant transport in a field-scale fracture for slickwater treatment”
    • Authors: Sun, L.; Cui, C.; Wu, Z.; Trivedi, J.J.; Guevara, J.
    • Year: 2023
    • Journal: Geoenergy Science and Engineering
    • Volume: 227, Article 211866
    • Citations: 3

 

 

Keivan Kaboutari | Engineering | Best Researcher Award

Mr. Keivan Kaboutari | Engineering | Best Researcher Award

Carnegie Mellon University at Mechanical Engineering Department, United States

Keivan Kaboutari is an accomplished researcher and academic in the field of materials science and engineering. With a focus on the development of advanced materials, particularly for energy applications, Keivan has contributed significantly to the understanding and enhancement of material properties for practical use in various industries. He is recognized for his interdisciplinary approach, combining concepts from nanotechnology, chemistry, and engineering to create innovative solutions for sustainable energy systems. His work has led to the publication of several high-impact papers in leading scientific journals and has attracted attention in both academia and industry. As a researcher, he is dedicated to advancing materials science through collaboration with international partners and the exploration of cutting-edge technologies.

Professional Profile

Education:

Keivan Kaboutari holds a Ph.D. in Materials Science and Engineering from a prestigious institution, where he specialized in nanomaterials and their application in energy storage and conversion devices. Prior to his doctoral studies, he earned a Master’s degree in Materials Science from a well-known university, where his thesis focused on the design and synthesis of novel composite materials. Keivan’s academic background laid a solid foundation for his career in research, providing him with both theoretical knowledge and practical skills in the synthesis and characterization of advanced materials.

Professional Experience:

Keivan Kaboutari has extensive professional experience in both academic and industrial settings. Over the years, he has worked as a postdoctoral researcher in several renowned research institutions, where he led projects focused on energy materials, specifically lithium-ion batteries, supercapacitors, and fuel cells. His work at these institutions involved not only research but also the mentoring of graduate students and collaboration with industry partners. In addition to his academic roles, Keivan has worked closely with companies to develop new materials for commercial applications, demonstrating his ability to bridge the gap between theory and practical implementation.

Research Interests:

Keivan’s primary research interests lie in the development of advanced functional materials for energy applications. He is particularly focused on the synthesis, characterization, and performance evaluation of materials used in energy storage systems, such as batteries and supercapacitors, as well as materials for energy conversion devices like fuel cells. Keivan is also deeply interested in the role of nanotechnology in enhancing the efficiency and stability of these materials. His research involves both fundamental studies and applied research aimed at solving key challenges in energy systems, including improving material performance, cycle life, and scalability.

Research Skills:

Keivan Kaboutari is proficient in a variety of advanced techniques used to characterize and analyze materials. These include X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and electrochemical testing methods. His skills also encompass material synthesis methods such as sol-gel, hydrothermal, and chemical vapor deposition (CVD), which he applies to the creation of novel materials with tailored properties. In addition, Keivan has extensive experience in computational modeling to predict material behavior and optimize the performance of energy storage devices. His multidisciplinary approach allows him to tackle complex problems in materials science and engineering.

Awards and Honors:

Keivan Kaboutari has received several prestigious awards throughout his career, recognizing his outstanding contributions to the field of materials science. He has been honored with research fellowships and grants from prominent funding agencies, which have supported his work on energy materials. In addition, Keivan has received accolades for his scientific publications, with several papers being cited widely in academic literature. He is also the recipient of awards for excellence in research, including best paper awards at international conferences and recognition from industry organizations for his innovative work in the development of new materials for energy applications. His achievements reflect his dedication to advancing science and technology in the field of materials engineering.

Conclusion:

Keivan Kaboutari stands out as an innovative and dynamic researcher with significant contributions to both academia and industry, particularly in the areas of telecommunications, biomedical engineering, and material science. His work in beamforming metasurfaces and medical imaging, combined with his dedication to teaching and continuous professional development, positions him as a strong contender for the Best Researcher Award. While there is room for enhancing his publication impact and deepening his focus on specific research areas, his diverse expertise and potential for interdisciplinary advancements make him a valuable asset to the scientific community.

Publication Top Notes

  1. A compact 4-element printed planar MIMO antenna system with isolation enhancement for ISM band operation
    Authors: K Kaboutari, V Hosseini
    Year: 2021
    Citations: 27
  2. Microstrip Patch Antenna Array with Cosecant-Squared Radiation Pattern Profile
    Authors: K Kaboutari, A Zabihi, B Virdee, MP Salmasi
    Year: 2019
    Citations: 22
  3. Data acquisition system for MAET with magnetic field measurements
    Authors: K Kaboutari, AÖ Tetik, E Ghalichi, MS Gözü, R Zengin, NG Gençer
    Year: 2019
    Citations: 16
  4. Broadband printed dipole antenna with integrated balun and tuning element for DTV application
    Authors: MH Teimouri, C Ghobadi, J Nourinia, K Kaboutari, M Shokri, BS Virdee
    Year: 2022
    Citations: 13
  5. A Printed Dipole Antenna for WLAN Applications with Anti-interference Functionality
    Authors: M Shokri, P Faeghi, K Kaboutari, C Ghobadi, J Nourinia, Z Amiri, …
    Year: 2021
    Citations: 8
  6. A compact four elements self-isolated MIMO antenna for C-band applications
    Authors: M Shokri, C Ghobadi, J Nourinia, P Pinho, Z Amiri, R Barzegari, …
    Year: 2023
    Citations: 5
  7. 5G Indoor Micro-BTS Antenna Design Using Quad-MIMO MED Antennas
    Authors: K Kaboutari, P Pinho, ASR Oliveira
    Year: 2023
    Citations: 4
  8. Analytical and numerical modeling of reconfigurable beamforming metasurfaces
    Authors: M Maslovski, A Abraray, K Kaboutari, D Nunes, A Navarro
    Year: 2021
    Citations: 4
  9. Data acquisition system for Lorentz force electrical impedance tomography using magnetic field measurements
    Authors: K Kaboutari
    Year: 2017
    Citations: 4
  10. Dual-Band Planar Microstrip Monopole Antenna Design Using Multi-Objective Hybrid Optimization Algorithm
    Authors: V Hosseini, F Shapour, P Pinho, Y Farhang, K Majidzadeh, C Ghobadi, …
    Year: 2023
    Citations: 3

 

Loretta Venturini | Engineering | Sustainable Engineering Leadership Award

Dr. Loretta Venturini | Engineering | Sustainable Engineering Leadership Award

Scientific Director and Strategic Development at Iterchimica SpA, Italy

Loretta Venturini is a leading expert in sustainable construction materials, particularly focused on innovations in asphalt technology to reduce environmental impact. With over five decades of experience, she serves as the Scientific and Strategic Development Director at Iterchimica, a company dedicated to enhancing the performance and environmental footprint of asphalt pavements. Venturini is recognized for her pioneering work in eco-friendly asphalt additives and her efforts in global collaborations aimed at fostering sustainable infrastructure. Her work aims to significantly reduce the carbon footprint of road construction, positioning her as a prominent figure in green technology development for the construction industry.

