Meiqi Li | Engineering | Best Researcher Award

Dr. Meiqi Li | Engineering | Best Researcher Award

Engineer at Peking University, China.

Dr. Meiqi Li is a skilled biomedical engineer with a strong focus on cutting-edge imaging technologies. As a Co-Principal Investigator (Co-PI) and Engineer in the Peng Xi Group at the School of Life Sciences, Peking University, she has contributed significantly to the fields of super-resolution microscopy and multi-dimensional live-cell imaging. With several prestigious awards, including teaching accolades and innovation prizes from Peking University, Dr. Li is recognized as an accomplished researcher and educator. Her commitment to advancing knowledge in her field is evident through her leadership in multiple high-impact research projects funded by the National Natural Science Foundation. Dr. Li’s innovative work is positioned to make lasting contributions to biomedical research, particularly in understanding complex cellular structures and dynamics.

Professional Profile

Education

Dr. Li completed her Ph.D. in Biomedical Engineering at Peking University, specializing in super-resolution microscopy and live-cell imaging under the mentorship of the Peng Xi Group. During her Ph.D., she developed expertise in advanced imaging techniques, paving the way for her work in high-resolution cellular imaging. She also holds a Bachelor of Science in Automation from Harbin Institute of Technology, where her research centered on photoacoustic imaging, laying a foundation for her proficiency in engineering and imaging sciences. Her academic background combines rigorous technical training with a focus on real-world applications in life sciences, positioning her for success in the interdisciplinary field of biomedical engineering.

Professional Experience

Since 2022, Dr. Li has held the role of Co-PI and Engineer in the Peng Xi Group at Peking University’s School of Life Sciences. Here, she has been instrumental in managing complex research projects, including the National Natural Science Foundation’s Youth Project and Key Project. In these roles, she oversees the development of advanced imaging technologies and guides research teams in exploring new frontiers in live-cell imaging. Her prior experience includes leading and participating in projects related to photoacoustic imaging, as well as contributing to research that has practical applications for diagnostic and research purposes in cell biology and biomedicine.

Research Interests

Dr. Li’s primary research interests lie in the fields of super-resolution microscopy and multi-dimensional live-cell imaging. She is particularly focused on developing and applying novel imaging techniques to capture the dynamic, three-dimensional structures of living cells. Her goal is to advance biomedical imaging technologies, enabling researchers to view cellular processes at unprecedented spatial and temporal resolutions. Through her work, Dr. Li aims to unlock insights into cellular functions that were previously beyond the reach of conventional imaging tools, with implications for understanding disease mechanisms and developing targeted therapies.

Research Skills

Dr. Li possesses an advanced skill set in various biomedical imaging technologies, particularly in super-resolution microscopy, structured illumination microscopy, and photoacoustic imaging. She is adept in utilizing and refining complex imaging equipment, analyzing multi-dimensional data, and implementing innovative solutions to improve imaging resolution and accuracy. Her technical expertise extends to project management, data interpretation, and scientific writing, enabling her to effectively communicate complex findings. Her strong foundation in automation, gained through her undergraduate education, further complements her imaging skills, allowing her to approach research questions with a unique, interdisciplinary perspective.

Awards and Honors

Throughout her academic and professional career, Dr. Li has received numerous awards that highlight her excellence in research and teaching. Notably, she received the First Prize of the Peking University Innovation in Teaching Application Competition and the Innovation Technology Award. Her teaching prowess was further recognized with awards in the Young Teachers’ Teaching Fundamentals Competition, where she received multiple accolades, including the Best Teaching Demonstration Award. Additionally, Dr. Li has been honored with the Principal Fellowship of Peking University, the Jiaxi Lu Outstanding Graduate Student Award, and the Academic Innovation Prize, among others. These awards reflect her dedication to research, her innovative approach to teaching, and her standing as a respected member of the academic community.

Conclusion

Dr. Meiqi Li is a promising candidate for the Best Researcher Award. Her academic achievements, funded research projects, and numerous accolades reflect her commitment to innovation in life sciences. While she may benefit from additional years of experience in leading large-scale, independent projects, her potential for growth and impact in biomedical engineering is evident. Her pioneering work in cell imaging and microscopy, coupled with her teaching and mentorship success, make her a strong and competitive candidate for this award.

