CIGDEM CAGLAYAN | Engineering | Best Researcher Award

Ms. CIGDEM CAGLAYAN | Engineering | Best Researcher Award

PhD Candidate at Seoul National University, South Korea

Cigdem Caglayan is an accomplished Aerospace Engineer and a PhD candidate at Seoul National University, specializing in cutting-edge research on dynamic combinational epoxy vitrimers, recyclable carbon fiber vitrimer composites, and self-healing mechano-luminescent (ML) coatings for structural health monitoring (SHM). Her work focuses on developing cost-effective solutions for detecting and visualizing stress distribution in structural components, advancing sustainability through recyclable composite materials. With a strong foundation in polymer science and composite technologies, her research journey spans innovative material design, advanced manufacturing techniques, and extensive collaboration with international institutions. Cigdem is highly skilled in project management, technical reporting, and material characterization, with several publications in high-impact journals. Her global academic contributions and passion for sustainability position her as a leader in the aerospace and materials research domains.

Professional Profile

Education

Cigdem is currently pursuing a PhD in Aerospace Engineering at Seoul National University, expected in February 2025. Her doctoral research focuses on self-healing epoxy vitrimers and ML coatings. She earned her MSc in Aerospace Engineering from Istanbul Technical University, where her thesis emphasized nano-reinforced polyurethane foams and polymer foam core sandwich composites. She graduated with a GPA of 4.00/4.30 in 2019. Her BSc in Aerospace Engineering, also from Istanbul Technical University, focused on the design and testing of advanced composites, graduating in 2016 with a GPA of 3.69/4.00. Her academic achievements have been supported by prestigious scholarships and her commitment to advancing composite technologies.

Professional Experience

Cigdem has extensive experience as a researcher, starting her career at Istanbul Technical University’s Aerospace Research Center (2016–2019), where she led projects on nano-reinforced polyurethane foams and polymer foam core sandwich composites. Currently, she is a researcher at Seoul National University, where she develops self-healing stress sensors and recyclable carbon fiber composites, contributing to advancements in structural health monitoring and sustainability. Cigdem has been instrumental in laboratory setup and operations, utilizing advanced equipment and techniques. Her teaching experience includes mentoring undergraduate students in subjects like composite materials and aerospace engineering, further showcasing her leadership and technical expertise.

Research Interests

Cigdem’s research interests focus on developing sustainable and innovative materials for aerospace and structural applications. Her work in self-healing mechano-luminescent (ML) coatings and recyclable epoxy vitrimer composites aims to revolutionize structural health monitoring (SHM) by enabling non-contact stress detection and visualization. She is passionate about composite manufacturing techniques, including vacuum-assisted resin transfer molding (VARTM) and hot pressing, with a keen focus on enhancing sustainability through recyclable materials. Her interests also extend to understanding material failure under various conditions, making her research pivotal for industries like aerospace and defense.

Research Skills

Cigdem is proficient in advanced composite manufacturing and characterization techniques, including VARTM, hot pressing, and ASTM-standard testing methods like flexural fatigue and impact analysis. Her expertise extends to characterization tools such as FTIR, NMR, and SEM, and she is skilled in data analysis using MATLAB and 3D CAD/CAM software like CATIA. Additionally, she excels in laboratory management, experimental design, and technical reporting, with strong soft skills in teamwork and communication. Cigdem’s ability to innovate and lead makes her a valuable contributor to complex research projects.

Awards and Honors

Cigdem has been recognized globally for her academic and research excellence. She is a recipient of the prestigious Global Korean Scholarship (2019–2023) and has been honored with the Korean Government Invitation Program award for top students. Her outstanding presentation at the International Conference on Active Materials and Soft Mechatronics in 2024 earned her an Excellent Presentation Award. As one of Turkey’s top students, she has also received multiple scholarships and participated in international exchange programs, highlighting her dedication and achievements in aerospace engineering.

Conclusion

Cigdem Caglayan is a strong contender for the Best Researcher Award due to her innovative research, extensive technical expertise, and global academic contributions. Her work in self-healing composites and recyclable materials directly addresses contemporary challenges in sustainability and advanced materials science, aligning with the award’s objectives. By broadening the application of her research and increasing leadership roles in professional communities, she can further enhance her academic and professional impact.

Publications Top Notes

  1. Reprocessable carbon fiber vitrimer composites: Reclamation and reformatting of carbon fibers for second-generation composite materials
    Authors: Sharma, H., Bender, M., Kim, G., Kumar, A., Rana, S.
    Journal: Journal of Applied Polymer Science
    Year: 2024
  2. Epoxy-Based Catalyst-Free Self-Healing Elastomers at Room Temperature Employing Aromatic Disulfide and Hydrogen Bonds
    Authors: Kim, G., Caglayan, C., Yun, G.J.
    Journal: ACS Omega
    Year: 2022
    Citations: 13
  3. CNT-Reinforced Self-Healable Epoxy Dynamic Networks Based on Disulfide Bond Exchange
    Authors: Caglayan, C., Kim, G., Yun, G.J.
    Journal: ACS Omega
    Year: 2022
    Citations: 5
  4. Impact response of shear thickening fluid filled polyurethane foam core sandwich composites
    Authors: Caglayan, C., Osken, I., Ataalp, A., Turkmen, H.S., Cebeci, H.
    Journal: Composite Structures
    Year: 2020
    Citations: 51
  5. The effect of CNT-reinforced polyurethane foam cores to flexural properties of sandwich composites
    Authors: Caglayan, C., Gurkan, I., Gungor, S., Cebeci, H.
    Journal: Composites Part A: Applied Science and Manufacturing
    Year: 2018
    Citations: 53
  6. Flexural behaviours of nanophased rigid polyurethane foam core sandwich composites
    Authors: Çağlayan, Ç., Demir, E., Gürkan, İ., Cebeci, H.
    Conference: ICCM International Conferences on Composite Materials
    Year: 2017
    Citations: 1

 

 

 

Meiqi Li | Engineering | Best Researcher Award

Dr. Meiqi Li | Engineering | Best Researcher Award

Engineer at Peking University, China.

Dr. Meiqi Li is a skilled biomedical engineer with a strong focus on cutting-edge imaging technologies. As a Co-Principal Investigator (Co-PI) and Engineer in the Peng Xi Group at the School of Life Sciences, Peking University, she has contributed significantly to the fields of super-resolution microscopy and multi-dimensional live-cell imaging. With several prestigious awards, including teaching accolades and innovation prizes from Peking University, Dr. Li is recognized as an accomplished researcher and educator. Her commitment to advancing knowledge in her field is evident through her leadership in multiple high-impact research projects funded by the National Natural Science Foundation. Dr. Li’s innovative work is positioned to make lasting contributions to biomedical research, particularly in understanding complex cellular structures and dynamics.

Professional Profile

Education

Dr. Li completed her Ph.D. in Biomedical Engineering at Peking University, specializing in super-resolution microscopy and live-cell imaging under the mentorship of the Peng Xi Group. During her Ph.D., she developed expertise in advanced imaging techniques, paving the way for her work in high-resolution cellular imaging. She also holds a Bachelor of Science in Automation from Harbin Institute of Technology, where her research centered on photoacoustic imaging, laying a foundation for her proficiency in engineering and imaging sciences. Her academic background combines rigorous technical training with a focus on real-world applications in life sciences, positioning her for success in the interdisciplinary field of biomedical engineering.

Professional Experience

Since 2022, Dr. Li has held the role of Co-PI and Engineer in the Peng Xi Group at Peking University’s School of Life Sciences. Here, she has been instrumental in managing complex research projects, including the National Natural Science Foundation’s Youth Project and Key Project. In these roles, she oversees the development of advanced imaging technologies and guides research teams in exploring new frontiers in live-cell imaging. Her prior experience includes leading and participating in projects related to photoacoustic imaging, as well as contributing to research that has practical applications for diagnostic and research purposes in cell biology and biomedicine.