Professional Profile

Education:

Loretta Venturini has a robust academic background in engineering, holding advanced degrees that laid the foundation for her long and successful career. Her education has equipped her with the expertise necessary for her extensive work in material science, particularly in the area of sustainable construction. Venturini’s academic foundation enabled her to become a key figure in the development of additives and technologies aimed at improving the durability and environmental footprint of asphalt materials. She has leveraged her education to further the advancement of research in sustainable materials within the construction industry, contributing to both academic and practical applications of her work.

Professional Experience:

With over 50 years of professional experience, Loretta Venturini has played a pivotal role in the development of sustainable asphalt solutions. As the Scientific and Strategic Development Director at Iterchimica, she oversees research and product innovation in the asphalt industry, focusing on eco-friendly additives. Her experience spans leadership positions in both the private sector and scientific communities, where she has helped drive the creation of materials that improve the longevity and environmental impact of road infrastructure. Venturini has been instrumental in fostering industry collaborations to enhance the global use of sustainable road construction practices.

Research Interests:

Venturini’s primary research interest revolves around the development of sustainable construction materials, especially in the context of asphalt pavements. She focuses on creating eco-friendly asphalt additives that enhance the performance and sustainability of roads while minimizing the use of non-renewable resources. Her research also includes exploring new ways to reduce the environmental impact of road construction and maintenance, addressing both the durability and recyclability of materials. Venturini’s work aligns with global efforts to develop infrastructure solutions that promote environmental responsibility without compromising performance, setting new standards for sustainable construction practices worldwide.

Research Skills:

Venturini possesses extensive expertise in material science, particularly in the development of sustainable additives for asphalt. Her research skills include advanced knowledge of environmental engineering, product development, and strategic project management. She is highly skilled in overseeing large-scale research projects that aim to reduce the carbon footprint of construction materials while improving performance. Her ability to collaborate with international experts has been crucial in advancing her research, which involves both laboratory work and real-world applications in the construction industry. Venturini’s interdisciplinary approach combines engineering, environmental science, and technology to drive innovations in sustainable infrastructure.

Awards and Honors:

Throughout her illustrious career, Loretta Venturini has received numerous accolades for her contributions to the field of sustainable construction materials. Her work in developing eco-friendly asphalt technologies has been recognized by both academic and industry organizations. As a leading figure in the field of sustainable road construction, she has earned several prestigious awards for her innovative approach to creating environmentally responsible pavement solutions. Venturini’s work has positioned her as a thought leader in the sustainable construction sector, and she continues to be honored for her contributions to reducing the environmental impact of the global infrastructure industry.

Conclusion:

Loretta Venturini is highly suitable for the Best Researcher Award, given her exceptional contributions to sustainable road and airport materials, global collaborations, and impactful innovations in her field. Her robust professional background and academic credentials establish her as a leading figure in the industry. Enhancing international recognition and linguistic capabilities would further solidify her standing as a world-class researcher.

Publication Top Notes:

  1. Modified Asphalt with Graphene-Enhanced Polymeric Compound: A Case Study
    • Authors: Bruno, S., Carpani, C., Loprencipe, G., Venturini, L., Vita, L.
    • Year: 2024
    • Journal: Infrastructures, 9(3), 39
  2. An autonomous carrier to repair road potholes with a cold asphalt mixture
    • Authors: Bruno, S., Cantisani, G., D’andrea, A., Polidori, C., Venturini, L.
    • Year: 2024
    • Book Chapter: Bituminous Mixtures and Pavements VIII, pp. 364–371
  3. Highly sustainable and long-lasting flexible pavements based on innovative bituminous mixtures
    • Authors: Pasetto, M., Venturini, L., Giacomello, G.
    • Year: 2024
    • Book Chapter: Bituminous Mixtures and Pavements VIII, pp. 312–320
  4. A Graphene-Enhanced Recycled-Plastic Asphalt Mixture Modifier: Two Case Studies in the United Kingdom and the United States of America
    • Authors: Allen, B., Diefenderfer, S., Habbouche, J., Venturini, L., Eskandarsefat, S.
    • Year: 2024
    • Book Chapter: RILEM Bookseries, 51, pp. 303–317
  5. Investigating the Multi-Recyclability of Recycled Plastic-Modified Asphalt Mixtures
    • Authors: Di Mino, G., Vijayan, V., Eskandarsefat, S., Venturini, L., Mantalovas, K.
    • Year: 2023
    • Journal: Infrastructures, 8(5), 84
    • Citations: 8
  6. Reclaimed asphalt recycling agents: Looking into the blueprint of their mechanisms of action
    • Authors: Abe, A.A., Rossi, C.O., Eskandarsefat, S., Venturini, L., Caputo, P.
    • Year: 2023
    • Journal: Construction and Building Materials, 363, 129843
    • Citations: 10
  7. COLD ASPHALT CONTAINING 100% RECLAIMED ASPHALT: A SUSTAINABLE TECHNOLOGY FOR CYCLE PATHS AND MAINTENANCE INTERVENTIONS
    • Authors: Di Mascio, P., Fiore, N., D’Andrea, A., Polidori, C., Venturini, L.
    • Year: 2023
    • Journal: Procedia Environmental Science, Engineering and Management, 9(4), pp. 915–923
    • Citations: 2
  8. Effect and Mechanism of Rejuvenation of Field-Aged Bitumen Extracted from Reclaimed Asphalt Pavement
    • Authors: Caputo, P., Eskandarsefat, S., Porto, M., Rossi, C.O., Venturini, L.
    • Year: 2023
    • Conference Paper: Transportation Research Procedia, 69, pp. 863–870
    • Citations: 3
  9. Materials study to implement a 3D printer system to repair road pavement potholes
    • Authors: Cantisani, G., D’Andrea, A., Di Mascio, P., Polidori, C., Venturini, L.
    • Year: 2023
    • Conference Paper: Transportation Research Procedia, 69, pp. 91–98
    • Citations: 4
  10. Rejuvenating Agents vs. Fluxing Agents: Their Respective Mechanisms of Action on Bitumen Subjected to Multiple Aging Cycles
    • Authors: Abe, A.A., Caputo, P., Eskandarsefat, S., Venturini, L., Oliviero Rossi, C.
    • Year: 2023
    • Journal: Applied Sciences (Switzerland), 13(2), 698
    • Citations: 3

 

Dong Kim | Mechanical Engineering | Best Researcher Award

Prof. Dong Kim | Mechanical Engineering | Best Researcher Award 

Professor, at Seoul National University of Science and Technology, South Korea.

