CIGDEM CAGLAYAN | Engineering | Best Researcher Award

Ms. CIGDEM CAGLAYAN | Engineering | Best Researcher Award

PhD Candidate at Seoul National University, South Korea

Cigdem Caglayan is an accomplished Aerospace Engineer and a PhD candidate at Seoul National University, specializing in cutting-edge research on dynamic combinational epoxy vitrimers, recyclable carbon fiber vitrimer composites, and self-healing mechano-luminescent (ML) coatings for structural health monitoring (SHM). Her work focuses on developing cost-effective solutions for detecting and visualizing stress distribution in structural components, advancing sustainability through recyclable composite materials. With a strong foundation in polymer science and composite technologies, her research journey spans innovative material design, advanced manufacturing techniques, and extensive collaboration with international institutions. Cigdem is highly skilled in project management, technical reporting, and material characterization, with several publications in high-impact journals. Her global academic contributions and passion for sustainability position her as a leader in the aerospace and materials research domains.

Professional Profile

Education

Cigdem is currently pursuing a PhD in Aerospace Engineering at Seoul National University, expected in February 2025. Her doctoral research focuses on self-healing epoxy vitrimers and ML coatings. She earned her MSc in Aerospace Engineering from Istanbul Technical University, where her thesis emphasized nano-reinforced polyurethane foams and polymer foam core sandwich composites. She graduated with a GPA of 4.00/4.30 in 2019. Her BSc in Aerospace Engineering, also from Istanbul Technical University, focused on the design and testing of advanced composites, graduating in 2016 with a GPA of 3.69/4.00. Her academic achievements have been supported by prestigious scholarships and her commitment to advancing composite technologies.

Professional Experience

Cigdem has extensive experience as a researcher, starting her career at Istanbul Technical University’s Aerospace Research Center (2016–2019), where she led projects on nano-reinforced polyurethane foams and polymer foam core sandwich composites. Currently, she is a researcher at Seoul National University, where she develops self-healing stress sensors and recyclable carbon fiber composites, contributing to advancements in structural health monitoring and sustainability. Cigdem has been instrumental in laboratory setup and operations, utilizing advanced equipment and techniques. Her teaching experience includes mentoring undergraduate students in subjects like composite materials and aerospace engineering, further showcasing her leadership and technical expertise.

Research Interests

Cigdem’s research interests focus on developing sustainable and innovative materials for aerospace and structural applications. Her work in self-healing mechano-luminescent (ML) coatings and recyclable epoxy vitrimer composites aims to revolutionize structural health monitoring (SHM) by enabling non-contact stress detection and visualization. She is passionate about composite manufacturing techniques, including vacuum-assisted resin transfer molding (VARTM) and hot pressing, with a keen focus on enhancing sustainability through recyclable materials. Her interests also extend to understanding material failure under various conditions, making her research pivotal for industries like aerospace and defense.

Research Skills

Cigdem is proficient in advanced composite manufacturing and characterization techniques, including VARTM, hot pressing, and ASTM-standard testing methods like flexural fatigue and impact analysis. Her expertise extends to characterization tools such as FTIR, NMR, and SEM, and she is skilled in data analysis using MATLAB and 3D CAD/CAM software like CATIA. Additionally, she excels in laboratory management, experimental design, and technical reporting, with strong soft skills in teamwork and communication. Cigdem’s ability to innovate and lead makes her a valuable contributor to complex research projects.

Awards and Honors

Cigdem has been recognized globally for her academic and research excellence. She is a recipient of the prestigious Global Korean Scholarship (2019–2023) and has been honored with the Korean Government Invitation Program award for top students. Her outstanding presentation at the International Conference on Active Materials and Soft Mechatronics in 2024 earned her an Excellent Presentation Award. As one of Turkey’s top students, she has also received multiple scholarships and participated in international exchange programs, highlighting her dedication and achievements in aerospace engineering.

Conclusion

Cigdem Caglayan is a strong contender for the Best Researcher Award due to her innovative research, extensive technical expertise, and global academic contributions. Her work in self-healing composites and recyclable materials directly addresses contemporary challenges in sustainability and advanced materials science, aligning with the award’s objectives. By broadening the application of her research and increasing leadership roles in professional communities, she can further enhance her academic and professional impact.

Publications Top Notes

  1. Reprocessable carbon fiber vitrimer composites: Reclamation and reformatting of carbon fibers for second-generation composite materials
    Authors: Sharma, H., Bender, M., Kim, G., Kumar, A., Rana, S.
    Journal: Journal of Applied Polymer Science
    Year: 2024
  2. Epoxy-Based Catalyst-Free Self-Healing Elastomers at Room Temperature Employing Aromatic Disulfide and Hydrogen Bonds
    Authors: Kim, G., Caglayan, C., Yun, G.J.
    Journal: ACS Omega
    Year: 2022
    Citations: 13
  3. CNT-Reinforced Self-Healable Epoxy Dynamic Networks Based on Disulfide Bond Exchange
    Authors: Caglayan, C., Kim, G., Yun, G.J.
    Journal: ACS Omega
    Year: 2022
    Citations: 5
  4. Impact response of shear thickening fluid filled polyurethane foam core sandwich composites
    Authors: Caglayan, C., Osken, I., Ataalp, A., Turkmen, H.S., Cebeci, H.
    Journal: Composite Structures
    Year: 2020
    Citations: 51
  5. The effect of CNT-reinforced polyurethane foam cores to flexural properties of sandwich composites
    Authors: Caglayan, C., Gurkan, I., Gungor, S., Cebeci, H.
    Journal: Composites Part A: Applied Science and Manufacturing
    Year: 2018
    Citations: 53
  6. Flexural behaviours of nanophased rigid polyurethane foam core sandwich composites
    Authors: Çağlayan, Ç., Demir, E., Gürkan, İ., Cebeci, H.
    Conference: ICCM International Conferences on Composite Materials
    Year: 2017
    Citations: 1