Research Interests

Dr. Li’s primary research interests lie in the fields of super-resolution microscopy and multi-dimensional live-cell imaging. She is particularly focused on developing and applying novel imaging techniques to capture the dynamic, three-dimensional structures of living cells. Her goal is to advance biomedical imaging technologies, enabling researchers to view cellular processes at unprecedented spatial and temporal resolutions. Through her work, Dr. Li aims to unlock insights into cellular functions that were previously beyond the reach of conventional imaging tools, with implications for understanding disease mechanisms and developing targeted therapies.

Research Skills

Dr. Li possesses an advanced skill set in various biomedical imaging technologies, particularly in super-resolution microscopy, structured illumination microscopy, and photoacoustic imaging. She is adept in utilizing and refining complex imaging equipment, analyzing multi-dimensional data, and implementing innovative solutions to improve imaging resolution and accuracy. Her technical expertise extends to project management, data interpretation, and scientific writing, enabling her to effectively communicate complex findings. Her strong foundation in automation, gained through her undergraduate education, further complements her imaging skills, allowing her to approach research questions with a unique, interdisciplinary perspective.

Awards and Honors

Throughout her academic and professional career, Dr. Li has received numerous awards that highlight her excellence in research and teaching. Notably, she received the First Prize of the Peking University Innovation in Teaching Application Competition and the Innovation Technology Award. Her teaching prowess was further recognized with awards in the Young Teachers’ Teaching Fundamentals Competition, where she received multiple accolades, including the Best Teaching Demonstration Award. Additionally, Dr. Li has been honored with the Principal Fellowship of Peking University, the Jiaxi Lu Outstanding Graduate Student Award, and the Academic Innovation Prize, among others. These awards reflect her dedication to research, her innovative approach to teaching, and her standing as a respected member of the academic community.

Conclusion

Dr. Meiqi Li is a promising candidate for the Best Researcher Award. Her academic achievements, funded research projects, and numerous accolades reflect her commitment to innovation in life sciences. While she may benefit from additional years of experience in leading large-scale, independent projects, her potential for growth and impact in biomedical engineering is evident. Her pioneering work in cell imaging and microscopy, coupled with her teaching and mentorship success, make her a strong and competitive candidate for this award.

Publication Top  Notes

  • Expanding super-resolution imaging versatility in organisms with multi-confocal image scanning microscopy
    W. Ren†, M. Guan†, Q. Liang†, M. Li*, B. Jin, G. Duan, L. Zhang, X. Ge, H. Xu, Y. Hou, B. Gao, Sodmergen, P. Xi*
    National Science Review, nwae303 (2024).
  • Multi-organelle interactome through 3D fluorescence super-resolution microscopy and deep learning segmentation
    K. Zhanghao†, M. Li†,, X. Chen, W. Liu, T. Li, Y. Wang, F. Su, Z. Wu, C. Shan, J. Wu, Y. Zhang, J. Fu, P. Xi, D. Jin*
    Nature Communications, Third round of review.
  • Multi-resolution analysis enables fidelity-ensured computational super-resolution and denoising for fluorescence microscopy
    Y. Hou, W. Wang, Y. Fu, X. Ge, M. Li*, P. Xi*
    eLight, 4, 14 (2024).
  • Three-dimensional dipole orientation mapping with high temporal-spatial resolution using polarization modulation
    S. Zhong, L. Qiao, X. Ge, X. Xu, Y. Fu, S. Gao, K. Zhanghao, H. Hao, W. Wang, M. Li*, P. Xi*
    PhotoniX, 5, 19 (2024).
  • Fluorescence Lifetime Super-Resolution Imaging Unveils the Dynamic Relationship between Mitochondrial Membrane Potential and Cristae Structure Using the Förster Resonance Energy Transfer Strategy
    F. Peng, X. Ai, J. Sun, X. Ge, M. Li*, P. Xi, B. Gao*
    Analytical Chemistry, 96, 11052-11060 (2024).
  • High-dimensional Super-Resolution Imaging of Heterogeneous Subcellular Lipid Membranes
    K. Zhanghao†, W. Liu†, M. Li†, Z. Wu, X, Wang, X. Chen, C. Shan, H. Wang, X. Chen, Q. Dai, P. Xi, D. Jin
    Nature Communications, 11, 5890 (2020).
  • Structured illumination microscopy using digital micro-mirror device and coherent light source
    M. Li†, Y. Li†, W. Liu, A. Lal, S. Jiang, D. Jin, H. Yang, S. Wang, K. Zhanghao, P. Xi
    Applied Physics Letters, 116 (2020).
  • High-speed autopolarization synchronization modulation three-dimensional structured illumination microscopy
    Y. Li, R. Cao, W. Ren, Y. Fu, H. Y. Hou, S. Zhong, K. Zhanghao, M. Li*, P. Xi*
    Advanced Photonics Nexus, 3, 016001 (2023).
  • Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy
    K. Zhanghao†, X. Chen†, W. Liu, M. Li, Y. Liu, Y. Wang, S. Luo, X. Wang, C. Shan, H. Xie, J. Gao, X. Chen, D. Jin, X. Li, Y. Zhang, Q. Dai, P. Xi
    Nature Communications, 10, 4694 (2019).
    Highlight on Nature Methods (16, 1206 (2019)). DOI: 10.1038/s41592-019-0682-6
  • Visualization of cristae and mtDNA interactions via STED nanoscopy using a low saturation power probe
    W. Ren, X. Ge, M. Li, J. Sun, S. Li, S. Gao, C. Shan, B. Gao, P. Xi
    Light: Science & Applications, 13, 116 (2024).

Subhash Chandra Panja | Mechanical Engineering | Best Faculty Award

Prof. Subhash Chandra Panja | Mechanical Engineering | Best Faculty Award

Professor at Jadavpur University, India

Dr. Subhash Chandra Panja is a renowned academic and researcher in the field of Mechanical Engineering, currently serving as a Professor in the Department of Mechanical Engineering at Jadavpur University, Kolkata, India. With an extensive career spanning over two decades, Dr. Panja has made significant contributions to the domains of Reliability and Quality Engineering, Industrial Engineering, Operations Management, Quantitative Techniques, and Machine Learning. He has been actively involved in academic research and consultancy, with a focus on practical applications in industries such as railway signaling, high-speed machining, and solar phenomena. Throughout his career, Dr. Panja has supervised numerous PhD and M.Tech students and has been the principal investigator in various research projects funded by prestigious organizations. His work is highly respected for its innovation and impact on both academic and industrial practices.

Professional Profile

Education

Dr. Panja completed his Bachelor of Engineering (B.E.) in Mechanical Engineering from Jadavpur University, Kolkata, in 1997. He pursued a Master of Technology (M.Tech) in Reliability and Quality Engineering from the Indian Institute of Technology (IIT) Kharagpur, India, in 1999. Following this, he earned his Doctor of Philosophy (Ph.D.) in Engineering Science from the Department of Industrial Engineering and Management at IIT Kharagpur in 2008. His education has laid a solid foundation for his subsequent contributions to mechanical and industrial engineering research.

Professional Experience

Dr. Subhash Chandra Panja’s professional career spans various teaching and research roles. He has served as a Lecturer at multiple institutions, including JIS College of Engineering, Asansol Engineering College, and the Institute of Technology and Marine Engineering. He began his tenure at Jadavpur University in 2007, where he has steadily advanced through the ranks from Lecturer to Associate Professor and, eventually, Professor in 2015. His work has significantly shaped the Department of Mechanical Engineering, contributing to its growth in both teaching and research excellence. Dr. Panja’s extensive experience in academia, paired with his consultancy work, reflects his leadership and commitment to the advancement of engineering education and practice.

Research Interests

Dr. Panja’s research interests lie at the intersection of Reliability and Quality Engineering, Industrial Engineering, and Operations Management. He focuses on the optimization of industrial processes, including the analysis of machine tool reliability, railway signaling systems, and solar phenomena. Dr. Panja is also deeply engaged in applying machine learning techniques to improve the efficiency and productivity of manufacturing processes, particularly in high-speed machining and 3D printing. His interdisciplinary approach blends traditional engineering with modern computational techniques, making his work highly relevant to both academia and industry.