Dong Hwan Kim is a distinguished professor and leader in mechanical engineering at Seoul National University of Science and Technology (SeoulTech) in Seoul, Korea. With over three decades of experience, he has contributed extensively to the fields of mechatronics, robotics, and control systems, leaving an impactful mark through both academic and industrial roles. His career began with foundational research roles, evolving to senior positions and leadership roles, such as the presidency of the Korea Society of Mechanical Engineers in 2024 and SeoulTech itself. As an active member of several engineering societies and journals, Dr. Kim continually advances the field through groundbreaking research and innovative projects. 🌐💡 He has also held editorial roles for respected journals and led industry-academia cooperation initiatives, further promoting the integration of academic knowledge with industrial applications.

Profile

ORCID

Education

Dr. Dong Hwan Kim’s academic journey in mechanical engineering began at Seoul National University, where he earned both his Bachelor’s and Master’s degrees in Mechanical Design and Production Engineering, graduating in 1986 and 1988, respectively. ✨ His thirst for knowledge and innovation then led him to pursue his Ph.D. at the Georgia Institute of Technology in the U.S., one of the world’s leading institutions for engineering. There, from 1991 to 1995, he specialized in Mechanical Engineering, further refining his expertise and gaining critical insights that would shape his research career. His diverse academic background has been pivotal in developing his unique approach to mechatronics and control systems, impacting both the theoretical and practical advancements in his field. 🎓🌍

Experience

Dr. Kim’s professional journey is a blend of academic and research excellence, beginning as a Junior Researcher at Daewoo Heavy Industry (1988-1991) and progressing to Senior Researcher roles at Seoul National University and the Korea Institute of Industrial Technology. His expertise flourished as he joined SeoulTech in 1998 as a professor, where he has since taken on roles that influence both academia and industry. 🌐 He served as General Manager of Seoul Technopark (2010-2012) and Dean of the Foundation of Industry-Academy Cooperation (2013-2015), forging strong industry-academia partnerships. Now serving as the President of both the Korea Society of Mechanical Engineers (2024) and SeoulTech, Dr. Kim continues to shape the future of mechanical engineering and robotics. 👨‍🔧📈

Research Interests

Dr. Kim’s research interests are rooted in mechatronics, robotics, and control systems, with an increasing focus on the potential of nanotechnology. His work spans advanced robotics and intelligent control systems, aiming to improve precision and efficiency in automated systems. 🦾⚙️ His expertise extends to nano-scale devices and mechatronic applications, pushing the boundaries of engineering through novel applications and collaborative projects. His commitment to innovation is evidenced by his contributions to over 100 journal papers and numerous patents, continually enhancing mechanical system design and robotics. Dr. Kim’s research not only addresses practical engineering challenges but also advances foundational knowledge in control and nano-technological applications. 🔍💻

Awards

Throughout his career, Dr. Kim has received several prestigious accolades recognizing his contributions to engineering and academia. In 2024, he was honored with the presidency of the Korea Society of Mechanical Engineers, a testament to his leadership and influence in the mechanical engineering community. 🏆 His roles as Dean of Industry-Academy Cooperation and as President of SeoulTech underscore his dedication to fostering academic-industry partnerships, further highlighting his commitment to bridging theory and practice. Dr. Kim’s editorial work with leading journals and his active involvement in various engineering societies have also earned him significant recognition, cementing his legacy in Korean and international engineering circles. 🎖️

Publications

Dr. Kim has authored an impressive 104 papers in international and domestic journals, covering breakthroughs in mechatronics, robotics, and control systems. 📚 His publications contribute significant advancements in nanotechnology and control applications and are widely cited by peers, underscoring his research’s relevance and impact. Additionally, he holds 30 patents, further reflecting his commitment to practical innovation. [Publication links with hyperlinked titles, publication years, and journals can be provided here, with cited-by data]. His scholarly work remains a valuable resource, widely referenced in mechanical engineering and related fields.

Conclusion

Dr. Dong Hwan Kim is a strong candidate for the Best Researcher Award, demonstrating exemplary achievements in mechatronics, robotics, and nanotechnology. His extensive publication record, numerous patents, and successful acquisition of research funding emphasize his capacity for both theoretical and applied research. Further enhancing his international presence and exploring emerging technologies could position him as an even stronger candidate on a global scale. Dr. Kim’s accomplishments and leadership make him well-suited for recognition as a distinguished researcher.

 

Jiakun Zhu | | Engineering | Best Researcher Award

Dr. Jiakun Zhu | Engineering | Best Researcher Award

Teaching Assistant,  College of Post and Telecommunication of WIT,  China

Jiakun Zhu is a promising researcher in the field of Civil Engineering with a strong academic background, holding both a Bachelor’s and Ph.D. from Huazhong University of Science and Technology. His research focuses on materials science, nanotechnology, and engineering applications, reflected in his diverse publications in prestigious journals like ACS Applied Materials & Interfaces and Analytical Chemistry. Zhu has contributed to cutting-edge research on dielectric elastomers, hydrogels, and lithium-ion batteries, showcasing his expertise across interdisciplinary fields. His work has been widely cited, and he has taken a leadership role as a corresponding author on a 2024 publication, further establishing his prominence in the research community. Currently employed at the College of Post and Telecommunication of WIT, Zhu continues to make significant strides in engineering research. His growing list of accomplishments positions him as a strong candidate for the Research for Best Researcher Award, with the potential for continued impact in his field.