Publication Top  Notes

  • Expanding super-resolution imaging versatility in organisms with multi-confocal image scanning microscopy
    W. Ren†, M. Guan†, Q. Liang†, M. Li*, B. Jin, G. Duan, L. Zhang, X. Ge, H. Xu, Y. Hou, B. Gao, Sodmergen, P. Xi*
    National Science Review, nwae303 (2024).
  • Multi-organelle interactome through 3D fluorescence super-resolution microscopy and deep learning segmentation
    K. Zhanghao†, M. Li†,, X. Chen, W. Liu, T. Li, Y. Wang, F. Su, Z. Wu, C. Shan, J. Wu, Y. Zhang, J. Fu, P. Xi, D. Jin*
    Nature Communications, Third round of review.
  • Multi-resolution analysis enables fidelity-ensured computational super-resolution and denoising for fluorescence microscopy
    Y. Hou, W. Wang, Y. Fu, X. Ge, M. Li*, P. Xi*
    eLight, 4, 14 (2024).
  • Three-dimensional dipole orientation mapping with high temporal-spatial resolution using polarization modulation
    S. Zhong, L. Qiao, X. Ge, X. Xu, Y. Fu, S. Gao, K. Zhanghao, H. Hao, W. Wang, M. Li*, P. Xi*
    PhotoniX, 5, 19 (2024).
  • Fluorescence Lifetime Super-Resolution Imaging Unveils the Dynamic Relationship between Mitochondrial Membrane Potential and Cristae Structure Using the Förster Resonance Energy Transfer Strategy
    F. Peng, X. Ai, J. Sun, X. Ge, M. Li*, P. Xi, B. Gao*
    Analytical Chemistry, 96, 11052-11060 (2024).
  • High-dimensional Super-Resolution Imaging of Heterogeneous Subcellular Lipid Membranes
    K. Zhanghao†, W. Liu†, M. Li†, Z. Wu, X, Wang, X. Chen, C. Shan, H. Wang, X. Chen, Q. Dai, P. Xi, D. Jin
    Nature Communications, 11, 5890 (2020).
  • Structured illumination microscopy using digital micro-mirror device and coherent light source
    M. Li†, Y. Li†, W. Liu, A. Lal, S. Jiang, D. Jin, H. Yang, S. Wang, K. Zhanghao, P. Xi
    Applied Physics Letters, 116 (2020).
  • High-speed autopolarization synchronization modulation three-dimensional structured illumination microscopy
    Y. Li, R. Cao, W. Ren, Y. Fu, H. Y. Hou, S. Zhong, K. Zhanghao, M. Li*, P. Xi*
    Advanced Photonics Nexus, 3, 016001 (2023).
  • Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy
    K. Zhanghao†, X. Chen†, W. Liu, M. Li, Y. Liu, Y. Wang, S. Luo, X. Wang, C. Shan, H. Xie, J. Gao, X. Chen, D. Jin, X. Li, Y. Zhang, Q. Dai, P. Xi
    Nature Communications, 10, 4694 (2019).
    Highlight on Nature Methods (16, 1206 (2019)). DOI: 10.1038/s41592-019-0682-6
  • Visualization of cristae and mtDNA interactions via STED nanoscopy using a low saturation power probe
    W. Ren, X. Ge, M. Li, J. Sun, S. Li, S. Gao, C. Shan, B. Gao, P. Xi
    Light: Science & Applications, 13, 116 (2024).

Navid Ghaffarzadeh | Engineering | Best Researcher Award

Assoc Prof Dr . Navid Ghaffarzadeh | Engineering | Best Researcher Award

Engineering,  Imam Khomeini International University,  Iran

Dr. Navid Ghaffarzadeh, an Associate Professor at I.K International University in Iran, is a distinguished researcher with a strong background in electrical engineering. His academic credentials include a PhD from Iran University of Science and Technology, and he has received numerous accolades, including the 2012 IET Science, Measurement, and Technology Premium Award and multiple awards for outstanding research and teaching.Dr. Ghaffarzadeh’s research focuses on renewable energy, smart grids, power systems protection, and the application of artificial intelligence in energy systems. He has contributed extensively to the field through numerous journal publications and industry projects, demonstrating innovative approaches to power quality and system optimization.As a reviewer for high-impact journals and an advisor on industrial projects, his expertise is recognized widely. His accomplishments and contributions make him an exemplary candidate for the Best Researcher Award in recognition of his impactful work in electrical engineering and renewable energy.

Profile:

Education

Navid Ghaffarzadeh’s academic journey reflects a solid foundation in Electrical Engineering, marked by outstanding academic achievements and specialization in power systems. He completed his PhD in Electrical Engineering at Iran University of Science and Technology, Tehran, in 2011, where his research focused on advanced power system protection. Prior to his doctoral studies, he earned his Master of Science in Electrical Engineering from Amirkabir University of Technology (Tehran Polytechnic) in 2007, graduating at the top of his class with a GPA of 19.18 out of 20. He began his higher education with a Bachelor of Science in Electrical Engineering from Zanjan University in 2005, also ranking first among his peers with a GPA of 18.36 out of 20. This strong academic background laid the groundwork for his expertise in renewable energy, microgrid design, and intelligent systems, positioning him as a leading researcher in the field of electrical engineering.

Professional Experiences

Dr. Navid Ghaffarzadeh has an extensive professional background in academia and research. He began his career as an Assistant Professor at I.K International University in September 2011 and was promoted to Associate Professor in February 2018. From August 2018 to March 2022, he served as the Vice Chancellor for Research at the Faculty of Technical and Engineering, where he played a crucial role in advancing research initiatives. Following this, he was appointed Director General at the University of Applied Science and Technology from February to October 2022. Additionally, Dr. Ghaffarzadeh has been actively involved in various councils, including the Advanced Technologies Incubator Centre at I.K International University. His professional experiences reflect his leadership and commitment to fostering research and development in electrical engineering, particularly in areas related to renewable energy, smart grid technology, and power system protection, making him a key contributor to the academic community in Iran.