Research Skills

Dr. Panja possesses a diverse set of research skills, including expertise in quantitative analysis, reliability modeling, and optimization techniques. He is proficient in using advanced software tools for data analysis, machine learning, and simulation, which he applies to solve complex engineering problems. His research also involves experimental work, particularly in the areas of high-speed machining, material behavior analysis, and industrial process optimization. Dr. Panja’s ability to integrate theory with practical applications has made him a valuable researcher in both academic and industrial domains.

Awards and Honors

Throughout his career, Dr. Subhash Chandra Panja has received several recognitions for his contributions to research and academia. Notably, he has been awarded research funding from the Department of Science and Technology and Biotechnology, West Bengal Government, for his work on mechanical behavior analysis of 3D printed materials. Additionally, he has been involved in high-impact consultancy projects, including a project to modernize casting shops for Braithwaite Co. and Ltd. His applied research in areas like reliability analysis and optimization of industrial processes has garnered respect within the academic community and industry. Furthermore, Dr. Panja’s dedication to student mentorship has contributed to the success of numerous PhD and M.Tech scholars under his supervision.

Conclusion

Dr. Subhash Chandra Panja is highly deserving of the Best Faculty Award for Research, thanks to his long-standing contributions to Mechanical Engineering and Industrial Engineering. His leadership in research projects, extensive mentorship, and impactful consultancy work exemplify the qualities of an exceptional academic. By expanding his international collaborations and publishing in higher-impact journals, Dr. Panja can elevate his global standing and continue to contribute significantly to both academia and industry.

Publication Top Notes

  1. Reliability analysis of cutting tools using transformed inverse Gaussian process-based wear modelling considering parameter dependence
    • Authors: Das, M., Naikan, V.N.A., Panja, S.C.
    • Year: 2024
  2. Analysis of mesostructural characteristics and their influence on tensile strength of ABS specimens manufactured through fused deposition modeling
    • Authors: Sahoo, S., Panja, S.C., Sarkar, D., Saha, R., Mandal, B.B.
    • Year: 2024
  3. A review of cutting tool life prediction through flank wear monitoring
    • Authors: Das, M., Naikan, V.N.A., Panja, S.C.
    • Year: 2024
  4. Reliability analysis of PVD-coated carbide tools during high-speed machining of Inconel 800
    • Authors: Das, M., Naikan, V.N.A., Panja, S.C.
    • Year: 2024
    • Citations: 3
  5. Signaling Relay Contact Failure Analysis with 3D Profilometry, SEM and EDS
    • Authors: Sau, S., Kumar, S., Patra, S.N., Panja, S.C.
    • Year: 2024
  6. Development of high specific strength acrylonitrile styrene acrylate (ASA) structure using fused filament fabrication
    • Authors: Rakshit, R., Kalvettukaran, P., Acharyya, S.K., Panja, S.C., Misra, D.
    • Year: 2023
    • Citations: 1
  7. An Improved Prediction of Solar Cycle 25 Using Deep Learning Based Neural Network
    • Authors: Prasad, A., Roy, S., Sarkar, A., Panja, S.C., Patra, S.N.
    • Year: 2023
    • Citations: 7
  8. Analysis of Axle Counter Performance: A Case Study of Kolkata Metro Railway
    • Authors: Sau, S., Kumar, S., Sarkar, D., Panja, S.C., Patra, S.N.
    • Year: 2023
  9. Study of Distribution and Asymmetry in Soft X-ray Flares over Solar Cycles 21–24
    • Authors: Amrita Prasad, Roy, S., Panja, S.C., Patra, S.N.
    • Year: 2022
    • Citations: 1
  10. An Experimental Investigation of Surface Roughness and Print Duration on FDM Printed Polylactic Acid (PLA) Parts
  • Authors: Rakshit, R., Ghosal, A., Paramasivan, K., Misra, D., Panja, S.C.
  • Year: 2022
  • Citations: 2

 

Wesam Rababa | Engineering | Best Researcher Award

Mr. Wesam Rababa | Engineering | Best Researcher Award

Graduated Student at King Fahd University of Petroleum and Minerals, Saudi Arabia 

Wesam Rababa is a dedicated architectural professional specializing in sustainable design and green building practices. With a strong focus on environmental sustainability, Wesam integrates eco-friendly principles into architectural designs, creating structures that are both efficient and comfortable. His expertise spans project development, energy efficiency, CO₂ emissions, and passive design, all of which are central to advancing green architecture. Wesam’s professional experiences are diverse, covering roles in teaching, interior design, architectural engineering, and project management across Jordan and Saudi Arabia. Recognized for his academic excellence, he has contributed to sustainability-focused research and holds multiple certifications in sustainable assessment, energy auditing, and environmental product declarations. As a committed member of the architectural community, Wesam is also a part of the Jordan Engineers Association and has led the Jordanian community at King Fahd University. With a solid academic foundation and a passion for sustainable design, Wesam Rababa is actively shaping the future of architecture in an environmentally conscious direction.

Education

Wesam Rababa has a strong academic background in architecture with a focus on sustainability. He completed his Master’s degree in Architecture Science from King Fahd University of Petroleum and Minerals in Saudi Arabia in 2023, supported by a fully funded scholarship. His Master’s studies equipped him with advanced knowledge in sustainable design practices, allowing him to address environmental challenges in architecture. Before this, Wesam earned his Bachelor’s degree in Architecture Engineering from Yarmouk University in Jordan in 2020, where he graduated with First Honor and a GPA of 3.844/4. His undergraduate studies emphasized sustainability and green buildings, laying a solid foundation for his career in sustainable architecture. These achievements reflect his academic dedication and commitment to environmental sustainability, supported by his excellent performance and academic honors. Wesam’s educational journey highlights his dedication to learning and the critical role that sustainable design principles play in modern architecture.

Professional Experience

Wesam Rababa has held diverse roles in architectural and educational settings, demonstrating his commitment to sustainable design and project management. His recent role as a Planning Engineer at PHASE in Khobar, Saudi Arabia, involves overseeing project timelines, coordinating design and construction teams, and managing project risks and budgets. Wesam has also served as an Architect at Minimalist for Design in Jordan, where he developed design concepts and detailed 3D models, focusing on functionality and sustainability. In academia, he contributed as a Teaching Assistant at King Fahd University of Petroleum and Minerals, preparing course materials and teaching courses like Architectural Design Studio and Digital Communication. His teaching extended to Yarmouk University and the TAFE Arabia training institute, where he guided students in AutoCAD and engineering drawing. His professional journey showcases a blend of practical architectural work and academic contributions, highlighting his versatile skills in design, project planning, and education.

Research Interests

Wesam Rababa’s research interests center around sustainable architecture and energy efficiency. He is deeply invested in exploring ways to reduce CO₂ emissions and enhance energy efficiency within buildings. His work focuses on passive design principles, which aim to naturally regulate building temperatures through architectural design elements, reducing reliance on mechanical systems. Wesam is also interested in green buildings and facade retrofit strategies, especially in hot climates, where energy efficiency can make a significant environmental impact. His interest in sustainable assessment rating systems and life cycle assessment underscores his commitment to designing environmentally responsible buildings. Wesam’s research aligns with the pressing need for sustainable solutions in the built environment, addressing both ecological and functional aspects of architecture. By focusing on innovative strategies that prioritize sustainability, he is actively contributing to the advancement of environmentally friendly architectural practices.

Research Skills

Wesam Rababa possesses a broad set of research skills essential for advancing sustainable architectural practices. His technical proficiency in sustainability programs such as IES and Envi_Met supports his research in energy-efficient design and environmental analysis. Wesam is skilled in using advanced architectural software, including Revit, AutoCAD, and SketchUp, which are crucial for developing detailed and accurate design models. Additionally, he is proficient in visualization tools like Lumion, Illustrator, and Photoshop, enabling him to create compelling presentations of his sustainable designs. His knowledge of the Mostadam AP sustainability rating system and certifications in life cycle assessment (LCA) and energy auditing further complement his skill set, allowing him to conduct comprehensive sustainability evaluations. Wesam’s expertise in design, energy efficiency, and sustainable assessment tools highlights his capacity to conduct impactful research in green architecture, making him a valuable contributor to the field.