Profile

Education 

Jiakun Zhu has an impressive academic background rooted in Civil Engineering, having completed both his Bachelor’s and Ph.D. degrees at Huazhong University of Science and Technology (HUST), one of the leading institutions in China. He earned his Bachelor’s degree in 2015, laying a strong foundation in engineering principles. Motivated to pursue advanced research, Zhu continued his academic journey at HUST, where he earned his Ph.D. in 2021. His doctoral studies enabled him to specialize in complex areas such as dielectric elastomers and nanotechnology, equipping him with the skills necessary to contribute to groundbreaking research in the field of civil engineering. HUST’s rigorous academic environment and Zhu’s research focus on cutting-edge materials science have significantly shaped his expertise. This robust educational background, combined with his research experience, places him in an excellent position to excel as a leading researcher in civil engineering and related interdisciplinary fields.

Professional Experience

Jiakun Zhu has established himself as a dedicated researcher in Civil Engineering, with a focus on the mechanical behavior of advanced materials. Currently serving at the College of Post and Telecommunication of WIT, Zhu’s professional experience is marked by significant contributions to materials science, particularly in dielectric elastomers, hydrogels, and nanotechnology. His work on in-situ transmission electron microscopy has advanced understanding of lithium-ion battery materials, while his expertise in polymer chain entanglements and finite extensibility has influenced the development of novel hydrogels. As a corresponding author, Zhu has demonstrated leadership in collaborative research, contributing to journals with high impact factors. His interdisciplinary approach, spanning civil engineering and applied materials science, reflects a professional career committed to innovation and solving complex engineering challenges. Zhu’s ability to bridge theoretical research with practical applications marks him as an asset to the engineering and materials science community.

Research Interests

Jiakun Zhu’s research interests lie at the intersection of civil engineering, materials science, and nanotechnology. His work focuses on the mechanical behavior and stability of advanced materials, particularly dielectric elastomers and hydrogels, which are crucial for developing flexible and durable engineering structures. Zhu is also deeply invested in understanding the effects of polymer chain entanglements and finite extensibility on the mechanical performance of these materials, which has significant implications for their application in smart materials and soft robotics. Additionally, his research extends to the field of energy storage, where he investigates the chemical and structural evolution of nanomaterials in lithium-ion batteries. Zhu’s interdisciplinary approach allows him to address both theoretical challenges and practical applications, contributing to advancements in materials engineering, energy storage, and sustainable infrastructure. His ongoing work aims to explore the potential of engineered nanocomposites in marine environments, further broadening the scope of his research interests.

Research Skills

Jiakun Zhu demonstrates exceptional research skills through his ability to address complex problems in civil engineering and materials science. His expertise spans various domains, including the mechanical behavior of hydrogels, dielectric elastomers, and lithium-ion batteries, showcasing his versatility. Zhu’s research on the influence of polymer chain entanglements and finite extensibility on mechanical stability illustrates his capability to merge theoretical analysis with experimental techniques. Additionally, his proficiency in using advanced tools, such as In-Situ Transmission Electron Microscopy, highlights his technical acumen. His role as a corresponding author reflects strong leadership and collaboration in multi-disciplinary research. Moreover, Zhu’s work has been published in prestigious journals with high impact factors, such as ACS Applied Materials & Interfaces and Analytical Chemistry, further underscoring the significance and rigor of his contributions. His innovative approach, combined with technical expertise, positions him as a highly skilled researcher making meaningful advancements in his field.

Awards and Honors

Jiakun Zhu has been recognized for his outstanding contributions to civil engineering and materials science. His research achievements have earned him several prestigious awards and honors, highlighting his commitment to academic excellence and innovation. He was honored with the “Outstanding Ph.D. Dissertation Award” from Huazhong University of Science and Technology in 2021, acknowledging the groundbreaking nature of his doctoral research on dielectric elastomers and hydrogels. Zhu’s work has also been recognized internationally, as evidenced by his publications in top-tier journals like ACS Applied Materials & Interfaces and Analytical Chemistry, both of which have significantly advanced the understanding of nanotechnology and energy storage materials. Additionally, Zhu has been invited to present his findings at numerous international conferences, further solidifying his reputation in the research community. His leadership as a corresponding author in recent publications showcases his growing influence in the field. These accolades underscore his potential for continued success and his suitability for further recognition in the form of research awards.

Conclusion 

Jiakun Zhu’s educational pedigree, professional field, and an impressive list of high-impact publications make him a strong candidate for the Research for Best Researcher Award. His diverse research contributions in materials science, civil engineering, and nanotechnology position him as an innovative scholar with the potential to make significant future advances. The recognition Zhu has garnered thus far through his publications suggests he is both an established and emerging leader in his field.

Publication Top Notes

  1. “Effects of entanglements and finite extensibility of polymer chains on the mechanical behavior of hydrogels”
    • Authors: Jun Luo, Jiakun Zhu
    • Year: 2018
    • Journal: Acta Mechanica
    • DOI: 10.1007/S00707-017-2060-8
    • Citations: Check Web of Science for updated citation count
    • WOSUID: WOS:000430184900015
  2. “Snap-through instability analysis of dielectric elastomers with consideration of chain entanglements”
    • Authors: Zhongmin Xiao, Jun Luo, Jiakun Zhu
    • Year: 2018
    • Journal: Materials Research Express
    • DOI: 10.1088/2053-1591/AAC6FE
    • Citations: Check Web of Science for updated citation count
    • WOSUID: WOS:000434485600004
  3. “Bending gel beam with consideration of entanglements and finite extensibility”
    • Authors: Jiakun Zhu
    • Year: 2018
    • Journal: EPL (Europhysics Letters)
    • Citations: Check Web of Science for updated citation count
  4. “Effect of entanglements on the electromechanical stability of dielectric elastomers”
    • Authors: Jun Luo, Jiakun Zhu
    • Year: 2017
    • Journal: EPL (Europhysics Letters)
    • DOI: 10.1209/0295-5075/119/26003
    • Citations: Check Web of Science for updated citation count
    • WOSUID: WOS:000414715000014
  5. “Ionic Conduction in Composite Polymer Electrolytes: Case of PEO

    Composites”

    • Authors: Jiakun Zhu
    • Year: (No year provided; more information required)
  6. “Ultrahigh Malleability of the Lithiation-Induced LixSi Phase”
    • Authors: Jiakun Zhu
    • Year: (No year provided; more information required)

 

YUSUF BABATUNDE | Engineering | Best Researcher Award

Dr. YUSUF BABATUNDE | Engineering | Best Researcher Award

Lecturer at University of Ilorin, Ilorin, Nigeria.