Research skills

Dr. Navid Ghaffarzadeh possesses a diverse range of research skills that make him a significant contributor to the field of electrical engineering. His expertise spans renewable energy systems, power quality analysis, and the application of artificial intelligence in optimizing power systems. Dr. Ghaffarzadeh has successfully led numerous research projects, including optimal solar plant placement and fault classification in photovoltaic grids, showcasing his ability to tackle complex challenges. His extensive knowledge of advanced software tools, such as MATLAB, DigSILENT, and PSCAD, enables him to conduct in-depth simulations and analyses effectively. Additionally, his experience as a reviewer for high-impact journals underscores his strong analytical skills and critical thinking abilities. Dr. Ghaffarzadeh’s ability to integrate theoretical concepts with practical applications demonstrates his commitment to advancing research in energy systems, making him a valuable asset in both academic and industrial settings

 

Award And Recoginition

Dr. Navid Ghaffarzadeh has received numerous accolades throughout his academic career, highlighting his exceptional contributions to the field of electrical engineering. Notably, he was awarded the prestigious IET Science, Measurement and Technology Premium Award in 2012 for his groundbreaking paper on power quality disturbances. His dedication and impact at I.K International University have been recognized multiple times, as he has been named Outstanding Researcher in 2013, 2014, 2016, and 2020, and Outstanding Professor in 2017, 2019, 2020, 2021, and 2023. Additionally, he earned the Best Iranian Ph.D. Dissertation award for his work in power system protection, showcasing his commitment to academic excellence. His consistent recognition reflects not only his research achievements but also his significant influence on students and peers, solidifying his status as a leading figure in the field of renewable energy and power system

Conclusion

Dr. Navid Ghaffarzadeh is an exemplary researcher whose academic background, honors, research achievements, and professional activities position him as a leading figure in the field of electrical engineering. His extensive contributions to renewable energy, power system protection, and intelligent systems demonstrate a commitment to advancing knowledge and solving critical challenges in the energy sector. His qualifications, impact, and recognition make him a highly suitable candidate for the Best Researcher Award.

Publication Top Notes

  • Detection and classification of power quality disturbances using discrete wavelet transform and wavelet networks
    Authors: MAS Masoum, S Jamali, N Ghaffarzadeh
    Year: 2010
    Citations: 302
  • A new efficient BBO based method for simultaneous placement of inverter-based DG units and capacitors considering harmonic limits
    Authors: N Ghaffarzadeh, H Sadeghi
    Year: 2016
    Citations: 85
  • Identification of optimal features for fast and accurate classification of power quality disturbances
    Authors: S Jamali, AR Farsa, N Ghaffarzadeh
    Year: 2018
    Citations: 80
  • Optimal sizing of battery energy storage systems in off-grid micro grids using convex optimization
    Authors: M Zolfaghari, N Ghaffarzadeh, AJ Ardakani
    Year: 2019
    Citations: 71
  • A novel phaselet-based approach for islanding detection in inverter-based distributed generation systems
    Authors: AT Kolli, N Ghaffarzadeh
    Year: 2020
    Citations: 55
  • A wavelet-based method to discriminate internal faults from inrush currents using correlation coefficient
    Authors: B Vahidi, N Ghaffarzadeh, SH Hosseinian
    Year: 2010
    Citations: 49
  • Water cycle algorithm based power system stabilizer robust design for power systems
    Authors: N Ghaffarzadeh
    Year: 2015
    Citations: 32
  • Economic battery sizing and power dispatch in a grid-connected charging station using convex method
    Authors: P Mirhoseini, N Ghaffarzadeh
    Year: 2020
    Citations: 29
  • A new method for arcing fault location using discrete wavelet transform and wavelet networks
    Authors: S Jamali, N Ghaffarzadeh
    Year: 2012
    Citations: 26
  • A new phaselet-based method for detecting the power swing in order to prevent the malfunction of distance relays in transmission lines
    Authors: MM Ghalesefidi, N Ghaffarzadeh
    Year: 2021
    Citations: 25
  • An approach to detection of high impedance fault using discrete wavelet transform and artificial neural networks
    Authors: B Vahidi, N Ghaffarzadeh, SH Hosseinian, SM Ahadi
    Year: 2010
    Citations: 23
  • Adaptive single pole auto‐reclosing using discrete wavelet transform
    Authors: S Jamali, N Ghaffarzadeh
    Year: 2011
    Citations: 22
  • Adaptive single-pole auto-reclosure for transmission lines using sound phases currents and wavelet packet transform
    Authors: S Jamali, N Ghaffarzadeh
    Year: 2010
    Citations: 20
  • A novel differential protection scheme for AC microgrids based on discrete wavelet transform
    Authors: AHN Tajani, A Bamshad, N Ghaffarzadeh
    Year: 2023
    Citations: 19
  • A new protection scheme for high impedance fault detection using wavelet packet transform
    Authors: N Ghaffarzadeh, B Vahidi
    Year: 2010
    Citations: 19