Awards and Honors

Wesam Rababa has received numerous accolades in recognition of his academic and professional achievements. His commitment to excellence in architecture was honored with First Honor recognition in his Bachelor’s degree in Architecture Engineering at Yarmouk University. He was awarded a fully funded MSc scholarship from King Fahd University of Petroleum and Minerals in Saudi Arabia, reflecting his academic potential and dedication to sustainability. Wesam also received a scholarship from the China Scholarship Council, emphasizing his academic standing. In competitions, he achieved top ranks, including fifth place in the Smart Campus Competition at King Fahd University in 2023. His project on “Lightweight Concrete Block” advanced to the final stage of the Shamal Star Competition, underscoring his innovative approach to sustainable construction. These awards and honors highlight Wesam’s dedication, innovation, and commitment to sustainable design, establishing him as a promising architect and researcher in his field.

Conclusion

Wesam Rababa demonstrates a strong candidacy for a Best Researcher Award, especially in fields centered on sustainability and environmentally conscious architectural design. With a robust foundation in sustainable practices, academic excellence, and contributions to sustainability research, they embody the qualities valued in a researcher committed to ecological impact. If they continue to expand their research outputs and engage in collaborative projects, Wesam’s contributions could further their influence and strengthen their case for recognition in sustainable architectural research awards.

Publication Top Notes

  1. Façade Retrofit Strategies for Energy Efficiency Improvement Considering the Hot Climatic Conditions of Saudi Arabia
    Journal: Applied Sciences
    Publication Date: November 1, 2024
    Author(s): Wesam Rababa

 

 

Dong Kim | Mechanical Engineering | Best Researcher Award

Prof. Dong Kim | Mechanical Engineering | Best Researcher Award 

Professor, at Seoul National University of Science and Technology, South Korea.

Dong Hwan Kim is a distinguished professor and leader in mechanical engineering at Seoul National University of Science and Technology (SeoulTech) in Seoul, Korea. With over three decades of experience, he has contributed extensively to the fields of mechatronics, robotics, and control systems, leaving an impactful mark through both academic and industrial roles. His career began with foundational research roles, evolving to senior positions and leadership roles, such as the presidency of the Korea Society of Mechanical Engineers in 2024 and SeoulTech itself. As an active member of several engineering societies and journals, Dr. Kim continually advances the field through groundbreaking research and innovative projects. 🌐💡 He has also held editorial roles for respected journals and led industry-academia cooperation initiatives, further promoting the integration of academic knowledge with industrial applications.

Profile

ORCID

Education

Dr. Dong Hwan Kim’s academic journey in mechanical engineering began at Seoul National University, where he earned both his Bachelor’s and Master’s degrees in Mechanical Design and Production Engineering, graduating in 1986 and 1988, respectively. ✨ His thirst for knowledge and innovation then led him to pursue his Ph.D. at the Georgia Institute of Technology in the U.S., one of the world’s leading institutions for engineering. There, from 1991 to 1995, he specialized in Mechanical Engineering, further refining his expertise and gaining critical insights that would shape his research career. His diverse academic background has been pivotal in developing his unique approach to mechatronics and control systems, impacting both the theoretical and practical advancements in his field. 🎓🌍

Experience

Dr. Kim’s professional journey is a blend of academic and research excellence, beginning as a Junior Researcher at Daewoo Heavy Industry (1988-1991) and progressing to Senior Researcher roles at Seoul National University and the Korea Institute of Industrial Technology. His expertise flourished as he joined SeoulTech in 1998 as a professor, where he has since taken on roles that influence both academia and industry. 🌐 He served as General Manager of Seoul Technopark (2010-2012) and Dean of the Foundation of Industry-Academy Cooperation (2013-2015), forging strong industry-academia partnerships. Now serving as the President of both the Korea Society of Mechanical Engineers (2024) and SeoulTech, Dr. Kim continues to shape the future of mechanical engineering and robotics. 👨‍🔧📈

Research Interests

Dr. Kim’s research interests are rooted in mechatronics, robotics, and control systems, with an increasing focus on the potential of nanotechnology. His work spans advanced robotics and intelligent control systems, aiming to improve precision and efficiency in automated systems. 🦾⚙️ His expertise extends to nano-scale devices and mechatronic applications, pushing the boundaries of engineering through novel applications and collaborative projects. His commitment to innovation is evidenced by his contributions to over 100 journal papers and numerous patents, continually enhancing mechanical system design and robotics. Dr. Kim’s research not only addresses practical engineering challenges but also advances foundational knowledge in control and nano-technological applications. 🔍💻

Awards

Throughout his career, Dr. Kim has received several prestigious accolades recognizing his contributions to engineering and academia. In 2024, he was honored with the presidency of the Korea Society of Mechanical Engineers, a testament to his leadership and influence in the mechanical engineering community. 🏆 His roles as Dean of Industry-Academy Cooperation and as President of SeoulTech underscore his dedication to fostering academic-industry partnerships, further highlighting his commitment to bridging theory and practice. Dr. Kim’s editorial work with leading journals and his active involvement in various engineering societies have also earned him significant recognition, cementing his legacy in Korean and international engineering circles. 🎖️

Publications

Dr. Kim has authored an impressive 104 papers in international and domestic journals, covering breakthroughs in mechatronics, robotics, and control systems. 📚 His publications contribute significant advancements in nanotechnology and control applications and are widely cited by peers, underscoring his research’s relevance and impact. Additionally, he holds 30 patents, further reflecting his commitment to practical innovation. [Publication links with hyperlinked titles, publication years, and journals can be provided here, with cited-by data]. His scholarly work remains a valuable resource, widely referenced in mechanical engineering and related fields.

Conclusion

Dr. Dong Hwan Kim is a strong candidate for the Best Researcher Award, demonstrating exemplary achievements in mechatronics, robotics, and nanotechnology. His extensive publication record, numerous patents, and successful acquisition of research funding emphasize his capacity for both theoretical and applied research. Further enhancing his international presence and exploring emerging technologies could position him as an even stronger candidate on a global scale. Dr. Kim’s accomplishments and leadership make him well-suited for recognition as a distinguished researcher.

 

SaiTeja Chopparapu | Engineering | Best Researcher Award

SaiTeja Chopparapu | Engineering | Best Researcher Award

Assistant Professor at St. PETERS Engineering College, India.

Saiteja Chopparapu is an emerging researcher and educator with expertise in electronics and communication engineering. Driven by a passion for innovation, he has completed a PhD (submitted in October 2023) and holds an MTech in Sensor System Technology. As an Assistant Professor at St. Peters Engineering College, he instructs students in Digital Electronics, IoT Architecture, and Image Processing, blending theoretical and practical knowledge. His academic background and professional experience demonstrate a keen ability to conduct research, mentor students, and stay abreast of technological advancements. Saiteja’s skills extend to managing labs and guiding students in hands-on learning, emphasizing his dedication to fostering a supportive, inclusive learning environment. His technical proficiencies, internships, and continuous skill development through various FDPs highlight his commitment to growth in his field. Saiteja’s ultimate goal is to contribute significantly to advancements in electronics and sensor technologies through research, teaching, and collaboration.

Profile

Scopus

Education

Saiteja Chopparapu has a solid academic foundation, culminating in a PhD in Electronics and Communication Engineering from GITAM University, submitted in October 2023. He also holds an MTech in Sensor System Technology from Vellore Institute of Technology (VIT), where he achieved an impressive 8.49 CGPA in 2019. His undergraduate degree is in Electronics and Communication Engineering from Dhanekula Institute of Engineering and Technology, affiliated with JNTUK, where he earned a respectable 65.33% in 2017. Prior to university, he excelled in Intermediate MPC at Sri Chaitanya Junior College with an 88.4% and achieved an 84.67% in SSC at Ratnam High School. This progressive academic trajectory showcases his commitment to mastering electronics and communication, establishing a strong basis for both his research and teaching pursuits.