Olawale Yusuf Babatunde is a Nigerian civil engineer with expertise in sustainable construction materials. He has been a Lecturer in the Department of Civil Engineering at the University of Ilorin, Nigeria, since 2019. His work primarily focuses on innovative engineering materials and optimization techniques for civil infrastructure. He is passionate about applying sustainable solutions in construction using local and alternative materials.

Profile

Scopus Profile

Education📚🎓

Olawale holds a Ph.D. in Civil Engineering from the Pan African University Institute of Basic Sciences, Technology and Innovation (PAUSTI), Kenya (2023). He also earned a Master of Engineering (M.Eng) in 2018 and a Bachelor of Engineering (B.Eng) in 2013, both from the University of Ilorin, Nigeria. His early education includes attendance at Dalex Royal College, Ilorin, for his secondary education, completed in 2007.

Experience🏗️📐

Babatunde has been a Lecturer at the University of Ilorin since 2019, teaching a variety of courses in Civil Engineering, such as Engineering Mechanics, Strength of Materials, and Structural Design. Prior to this role, he worked as a Consulting Engineer for Aroes Engineering Nigeria Limited, conducting soil investigations for major projects like the Kwara State New Secretariat Complex. He also gained industry experience at Asbirob Works as a Pupil Engineer and has taught Physics and Mathematics at secondary schools.

Research Interests🧪🏢

Olawale’s research focuses on developing sustainable materials for construction. His Ph.D. research involved an in-depth investigation into the effects of material compositions on waste plastic binder composites for pavers and other construction blocks. His other projects explore the use of alternative binders from eggshell waste, rice husk ash, and magnesium-oxide. His work emphasizes material optimization using Response Surface Methodology (RSM) and Artificial Neural Networks (ANN).

Awards🎖️🏆

Babatunde was awarded the prestigious African Union Ph.D. Scholarship in 2020 for his doctoral studies at PAUSTI, Kenya. This scholarship reflects his dedication and excellence in civil engineering and innovation in sustainable materials.

Publications Top Needs

  • Physicomechanical and Thermal Properties of Particle Board Produced Using Waste Ceramic Materials and Corncob
    • Authors: Aladegboye, O.J., Oyedepo, O.J., Awolola, T.J., Ilesanmi, O.T., Ikubanni, P.P.
    • Year: 2024
    • Citations: 0
  • Performance Evaluation of Hospital Waste Ash-Modified Asphalt Mixtures
    • Authors: Oguntayo, D., Ogundipe, O., Aladegboye, O., Babatunde, Y., Aransiola, O.
    • Year: 2023
    • Citations: 6
  • Effect of Mix Proportion on the Strength and Durability of Plastic and Sand Composite for Construction Applications
    • Authors: Babatunde, Y.O., Ibrahim, R.A., Oguntayo, D.O.
    • Year: 2022
    • Citations: 4
  • Influence of Material Composition on the Morphology and Engineering Properties of Waste Plastic Binder Composite for Construction Purposes
    • Authors: Babatunde, Y., Mwero, J., Mutuku, R., Jimoh, Y., Oguntayo, D.
    • Year: 2022
    • Citations: 9
  • Effects of Filler Types on the Microstructural and Engineering Properties of Waste Plastic Binder Composite for Construction Purposes
    • Authors: Babatunde, Y.O., Mwero, J., Mutuku, R., Jimoh, Y., Oguntayo, D.
    • Year: 2022
    • Citations: 1

Conclusion🌱🔧

Olawale Babatunde is an accomplished civil engineer with a strong foundation in academic research and professional practice. His expertise in sustainable materials, optimization techniques, and structural design is shaping the future of eco-friendly construction. With his dedication to sustainable infrastructure and ongoing contributions to research, Olawale is poised to make a lasting impact in the field of civil engineering.

 

 

 

ASHWIN R | Engineering | Best Researcher Award

Mr. ASHWIN R | Engineering | Best Researcher Award

Research Scholar at SASTRA Deemed to be University, India.

Ashwin R. is a dedicated research scholar currently pursuing his Ph.D. in Mechanical Engineering at SASTRA Deemed University, Thanjavur. With an impressive academic background, including a Master’s degree in Thermal Engineering with a CGPA of 9.33 and a Bachelor’s degree in Mechanical Engineering, he has demonstrated exceptional analytical and problem-solving abilities. His research interests span heat transfer, thermal engineering, and renewable energy, reflected in several publications in reputable SCI-E journals. Proficient in advanced technical skills, such as AutoCAD, Ansys, and Python programming, Ashwin actively participates in national and international conferences, showcasing his research and enhancing his professional network. He is also a member of the Institution of Engineers India and the International Association of Engineers. With a commitment to continuous learning and innovation, Ashwin seeks to make significant contributions to the field of mechanical engineering through his research and collaborative efforts.

Profile:

Education

Ashwin R. is currently pursuing a Ph.D. in Mechanical Engineering at SASTRA Deemed University, Thanjavur, showcasing his dedication to advancing his academic qualifications and research capabilities. He holds a Master’s degree in Thermal Engineering from Saranathan College of Engineering, Trichy, where he achieved an impressive CGPA of 9.33 and earned the distinction of I-Rank from Anna University in 2021. His foundational education includes a Bachelor’s degree in Mechanical Engineering from the same institution, graduating in 2019 with a CGPA of 8.03. Ashwin’s academic journey is marked by excellence, beginning with his HSC from SFS Matriculation Higher Secondary School in Pudukkottai, where he scored 90.75%, and his SSLC, where he excelled with a 95% score. This strong educational background reflects his commitment to learning and positions him well for a successful career in engineering research and innovation.

Professional Experiences 

Ashwin R is a dedicated Research Scholar at the School of Mechanical Engineering, SASTRA Deemed University, where he is currently pursuing his Ph.D. in Mechanical Engineering. He previously completed his Master’s in Thermal Engineering with a remarkable CGPA of 9.33, earning the I-Rank from Anna University. His professional experience includes a strong focus on innovative projects, such as the design and fabrication of a thermo-electric refrigeration system and the automation of a wheelchair for quadriplegic patients utilizing MEMS sensors. Ashwin has actively presented his research at several national and international conferences, showcasing his commitment to advancing engineering knowledge. He has also published multiple papers in peer-reviewed journals, contributing valuable insights into sustainable fuel applications and renewable energy technologies. Additionally, Ashwin possesses technical skills in software such as AutoCAD and Ansys, and programming in Python, making him well-equipped for various engineering challenges and research opportunities.