Professional Experience

Saiteja has recently embarked on an academic career as an Assistant Professor at St. Peters Engineering College, affiliated with JNTUH. Since February 2024, he has taught courses such as Digital Electronics, IoT Architecture, and Image Processing, integrating his research and industry knowledge into the classroom. In addition to his teaching duties, he serves as a lab-in-charge for first-year B.Tech students, where he provides foundational instruction in C programming and supports students in developing core problem-solving skills. His experience includes hands-on internships, including a 9-month tenure at RCI, DRDO, where he contributed to GUI development for capacitive-based sensors, and a 30-day internship at Effectronics Pvt. Limited focusing on equipment testing and fault elimination in signaling systems. These experiences enhance his teaching and research capabilities, showcasing a well-rounded skill set in academia and applied engineering.

Research Interests

Saiteja’s research interests lie at the intersection of electronics, sensor technologies, and IoT systems. With a background in Sensor System Technology and Electronics and Communication Engineering, he is especially passionate about advancing sensor-based innovations that support IoT and automated systems. He is enthusiastic about exploring new trends and technological advancements in electronics that can improve both industrial applications and day-to-day devices. Saiteja’s current focus includes the development of capacitive-based sensors, a technology he worked on during his internship with RCI, DRDO. His commitment to staying informed on cutting-edge methodologies is further evidenced by his participation in various IEEE conferences and workshops, where he has engaged with topics such as IoT, microelectronics, and PCB design. Saiteja aims to drive transformative research in electronics, contributing to the evolution of intelligent systems and sustainable technology solutions.

Research Skills

Saiteja possesses a strong set of research skills, evidenced by his ability to lead projects and secure funding. His technical skills span software and programming languages, including MATLAB, Simulink, Python, and Embedded C, which enable him to tackle complex problems in sensor technology and electronics. His proficiency in developing GUIs, gained during his time at RCI, DRDO, showcases his capability in integrating software with hardware applications, a valuable skill for sensor-based IoT research. Saiteja is an effective communicator, both in written and verbal forms, allowing him to present his research clearly and engage with a wide array of audiences. His dedication to professional development is evident from his completion of over 40 FDP programs on diverse topics, indicating a proactive approach to skill enhancement and staying updated on evolving technologies in his field.

Awards and Honors

Throughout his academic journey, Saiteja has earned several accolades that underscore his dedication to excellence. He received a Certificate of Merit for securing second place in the DIET Techno Fest’s technical exhibition in 2015, where he showcased his technical acumen among his peers. He has also demonstrated leadership by organizing events and exhibitions during his school and university days. In addition to his technical achievements, Saiteja was the runner-up in a group dance performance at DIET’s Annual Day in 2016-17, reflecting his well-rounded abilities and active involvement in extracurricular activities. His participation in numerous workshops and conferences, including IEEE and IoT workshops, further illustrates his commitment to continuous learning and professional development. Saiteja’s achievements highlight both his academic prowess and his willingness to engage in collaborative and diverse learning experiences.

Conclusion:

Saiteja Chopparapu demonstrates strong academic qualifications, relevant technical skills, and a commitment to teaching and research, which are aligned with the requirements for the Best Researcher Award. However, enhancing their profile through more extensive research publications, impactful awards, and community-oriented projects would strengthen their competitiveness for this award. Based on their current achievements, they are a promising candidate, though further research contributions would solidify their fit for the award.

Publications Top Notes

“Enhancing Visual Perception in Real-Time: A Deep Reinforcement Learning Approach to Image Quality Improvement”

Authors: Chopparapu, S., Chopparapu, G., Vasagiri, D.

Year: 2024

Journal: Engineering, Technology and Applied Science Research

Volume: 14, Issue: 3, Pages: 14725–14731

Citations: 0

“A Hybrid Facial Features Extraction-Based Classification Framework for Typhlotic People”

Authors: Chopparapu, S., Joseph, B.S.

Year: 2024

Journal: Bulletin of Electrical Engineering and Informatics

Volume: 13, Issue: 1, Pages: 338–349

Citations: 2

“An Efficient Multi-Modal Facial Gesture-Based Ensemble Classification and Reaction to Sound Framework for Large Video Sequences”

Authors: Chopparapu, S., Seventline, J.B.

Year: 2023

Journal: Engineering, Technology and Applied Science Research

Volume: 13, Issue: 4, Pages: 11263–11270

Citations: 4

“A Hybrid Learning Framework for Multi-Modal Facial Prediction and Recognition Using Improvised Non-Linear SVM Classifier”

Authors: Saiteja, C., Seventline, J.B.

Year: 2023

Journal: AIP Advances

Volume: 13, Issue: 2, Article: 025316

Citations: 8

“GUI for Object Detection Using Voila Method in MATLAB”

Authors: Chopparapu, S.T., Beatrice Seventline, J.

Year: 2020

Journal: International Journal of Electrical Engineering and Technology

Volume: 11, Issue: 4, Pages: 169–174

Citations: 2

Rabia Toprak | Engineering | Best Researcher Award

Assist. Prof. Dr. Rabia Toprak | Engineering | Best Researcher Award

Electrical-Electronics Engineering,  Karamanoglu Mehmetbey University,  Turkey

Rabia Toprak, an Assistant Professor at Karamanoglu Mehmetbey University, holds a Ph.D. in Electrical-Electronics Engineering from Konya Technical University, where her thesis focused on the detection of cancerous tissues using advanced antenna structures. With extensive research experience, she has participated in multiple national projects, including the development of high-gain microstrip antennas for medical applications and investigations into natural fiber-reinforced composites. Toprak has published numerous articles in international refereed journals, contributing to advancements in antenna design for cancer detection and electromagnetic field studies. Her teaching contributions span both undergraduate and graduate courses, where she emphasizes the principles of electromagnetics. Rabia Toprak’s dedication to innovative research and her significant impact on the fields of telecommunications and biomedical engineering make her a highly suitable candidate for the Research for Best Researcher Award, recognizing her contributions to academia and her commitment to improving health outcomes through technology.

Profile

Professional Experience

Rabia Toprak has built a solid academic career in the field of electrical-electronic engineering, specializing in telecommunications. She currently holds the position of Assistant Professor at Karamanoglu Mehmetbey University, having previously served as a research assistant in the same department from 2013 to 2023. Her long-standing affiliation with the academic community highlights her commitment to both teaching and research. Toprak’s experience includes leadership roles in various scientific projects, particularly those focusing on antenna designs for medical applications, further showcasing her expertise in applied electromagnetics.

Research Interests

Rabia Toprak’s research interests lie at the intersection of electrical engineering and biomedical applications, particularly in the design and implementation of microstrip antennas for medical diagnostics. Her doctoral work focused on the detection of cancerous tissues using high-gain microstrip and horn antenna structures, showcasing her commitment to advancing healthcare technologies. Toprak has contributed to various projects investigating the electrical properties of pathological tissues and has designed microstrip antennas for detecting cardiovascular conditions. Additionally, her work includes the development of natural fiber-reinforced epoxy/polymer-based hybrid composites for antenna applications, reflecting her interest in sustainable materials. With numerous publications in reputable journals, Toprak continues to explore innovative solutions for improving diagnostic methods in medicine, making significant contributions to both engineering and healthcare fields. Her ongoing projects include research on the effects of antenna designs on breast and colon tissue samples, further establishing her expertise in medical engineering.

Research Skills

Rabia Toprak has demonstrated exceptional research skills throughout her academic and professional career. As an Assistant Professor in the Department of Electrical-Electronic Engineering at Karamanoğlu Mehmetbey University, she has actively engaged in numerous research projects focused on innovative applications of microstrip antennas for medical diagnostics. Her expertise encompasses the design and implementation of antennas for detecting cancerous tissues and cardiovascular conditions, showcasing her proficiency in both theoretical and practical aspects of electromagnetic engineering. Toprak’s research is underpinned by her ability to conduct comprehensive literature reviews, design experimental setups, and analyze complex data. She has published multiple articles in esteemed international journals, reflecting her commitment to advancing knowledge in her field. Additionally, her involvement in collaborative research projects, such as the detection of cancer tissues and the design of hybrid composite substrates, highlights her strong teamwork and project management capabilities. Overall, Rabia Toprak’s research skills position her as a leading figure in her area of expertise.

Awards and Honors

Rabia Toprak, Assistant Professor at Karamanoglu Mehmetbey University, has garnered notable recognition for her innovative research in the field of electrical and electronic engineering. Her pivotal contributions include significant advancements in microstrip antenna technology, particularly in applications related to cancer detection and cardiovascular monitoring. In 2022, she received a prestigious grant from Higher Education Institutions for her project on the detection of cancerous tissues, highlighting her leadership in national research initiatives. Additionally, her work has been featured in several high-impact international journals, showcasing her commitment to advancing scientific knowledge. Toprak’s presentations at various international conferences have further solidified her reputation as a leading researcher in her field. Her dedication to education is evident in her teaching roles, where she inspires the next generation of engineers. These accolades reflect her exceptional contributions to both academia and the scientific community, establishing her as a prominent figure in engineering research.

Conclusion 

Rabia Toprak is a strong candidate for the Research for Best Researcher Award due to her significant contributions to the field of electrical and electronic engineering, particularly in medical applications. With a doctoral thesis focusing on the detection of cancerous tissues using advanced microstrip and horn antenna structures, she has demonstrated a commitment to innovative research with practical implications. Her role in various national scientific projects, such as the investigation of electrical properties of pathological tissues and the development of natural fiber-reinforced hybrid composites, underscores her multidisciplinary approach and collaboration within the scientific community. Furthermore, her numerous publications in reputable international journals highlight her ongoing dedication to advancing knowledge in her field. Rabia’s expertise, research impact, and teaching contributions at Karamanoglu Mehmetbey University reflect her commitment to excellence and innovation in research, making her an ideal candidate for this prestigious award.

Publication Top Notes

  • An approach to determine pathological breast tissue samples with free-space measurement method at 24 GHz
    • Authors: Rabia Toprak, Seyfettin Sinan Gultekin, Ahmet Kayabasi, Zeliha Esin Celik, Fatma Hicret Tekin, Dilek Uzer
    • Year: 2024
    • Citations: 0 (as it is a recent publication)
  • Comparison of Far Field and Near Field Values of Skin Tissue Measured Using Microstrip Antenna Structure
    • Authors: Rabia Toprak, Seyfettin Sinan Gultekin, Dilek Uzer
    • Year: 2022
    • Citations: 1
  • Investigation of Gain Enhancement in Microstrip Antenna Structure in Pathological Tissue Samples
    • Authors: Rabia Toprak, Seyfettin Sinan Gultekin, Dilek Uzer
    • Year: 2021
    • Citations: 2
  • Patolojik Doku Örneklerinde Mikroşerit Anten Yapısında S-Parametrelerine Ait Normalizasyon Değerlerinin İncelenmesi
    • Authors: Rabia Toprak, Seyfettin Sinan Gultekin, Dilek Uzer
    • Year: 2021
    • Citations: 0 (as it is a recent publication)
  • Determination of Cardiovascular Occlusion with Microstrip Antennas
    • Authors: H. Uyanik, D. Uzer, Rabia Toprak, Seyfettin Sinan Gultekin
    • Year: 2020
    • Citations: 3
  • Kanser Hastalığı Tespitine Yönelik ISM Bandında Çalışan Mikroşerit Yama Yapılı İki Antenin Elektromanyetik Alan ve Saçılma Parametreleri Verilerinin Değerlendirilmesi ve Kıyaslanması
    • Authors: Rabia Toprak, Seyfettin Sinan Gultekin, Dilek Uzer
    • Year: 2020
    • Citations: 0 (as it is a recent publication)
  • Microstrip antenna design with circular patch for skin cancer detection
    • Authors: Rabia Toprak, Y. Ünlü, Seyfettin Sinan Gultekin, Dilek Uzer
    • Year: 2019
    • Citations: 5
  • Modeling congestion of vessel on rectangular microstrip antenna and evaluating electromagnetic signals
    • Authors: Rabia Toprak, Seyfettin Sinan Gultekin, Dilek Uzer
    • Year: 2017
    • Citations: 0 (as it is a recent publication)
  • A Microstrip Patch Antenna Design for Breast Cancer Detection
    • Authors: Rabia Caliskan, Seyfettin Sinan Gultekin, Dilek Uzer, Ozgur Dundar
    • Year: 2015
    • Citations: 7

Sufyanv Ghani | Engineering | Best Researcher Award

Dr. Sufyanv Ghani | Engineering | Best Researcher Award

Assistant Professor at Sharda University, India

Dr. Sufyan Ghani is an accomplished academician and researcher in the field of Civil Engineering. Born on July 4, 1995, in Patna, India, he has consistently demonstrated a strong commitment to higher education and research. He earned his Ph.D. from the National Institute of Technology (NIT) Patna, focusing on advanced topics in Civil Engineering. Dr. Ghani is fluent in English, Urdu, and Hindi, which enhances his ability to communicate effectively with a diverse range of audiences. His personal attributes—positive attitude, self-motivation, and persistence—reflect his dedication to personal and professional growth. Currently, he aims to apply his extensive knowledge and skills as an Assistant Professor in a prestigious academic institution, where he hopes to inspire and mentor the next generation of engineers while continuing his research endeavors.

Professional Profile

Education

Dr. Ghani’s educational journey showcases his dedication and excellence in the field of Civil Engineering. He completed his Ph.D. at the National Institute of Technology (NIT) Patna, where he focused on cutting-edge research related to Civil Engineering practices and innovations. Prior to this, he earned his Master’s Degree in Soil Mechanics and Foundation Engineering from BIT Mesra in 2019, which provided him with a strong foundation in geotechnical engineering principles. His educational qualifications are complemented by his technical skills in software like MATLAB, AutoCAD, and Python, which are essential for modern engineering research and applications. This combination of formal education and practical skills equips Dr. Ghani with the knowledge required to address complex engineering challenges effectively.

Professional Experience

Dr. Ghani has garnered substantial professional experience in the higher education sector, which complements his academic qualifications. As a researcher and educator, he has been actively involved in various teaching and research roles, contributing to the development of future engineers. His expertise in Soil Mechanics and Foundation Engineering positions him as a valuable resource in the civil engineering department. Dr. Ghani has participated in numerous research projects, collaborating with colleagues and students to explore innovative solutions to engineering problems. His commitment to academic excellence is reflected in his engagement with students, guiding them in their research and practical applications of civil engineering principles. Dr. Ghani’s professional experience not only enhances his profile but also positively impacts the academic community he serves.

Research Interests

Dr. Sufyan Ghani’s research interests lie primarily in the domains of Soil Mechanics and Foundation Engineering. He is particularly focused on advancing the understanding of soil behavior under various loading conditions and its implications for foundation design. His work aims to bridge the gap between theoretical research and practical applications, contributing to safer and more efficient engineering practices. Additionally, Dr. Ghani is interested in exploring sustainable construction materials and techniques, which align with global initiatives for environmentally friendly engineering solutions. By integrating modern computational techniques and experimental methods, he aims to enhance the reliability and performance of civil engineering structures. His commitment to research not only advances the field but also contributes to addressing pressing infrastructure challenges.

Awards and Honors

Throughout his academic and professional journey, Dr. Sufyan Ghani has received recognition for his contributions to the field of Civil Engineering. His outstanding research work has led to several publications in reputable journals, earning him citations and acknowledgment from peers in the academic community. He has participated in various conferences and seminars, where he presented his findings, showcasing his commitment to sharing knowledge and advancing research. Additionally, Dr. Ghani has been involved in collaborative research projects that have received funding and accolades, highlighting his ability to work effectively within teams. His dedication to education and research has positioned him as a respected figure in the civil engineering community, paving the way for future opportunities and recognition in his field.