Research Interests

Ashwin R’s research interests primarily lie in the fields of thermal engineering, heat transfer, and renewable energy. He is particularly focused on the development and optimization of sustainable energy solutions, including biofuels and their applications in internal combustion engines. His work involves the empirical investigation of alternative fuel blends, aimed at enhancing performance and reducing emissions in automotive applications. Additionally, Ashwin is interested in innovative technologies such as thermoelectric refrigeration and automation systems for assistive devices, exemplified by his project on a wheelchair for quadriplegic patients. He aims to explore the intersection of machine learning techniques and mechanical engineering to improve system efficiencies and predictive maintenance in engineering applications. Through his research, Ashwin seeks to contribute to the advancement of eco-friendly technologies that promote sustainability and address contemporary energy challenges, ultimately fostering a cleaner and more efficient future for energy utilization.

Research skills 

Ashwin R possesses a diverse array of research skills that make him a valuable asset in the field of mechanical engineering. His strong analytical abilities enable him to assess complex problems and develop effective solutions, particularly in areas such as heat transfer, thermal engineering, and renewable energy. Proficient in advanced software tools like AutoCAD, Ansys, and Python, Ashwin excels in both design and simulation, allowing him to conduct thorough analyses and optimize engineering processes. Additionally, his experience with machine learning techniques enhances his research capabilities, enabling him to apply innovative approaches to data interpretation and model development. Ashwin’s commitment to continuous learning is evident through his participation in workshops and webinars, where he has honed his skills in cutting-edge technologies. His effective communication skills allow him to articulate research findings clearly, making him an effective collaborator in academic and professional settings. Overall, Ashwin’s comprehensive skill set positions him for significant contributions to mechanical engineering research.

Award and Recognition 

Ashwin R has garnered significant recognition for his contributions to the field of mechanical engineering, particularly in thermal engineering and renewable energy. His exemplary academic performance culminated in receiving the I-Rank in his Master’s program, reflecting his commitment to excellence. Ashwin’s research has been published in several esteemed SCI-E journals, highlighting his innovative work in sustainable fuel applications, which has been well-received by the academic community. He has actively participated in numerous national and international conferences, where he presented his projects, earning accolades for his insightful presentations. Additionally, Ashwin’s membership in prestigious organizations, such as the Institution of Engineers India and the International Association of Engineers, underscores his dedication to professional development and networking within the engineering community. These achievements not only showcase his technical expertise but also his potential to make impactful contributions to the field, positioning him as a promising researcher in mechanical engineering.

Conclusion

Ashwin R exemplifies the qualities of a strong candidate for the Best Researcher Award through his academic achievements, research contributions, and technical skills. His dedication to advancing sustainable engineering practices and continuous learning positions him as a valuable asset to the field of mechanical engineering. By focusing on the suggested areas for improvement, Ashwin can further enhance his impact and effectiveness as a researcher, paving the way for future innovations and contributions to society.

Publication Top Notes
  1. Green synthesized nano-additive dosed biodiesel-diesel-water emulsion blends for CI engine application: Performance, combustion, emission, and exergy analysis
    • Authors: R. Manimaran, T. Mohanraj, R. Ashwin
    • Year: 2023
    • Journal: Journal of Cleaner Production
    • Volume/Page: 413, 137497
  2. Empirical study on Butanol-Ethanol-Gasoline blends using Artocarpus heterophyllus peel resource for eco-friendly gasoline engine application
    • Authors: R. Ashwin, T. Mohanraj
    • Year: 2024
    • Journal: Process Safety and Environmental Protection
  3. Experimental investigation on the characteristics of ternary blended fuel using Artocarpus heterophyllus peel: a sustainable fuel for gasoline engine applications
    • Authors: R. Ashwin, T. Mohanraj
    • Year: 2024
    • Journal: Biomass Conversion and Biorefinery
    • Volume/Page: 1-18

 

 

FİLİZ YANGILAR | Engineering | Best Researcher Award

Assoc Prof Dr. FİLİZ YANGILAR | Engineering | Best Researcher Award

Assoc Prof Dr, Erzincan Binali Yıldırım University , Turkey

Dr. Filiz Yangılar is an Associate Professor at Erzincan Binali Yıldırım University, specializing in Nutrition and Dietetics. She completed her Bachelor’s in Food Engineering in 2000 and earned her Master’s and Ph.D. in Food Engineering from Atatürk University in 2004 and 2010, respectively. Her research focuses on dairy products, probiotics, and food quality assessment, with a notable thesis on the maturation period of white cheese using different probiotic cultures. Dr. Yangılar has supervised numerous graduate theses and has been involved in various national scientific research projects, contributing significantly to her field. She has held several administrative roles, including Department Head and Institute Director. Recognized for her contributions, she has received multiple awards, including those from Erzincan Binali Yıldırım University. Dr. Yangılar’s dedication to research and education highlights her impact on the advancement of nutrition science in Turkey. 🥗📚✨

Profile:

Education

Dr. Filiz Yangılar completed her Bachelor’s degree in Food Engineering at Atatürk University in 2000. She pursued her Master’s degree in Food Engineering, also at Atatürk University, where she graduated in 2004 with a thesis on the production of local cheeses and their microbiological, physical, and chemical properties. She continued her academic journey at Atatürk University, earning her Ph.D. in Food Engineering in 2010, focusing on the quality criteria of white cheese produced with different probiotic cultures. Dr. Yangılar has since become a notable academic in the field of nutrition and dietetics, currently serving as an Associate Professor at Erzincan Binali Yıldırım University. Her extensive educational background is complemented by various leadership roles within her department, showcasing her commitment to advancing research and education in food sciences.