Conclusion

Dr. Sufyan Ghani is a strong candidate for the Best Researcher Award due to his solid educational background, technical skills, and commitment to research. By focusing on improving the impact of his work, expanding his professional network, and applying his research to community challenges, he can further enhance his contributions to the field of civil engineering. His proactive approach and continuous learning mindset position him well for future success and recognition in academia.

Publication top noted

  1. 📖 Advancing earth science in geotechnical engineering: A data-driven soft computing technique for unconfined compressive strength prediction in soft soil
    Authors: Thapa, I., Ghani, S.
    Year: 2024
    Journal: Journal of Earth System Science, 133(3), 159
    Citations: 0
  2. 📖 Enhancing unconfined compressive strength prediction in nano-silica stabilized soil: a comparative analysis of ensemble and deep learning models
    Authors: Thapa, I., Ghani, S.
    Year: 2024
    Journal: Modeling Earth Systems and Environment, 10(4), pp. 5079–5102
    Citations: 0
  3. 📖 Applying Optimized Machine Learning Models for Predicting Unconfined Compressive Strength in Fine-Grained Soil
    Authors: Thapa, I., Ghani, S.
    Year: 2024
    Journal: Transportation Infrastructure Geotechnology, 11(4), pp. 2235–2269
    Citations: 6
  4. 📖 Enhancing bond performance in SRC structures: a computational approach using ensemble learning techniques and sequential analysis
    Authors: Gupta, M., Prakash, S., Ghani, S., Kumar, N., Saharan, S.
    Year: 2024
    Journal: Asian Journal of Civil Engineering, 25(4), pp. 3329–3347
    Citations: 5
  5. 📖 Data-driven machine learning approaches for predicting permeability and corrosion risk in hybrid concrete incorporating blast furnace slag and fly ash
    Authors: Kumar, N., Prakash, S., Ghani, S., Gupta, M., Saharan, S.
    Year: 2024
    Journal: Asian Journal of Civil Engineering, 25(4), pp. 3263–3275
    Citations: 7
  6. 📖 Enhancing predictive accuracy: a comprehensive study of optimized machine learning models for ultimate load-carrying capacity prediction in SCFST columns
    Authors: Gupta, M., Prakash, S., Ghani, S.
    Year: 2024
    Journal: Asian Journal of Civil Engineering, 25(4), pp. 3081–3098
    Citations: 5
  7. 📖 Applications of bentonite in plastic concrete: a comprehensive study on enhancing workability and predicting compressive strength using hybridized AI models
    Authors: Thapa, I., Kumar, N., Ghani, S., Kumar, S., Gupta, M.
    Year: 2024
    Journal: Asian Journal of Civil Engineering, 25(4), pp. 3113–3128
    Citations: 7
  8. 📖 Estimation of California bearing ratio for hill highways using advanced hybrid artificial neural network algorithms
    Authors: Thapa, I., Ghani, S.
    Year: 2024
    Journal: Multiscale and Multidisciplinary Modeling, Experiments and Design, 7(2), pp. 1119–1144
    Citations: 12
  9. 📖 Enhancing seismic vulnerability assessment: a neural network effort for efficient prediction of multi-storey reinforced concrete building displacement
    Authors: Shrestha, N., Gupta, M., Ghani, S., Kushwaha, S.
    Year: 2024
    Journal: Asian Journal of Civil Engineering, 25(3), pp. 2843–2865
    Citations: 6
  10. 📖 Machine learning approaches for real-time prediction of compressive strength in self-compacting concrete
    Authors: Ghani, S., Kumar, N., Gupta, M., Saharan, S.
    Year: 2024
    Journal: Asian Journal of Civil Engineering, 25(3), pp. 2743–2760
    Citations: 6

YUSUF BABATUNDE | Engineering | Best Researcher Award

Dr. YUSUF BABATUNDE | Engineering | Best Researcher Award

Lecturer at University of Ilorin, Ilorin, Nigeria.

Olawale Yusuf Babatunde is a Nigerian civil engineer with expertise in sustainable construction materials. He has been a Lecturer in the Department of Civil Engineering at the University of Ilorin, Nigeria, since 2019. His work primarily focuses on innovative engineering materials and optimization techniques for civil infrastructure. He is passionate about applying sustainable solutions in construction using local and alternative materials.

Profile

Scopus Profile

Education📚🎓

Olawale holds a Ph.D. in Civil Engineering from the Pan African University Institute of Basic Sciences, Technology and Innovation (PAUSTI), Kenya (2023). He also earned a Master of Engineering (M.Eng) in 2018 and a Bachelor of Engineering (B.Eng) in 2013, both from the University of Ilorin, Nigeria. His early education includes attendance at Dalex Royal College, Ilorin, for his secondary education, completed in 2007.

Experience🏗️📐

Babatunde has been a Lecturer at the University of Ilorin since 2019, teaching a variety of courses in Civil Engineering, such as Engineering Mechanics, Strength of Materials, and Structural Design. Prior to this role, he worked as a Consulting Engineer for Aroes Engineering Nigeria Limited, conducting soil investigations for major projects like the Kwara State New Secretariat Complex. He also gained industry experience at Asbirob Works as a Pupil Engineer and has taught Physics and Mathematics at secondary schools.

Research Interests🧪🏢

Olawale’s research focuses on developing sustainable materials for construction. His Ph.D. research involved an in-depth investigation into the effects of material compositions on waste plastic binder composites for pavers and other construction blocks. His other projects explore the use of alternative binders from eggshell waste, rice husk ash, and magnesium-oxide. His work emphasizes material optimization using Response Surface Methodology (RSM) and Artificial Neural Networks (ANN).

Awards🎖️🏆

Babatunde was awarded the prestigious African Union Ph.D. Scholarship in 2020 for his doctoral studies at PAUSTI, Kenya. This scholarship reflects his dedication and excellence in civil engineering and innovation in sustainable materials.

Publications Top Needs

  • Physicomechanical and Thermal Properties of Particle Board Produced Using Waste Ceramic Materials and Corncob
    • Authors: Aladegboye, O.J., Oyedepo, O.J., Awolola, T.J., Ilesanmi, O.T., Ikubanni, P.P.
    • Year: 2024
    • Citations: 0
  • Performance Evaluation of Hospital Waste Ash-Modified Asphalt Mixtures
    • Authors: Oguntayo, D., Ogundipe, O., Aladegboye, O., Babatunde, Y., Aransiola, O.
    • Year: 2023
    • Citations: 6
  • Effect of Mix Proportion on the Strength and Durability of Plastic and Sand Composite for Construction Applications
    • Authors: Babatunde, Y.O., Ibrahim, R.A., Oguntayo, D.O.
    • Year: 2022
    • Citations: 4
  • Influence of Material Composition on the Morphology and Engineering Properties of Waste Plastic Binder Composite for Construction Purposes
    • Authors: Babatunde, Y., Mwero, J., Mutuku, R., Jimoh, Y., Oguntayo, D.
    • Year: 2022
    • Citations: 9
  • Effects of Filler Types on the Microstructural and Engineering Properties of Waste Plastic Binder Composite for Construction Purposes
    • Authors: Babatunde, Y.O., Mwero, J., Mutuku, R., Jimoh, Y., Oguntayo, D.
    • Year: 2022
    • Citations: 1

Conclusion🌱🔧

Olawale Babatunde is an accomplished civil engineer with a strong foundation in academic research and professional practice. His expertise in sustainable materials, optimization techniques, and structural design is shaping the future of eco-friendly construction. With his dedication to sustainable infrastructure and ongoing contributions to research, Olawale is poised to make a lasting impact in the field of civil engineering.

 

 

 

Md Atiqur Rahman | Heat Transfer | Best Researcher Award

Dr. Md Atiqur Rahman | Heat Transfer | Best Researcher Award

Assistant Professor at Vignan’s Foundation for Science, Technology & Research (Deemed to be University), India

Md Atiqur Rahman is an Assistant Professor at Vignan’s Foundation for Science, Technology & Research, with a focus on enhancing academic performance and fostering student success. He holds a Ph.D. from Birla Institute of Technology, Mesra, and has a strong educational background, including an M.Tech and B.E. from Visvesvaraya Technological University. With over 3.5 years of teaching experience across various institutions, Rahman has published numerous research papers in reputable journals, primarily focusing on heat exchangers and thermal engineering. His contributions to conferences and workshops demonstrate his commitment to advancing knowledge in his field. As a member of professional societies and a reviewer for several journals, he actively engages in the academic community. Rahman’s career goal is to develop effective educational strategies that lead to substantial academic improvements for his students, showcasing his dedication to education and research.

Profile

Education

Md Atiqur Rahman has a robust educational background, beginning with his Bachelor of Engineering (B.E.) degree from Visvesvaraya Technological University (V.T.U.) Belgaum, where he graduated with first-class honors. He further advanced his studies by earning a Master of Technology (M.Tech) from the same university, again achieving first-class results. Currently, he is in the final stages of his academic journey, having submitted his Ph.D. dissertation at the prestigious Birla Institute of Technology in Mesra. His educational pursuits reflect a commitment to excellence in the field of engineering, particularly in thermal and fluid dynamics. This strong foundation in engineering principles has equipped him with the knowledge and skills necessary to contribute significantly to both academic and research endeavors in his career.

Professional Experience

Md Atiqur Rahman has amassed over 3.5 years of professional experience in the field of mechanical engineering and education. He began his career as a Lecturer at M.V.J Polytechnic in Bangalore, where he taught from June 2011 to February 2014. He then advanced to the role of Assistant Professor at Sri Venkatesh Perumal College of Engineering and Technology in Puttur, serving from June 2016 to April 2017. Following this, he took on the position of Guest Lecturer at BIT University Polytechnic in Mesra from January 2018 to August 2020. Currently, he is an Assistant Professor at Vignan’s Foundation for Science, Technology & Research (Deemed to be University) in Guntur, a position he has held since June 2024. Throughout his career, Md Rahman has been dedicated to enhancing students’ academic performance and actively contributing to the field through teaching, research, and publications in reputable journals.

Research Interest

Md Atiqur Rahman has a keen research interest in the field of thermal engineering, specifically focusing on the performance optimization of heat exchangers. His work primarily involves the investigation of innovative flow deflector designs and their effects on thermofluid performance in various heat exchanger configurations. Through his research, he aims to enhance the efficiency of heat transfer processes, which is critical in industrial applications such as power generation, HVAC systems, and chemical processing. Additionally, Rahman’s studies extend to the utilization of nanofluids for improved thermal performance, as well as the development of advanced baffle plates that facilitate better fluid dynamics. He is dedicated to addressing real-world engineering challenges by implementing experimental methods and computational fluid dynamics (CFD) simulations in his research endeavors. Overall, his contributions aim to advance the understanding of heat exchanger technology and promote energy efficiency in engineering applications.

Research Skills

Md Atiqur Rahman possesses a diverse set of research skills that significantly contribute to his expertise in the field of thermal engineering and heat exchanger performance. His strong analytical abilities enable him to conduct comprehensive experiments and evaluations of thermo-fluid dynamics, particularly in heat exchangers equipped with innovative baffle plates. With a solid foundation in computational fluid dynamics, he employs advanced simulation techniques to analyze and optimize thermal systems effectively. Rahman’s proficiency in data interpretation and statistical analysis enhances his capability to derive meaningful conclusions from experimental results. He is also adept at disseminating his findings through publications in peer-reviewed journals and presentations at international conferences, showcasing his commitment to advancing knowledge in his area of research. Furthermore, his involvement as a reviewer for esteemed journals demonstrates his engagement with the academic community and his dedication to maintaining high research standards. Overall, his research skills reflect a comprehensive approach to addressing complex engineering challenges.

Award and Recognition

Md Atiqur Rahman has made significant contributions to the field of mechanical engineering, particularly in the study of heat exchangers and thermal performance. His research has been recognized in various prestigious journals, including the Journal of Engineering Research and the Bulletin of the Polish Academy of Sciences, where he has published multiple papers that highlight innovative solutions in thermofluid performance. Additionally, he has presented his work at prominent international conferences, such as the International Conference on Innovations in Engineering and Technology, further establishing his reputation within the academic community. Rahman’s dedication to continuous learning is evidenced by his participation in numerous workshops and training programs focused on advanced topics in mechanical and thermal engineering. His active involvement in professional organizations, such as the Indian Society of Technical Education, showcases his commitment to fostering collaboration and knowledge exchange in the engineering field. Overall, Rahman’s achievements reflect his strong research capabilities and dedication to advancing engineering practices.

Conclusion

Md Atiqur Rahman exemplifies the qualities of an outstanding researcher through his dedication to advancing knowledge in mechanical engineering. His solid educational foundation, impressive publication record, and active participation in the academic community position him as a suitable candidate for the Best Researcher Award. By addressing areas for improvement, he can further enhance his contributions to the field and continue to inspire students and colleagues alike.

Publication Top Notes

  • Performance evaluation of turbulent circular heat exchanger with a novel flow deflector-type baffle plate
    • Authors: MA Rahman, SK Dhiman
    • Year: 2023
    • Journal: Journal of Engineering Research
    • Citations: 17
  • Experimental Investigations on Single-Phase Heat Transfer Enhancement in an Air-To-Water Heat Exchanger with Rectangular Perforated Flow Deflector Baffle Plate
    • Authors: MA Rahman
    • Year: 2023
    • Journal: International Journal of Thermodynamics (IJoT)
    • Volume/Issue/Page: 26(4), 31-39
    • Citations: 15
  • Effectiveness of a tubular heat exchanger and a novel perforated rectangular flow-deflector type baffle plate with opposing orientation
    • Authors: MA Rahman
    • Year: 2023
    • Journal: World Journal of Engineering
    • Citations: 13
  • Investigations of the turbulent thermo-fluid performance in a circular heat exchanger with a novel flow deflector-type baffle plate
    • Authors: MA Rahman, SK Dhiman
    • Year: 2023
    • Journal: Bulletin of the Polish Academy of Sciences. Technical Sciences
    • Volume/Issue: 71(4)
    • Citations: 13
  • The influence of geometrical and operational parameters on thermofluid performance of discontinuous colonial self‐swirl‐inducing baffle plate in a tubular heat exchanger
    • Authors: MA Rahman
    • Year: 2024
    • Journal: Heat Transfer
    • Volume/Issue/Page: 53(2), 328-345
    • Citations: 11
  • The effect of triangular shutter type flow deflector perforated baffle plate on the thermofluid performance of a heat exchanger
    • Authors: MA Rahman
    • Year: 2024
    • Journal: Heat Transfer
    • Volume/Issue/Page: 53(2), 939-956
    • Citations: 9
  • Thermo-fluid performance comparison of an in-line perforated baffle with oppositely oriented rectangular-wing structure in turbulent heat exchanger
    • Authors: MA Rahman
    • Year: 2024
    • Journal: International Journal of Fluid Mechanics Research
    • Volume/Issue: 51(1)
    • Citations: 8
  • Thermal hydraulic performance of a tubular heat exchanger with in‐line perforated baffle with shutter type saw tooth turbulator
    • Authors: MA Rahman
    • Year: 2024
    • Journal: Heat Transfer
    • Volume/Issue/Page: 53(5), 2234-2256
    • Citations: 5
  • Study the effect of axially perforated baffle plate with multiple opposite-oriented trapezoidal flow deflectors in an air–water tubular heat exchanger
    • Authors: MA Rahman
    • Year: 2024
    • Journal: World Journal of Engineering
    • Citations: 5
  • Assessment of Improving Heat Exchanger Thermal Performance through Implementation of Swirling Flow Technology
    • Authors: MA Rahman, SMM Hasnain, R Zairov
    • Year: 2024
    • Journal: International Journal of Thermofluids
    • Volume/Page: 100689
    • Citations: 3