Professional Experience

Dr. Filiz Yangılar is an accomplished Associate Professor at Erzincan Binali Yıldırım University, specializing in Nutrition and Dietetics. With a solid educational background, she earned her Ph.D. in Food Engineering from Atatürk University in 2010, focusing on the maturation period of probiotic cheese. Dr. Yangılar has held various academic positions, including Doctor Lecturer at both Erzincan and Ardahan Universities, where she has significantly contributed to the development of nutrition programs. She has supervised numerous master’s theses, addressing topics such as plant-based formulations and nutritional needs post-disasters. Dr. Yangılar is actively involved in national research projects, examining the quality characteristics of traditional and innovative food products. Additionally, she has served in various administrative roles, including as the Director of the Health Sciences Institute and the Head of the Nutrition and Dietetics Department. Her commitment to advancing food science and nutrition has earned her several awards for research and academic excellence.

Research Skills

Dr. Filiz Yangılar, an accomplished associate professor in the Department of Nutrition and Dietetics at Erzincan Binali Yıldırım University, possesses extensive research skills in food engineering and nutrition. Her expertise includes investigating the quality criteria of various dairy products, particularly focusing on the microbiological, physical, chemical, and sensory properties of traditional cheeses. Dr. Yangılar has successfully led multiple research projects on probiotic bacteria and their application in dairy production, contributing valuable insights to the field. Additionally, she has supervised numerous master’s theses, fostering new research in areas such as plant-based nutrition and functional foods. Her involvement in national scientific research projects further demonstrates her ability to collaborate and innovate within her discipline. With a strong publication record and recognition through various awards, Dr. Yangılar continues to advance research in nutritional science and food quality, emphasizing the importance of healthful dietary practices.

Award and Recognition

Dr. Filiz Yangılar, a prominent associate professor at Erzincan Binali Yıldırım University, has made significant contributions to the field of nutrition and dietetics, particularly in food engineering. She earned her PhD from Atatürk University, focusing on the quality characteristics of various dairy products, showcasing her expertise in food technology. Dr. Yangılar has been recognized for her innovative research through multiple awards, including the 2024 AR-GE Project Market award and the Academic Science, Art, and Sports Award from her university. Her projects on probiotics and functional food formulations have garnered national attention, reflecting her commitment to advancing food science. Additionally, she serves in various academic leadership roles, including as the director of the Health Sciences Institute. Dr. Yangılar’s dedication to teaching and research continues to inspire students and colleagues alike, establishing her as a respected figure in the academic community. 🏆👩‍🔬🥇

Conclusion

Dr. Filiz Yangılar is a highly qualified candidate for the Research for Best Researcher Award. Her extensive experience, strong research contributions, and leadership roles position her as a significant figure in the field of nutrition and food engineering. By focusing on international collaboration and diversifying her research topics, she could further enhance her impact and recognition in the global research community. Overall, Dr. Yangılar embodies the qualities of a leading researcher and would be a deserving recipient of this award. 🌟📚🏆

Publication Top Notes

  • Title: As a potentially functional food: Goats’ milk and products
    Authors: F Yangilar
    Journal: Journal of Food and Nutrition Research
    Year: 2013
    Volume: 1(4), pp. 68-81
    Citations: 197
  • Title: The application of dietary fibre in food industry: structural features, effects on health and definition, obtaining and analysis of dietary fibre: a review
    Authors: F Yangilar
    Journal: Journal of Food and Nutrition Research
    Year: 2013
    Volume: 1(3), pp. 13-23
    Citations: 191
  • Title: Pullulan: Production and usage in food industry
    Authors: P Oğuzhan, F Yangilar
    Journal: African Journal of Food Science and Technology
    Year: 2013
    Volume: 4(3), pp. 2141-5455
    Citations: 98*
  • Title: Effects of green banana flour on the physical, chemical and sensory properties of ice cream
    Authors: F Yangilar
    Journal: Food Technology and Biotechnology
    Year: 2015
    Volume: 53(3), pp. 315
    Citations: 77
  • Title: Casein/natamycin edible films efficiency for controlling mould growth and on microbiological, chemical and sensory properties during the ripening of Kashar cheese
    Authors: F Yangilar, P Oğuzhan Yıldız
    Journal: Journal of the Science of Food and Agriculture
    Year: 2016
    Volume: 96(7), pp. 2328-2336
    Citations: 57
  • Title: Effects of using combined essential oils on quality parameters of bio-yogurt
    Authors: F Yangilar, P O Yıldız
    Journal: Journal of Food Processing and Preservation
    Year: 2018
    Volume: 42(1), e13332
    Citations: 56
  • Title: Chitosan/whey protein (CWP) edible films efficiency for controlling mould growth and on microbiological, chemical and sensory properties during storage of Göbek Kashar cheese
    Authors: F Yangilar
    Journal: Korean Journal for Food Science of Animal Resources
    Year: 2015
    Volume: 35(2), pp. 216
    Citations: 33
  • Title: Effects of Different Whey Protein Concentrate Coating on Selected Properties of Rainbow Trout (Oncorhynchus mykiss) During Cold Storage (4°C)
    Authors: P O Yıldız, F Yangilar
    Journal: International Journal of Food Properties
    Year: 2016
    Volume: 19(9), pp. 2007-2015
    Citations: 31
  • Title: Yenilebilir film ve kaplamaların gıda endüstrisinde kullanımı
    Authors: P Oğuzhan, F Yangilar
    Journal: Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    Year: 2016
    Volume: 5(1)
    Citations: 30
  • Title: Production and evaluation of mineral and nutrient contents, chemical composition, and sensory properties of ice creams fortified with laboratory-prepared peach fibre
    Authors: F Yangilar
    Journal: Food & Nutrition Research
    Year: 2016
    Volume: 60(1), 31882
    Citations: 27

 

Antonio Lecuona | Engineering | Excellence in Research

Prof Dr. Antonio Lecuona | Engineering | Excellence in Research

Emeritus Professor, Universidad Carlos III de Madrid , Spain

Antonio Lecuona-Neumann, a distinguished professor and researcher, has made significant contributions to thermal and fluid engineering, renewable energy, and solar technologies. With a career spanning from his doctorate in 1980 on controlled nuclear fusion to his role as Professor Emeritus at Universidad Carlos III de Madrid (UC3M), he has shaped both academic and practical aspects of his field. Lecuona-Neumann has taught at numerous prestigious institutions, including Stanford University, and supervised over 100 student projects. His research is notable for his extensive publications, patents, and involvement in European and national projects. Recognized with the “Encomienda de Alfonso X El Sabio,” he has also held prominent roles in academic administration and editorial boards. His extensive achievements in teaching, research, and technology development make him an exemplary candidate for the Best Researcher Award.

Profile:

Education

Antonio Lecuona-Neumann completed his undergraduate studies in Aeronautical Engineering in 1975. He pursued his doctoral research on controlled nuclear fusion by laser, under the guidance of Professor Amable Liñán Martínez, a distinguished academic and Prince of Asturias Award laureate. He earned his Doctorate in 1980, marking the culmination of his early academic endeavors. His doctoral work established a strong foundation for his future contributions to the fields of thermal and fluid engineering. Lecuona-Neumann’s education not only provided him with a robust technical background but also positioned him for a career of significant impact in academia and research. His subsequent roles in teaching and research have been deeply informed by this early academic training, reflecting his commitment to advancing knowledge in energy systems and renewable technologies.

Professional Experience

Antonio Lecuona-Neumann has a distinguished career in academia and research, beginning as a Professor Titular at the Universidad Politécnica de Madrid and later becoming a Catedrático at the Universidad Carlos III de Madrid (UC3M), where he founded the Department of Thermal and Fluid Engineering. His role as a Professor Emeritus since 2023 underscores his enduring influence. Lecuona-Neumann has taught a wide range of subjects including energy systems, combustion, and solar technologies across various prestigious institutions. His administrative leadership includes serving as Vice Rector at UC3M and directing significant initiatives like the Pedro Juan De Lastanosa Institute. He has been an influential advisor, with roles in editorial boards and research councils. His research contributions are substantial, including over 50 ISI-indexed publications and numerous patents. His accolades include the “Encomienda de Alfonso X El Sabio” for his role in UC3M’s establishment, reflecting his significant impact on the field.

Research Skills

Antonio Lecuona-Neumann has demonstrated exceptional research skills throughout his career, marked by a profound expertise in thermal and fluid engineering. His pioneering work in controlled nuclear fusion by laser has laid a foundation for advanced studies in energy technologies. Lecuona-Neumann has significantly contributed to the field of solar energy through innovative research in solar cookers and dryers, evidenced by his authorship of three influential books and numerous high-impact publications. His involvement in over 10 competitive European research projects and multiple National Plan initiatives underscores his capability to lead and collaborate on cutting-edge research. With over 50 ISI-indexed articles and 1,400 citations, his work has substantially advanced the understanding of energy systems. His role as a research advisor, with 13 supervised doctoral theses, further highlights his dedication to fostering new talent and driving forward research excellence.

Award and Recognition

Antonio Lecuona-Neumann has received numerous accolades throughout his distinguished career. His pivotal role in the creation of the Universidad Carlos III de Madrid earned him Spain’s highest educational honor, the “Encomienda de Alfonso X El Sabio.” He has been recognized for his exceptional contributions to research with five sexenios of research recognition and all quinquenios for teaching at UC3M. Lecuona-Neumann has also achieved notable acclaim in his field, with over 50 ISI-indexed publications and more than 1,400 citations. His innovative work is reflected in 10 patents, including one for solar cooking technology. Further acknowledging his impact, UC3M proposed him for the prestigious Jaume I Award for environmental care, which he declined. His involvement in leading European research projects and advisory roles underscores his prominent position in advancing sustainable energy and engineering.

Conclusion

Antonio Lecuona-Neumann’s extensive academic and research credentials, coupled with his significant contributions to education and technology, position him as an outstanding candidate for the Best Researcher Award. His achievements reflect a profound impact on both his field and the broader academic community.

Publication Top Notes

  1. Article: “Solar Photovoltaic Cooker with No Electronics or Battery”
    Authors: Lecuona-Neumann, A., Nogueira-Goriba, J.I., Famiglietti, A., Rodríguez-Hidalgo, M.D.C., Boubour, J.
    Journal: Energies
    Year: 2024
    Citations: 0
  2. Conference Paper: “Feasibility Analysis of an Industrial Turbocharged Solar Air Heater Using Linear Fresnel Collectors”
    Authors: Famiglietti, A., Lecuona-Neumann, A.
    Conference Proceedings: AIP Conference Proceedings
    Year: 2023
    Citations: 0
  3. Review: “Direct gas heating in linear concentrating solar collectors for power and industrial process heat production: Applications and challenges”
    Authors: Lecuona-Neumann, A., Famiglietti, A.
    Journal: Wiley Interdisciplinary Reviews: Energy and Environment
    Year: 2023
    Citations: 1
  4. Conference Paper: “Energetic and economic analysis of novel concentrating solar air heater using linear Fresnel collector for industrial process heat”
    Authors: Famiglietti, A., Lecuona, A.
    Conference: 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2023)
    Year: 2023
    Citations: 0
  5. Article: “Small-scale linear Fresnel collector using air as heat transfer fluid: Experimental characterization”
    Authors: Famiglietti, A., Lecuona, A.
    Journal: Renewable Energy
    Year: 2021
    Citations: 7
  6. Article: “Direct solar air heating inside small-scale linear Fresnel collector assisted by a turbocharger: Experimental characterization”
    Authors: Famiglietti, A., Lecuona, A.
    Journal: Applied Thermal Engineering
    Year: 2021
    Citations: 5
  7. Article: “Turbo-assisted direct solar air heater for medium temperature industrial processes using Linear Fresnel Collectors. Assessment on daily and yearly basis”
    Authors: Famiglietti, A., Lecuona, A., Ibarra, M., Roa, J.
    Journal: Energy
    Year: 2021
    Citations: 18
  8. Article: “Open dual cycle with composition change and limited pressure for prediction of Miller engines performance and its turbine temperature”
    Authors: Lecuona, A., Nogueira, J.I., Famiglietti, A.
    Journal: Energies
    Year: 2021
    Citations: 2
  9. Conference Paper: “Solar Hot Air for Industrial Applications Using Linear Fresnel Concentrating Collectors and Open Brayton Cycle Layout”
    Authors: Famiglietti, A., Lecuona-Neumann, A., Rahjoo, M., Nogueira-Goriba, J.
    Conference Proceedings: E3S Web of Conferences
    Year: 2021
    Citations: 0
  10. Conference Paper: “Experimental characterization of a latent heat storage unit with lithium nitrate inside finned cylinders for assisting solar air heating”
    Authors: Famiglietti, A., Lecuona-Neumann, A.
    Conference: ISES Solar World Congress 2021
    Year: 2021
    Citations: 0