 

 

 

Huizhi Tang | Engineering | Best Researcher Award

Dr. Huizhi Tang | Engineering | Best Researcher Award

Ph.D. at Donghua University, China

Tang Huizhi is a dedicated and innovative researcher currently pursuing a Ph.D. in Information and Communication Engineering at Donghua University, China. With a strong foundation in Communication Engineering, she has honed her expertise in routing protocols for Flying Ad-Hoc Networks (FANETs) and privacy protection for vehicle ad hoc networks. Tang’s research demonstrates a keen interest in advancing communication technologies and developing secure and efficient networking solutions for emerging technologies like drones and autonomous vehicles. Her academic journey is complemented by practical experience in hardware testing and system integration. Tang is known for her commitment to teamwork, analytical thinking, and a strong drive for continuous learning, making her a promising figure in her research field.

Professional Profile

Education

Tang Huizhi completed her bachelor’s degree in Communication Engineering from Huaibei Normal University, where she laid the groundwork for her interest in communication networks. She then pursued a master’s degree in Information Science and Technology from Donghua University, focusing on image processing for drones, particularly object tracking. Currently, Tang is in her second year of Ph.D. studies at Donghua University, specializing in routing protocols for Flying Ad-Hoc Networks. Her ongoing academic journey is shaped by her passion for enhancing wireless communication systems and her dedication to pursuing innovative research in the field.

Professional Experience

Tang’s professional experience includes an intensive internship at Sensing Future Technology Co., Ltd., where she worked on radar speed measurement projects. During her internship, she was primarily responsible for hardware welding and testing, gaining valuable hands-on experience in system integration and testing. This experience provided her with practical insights into hardware development and testing, complementing her academic research. Additionally, her participation in various research projects at Donghua University has allowed her to apply her theoretical knowledge to real-world applications, focusing on communication protocols and security in emerging technologies like drones and vehicular networks.

Research Interest

Tang Huizhi’s research interests lie at the intersection of communication engineering and emerging technologies. Specifically, her work focuses on routing protocols for Flying Ad-Hoc Networks (FANETs), a rapidly evolving area in wireless communications. She aims to develop efficient, reliable, and secure communication protocols for networks of drones. Additionally, Tang is exploring privacy protection techniques for vehicle-to-infrastructure communications, addressing security challenges in intelligent transportation systems. Her research contributes to the advancement of communication networks for autonomous systems, where secure and efficient data exchange is critical. Tang’s work combines theory with practical applications, aiming to solve real-world challenges in communication systems.

Research Skills

Tang Huizhi has developed a robust set of research skills during her academic journey. She possesses strong analytical skills, particularly in the areas of image processing, object tracking, and routing protocols for ad-hoc networks. Her research in Flying Ad-Hoc Networks (FANETs) involves advanced algorithm design, network modeling, and privacy protection techniques. Tang is proficient in using various simulation tools for network analysis and is skilled in programming languages like Python and MATLAB, which are essential for her research work. Her ability to collaborate with interdisciplinary teams, combined with her technical expertise, allows her to tackle complex problems in communication systems and network security.

Awards and Honors

Tang Huizhi has earned several accolades that demonstrate her academic excellence and innovative mindset. She won a provincial first prize at the 7th National Mobile Communication 5G Technology Competition (“Datang Cup”) and received a third-place award in the Anhui Provincial College Student Transportation Science and Technology Competition. Tang also won the Excellence Award in the National College Student Electronic Technology Competition and the National Undergraduate Mathematical Modeling Competition. She holds a utility model patent for an anti-fall buffer device for elevators. Furthermore, Tang achieved certifications in English, including the CET-4 and CET-6, and has been recognized for her contributions to both academic and practical aspects of her field. These awards and honors reflect her dedication to research and technological innovation.

Conclusion

Tang Huizhi is a highly talented and dedicated researcher whose work in routing protocols for Flying Ad-Hoc Networks and vehicle-to-infrastructure communication holds significant promise. Her publications, patents, and competition awards demonstrate her academic excellence and innovative mindset. While there are opportunities to expand the impact of her research and improve leadership and communication skills, she is already on a promising path in her field. Her passion, dedication, and contributions make her a strong candidate for the Best Researcher Award.

Publication Top Notes

  1. Blockchain-based Secure Routing Algorithm with Accumulating Trust in VANETs
    • Authors: Liu, M., Tang, H., Li, D.
    • Journal: Procedia Computer Science, 2023
    • Volume: 224, Pages: 44–51
    • Citations: 1
  2. Research on Siamese Object Tracking Algorithm Based on Knowledge Distillation in Marine Environment
    • Authors: Zhang, Y., Lin, Q., Tang, H., Li, Y.
    • Journal: IEEE Access, 2023
    • Volume: 11, Pages: 50781–50793
    • Citations: 1

 

Ali DJERIOUI | Engineering | Best Researcher Award

Prof. Ali DJERIOUI | Engineering | Best Researcher Award

Professor at University of m’sila, Algeria.

Dr. M DJERIOUI Ali is a distinguished researcher and engineer in electrical engineering, specializing in energy systems, control systems, and renewable energy. His contributions span both academic and industrial spheres, with an emphasis on nonlinear control, hybrid powertrains, and energy management for sustainable systems. Dr. Djerioui has a well-established track record in both research and education, having published extensively in peer-reviewed journals and conferences. He is deeply involved in mentoring students and contributing to innovation in the electrical energy sector. Through his various roles, including Research and Development Manager and faculty positions, Dr. Djerioui continues to impact the field with his research and dedication to advancing sustainable technologies. His work has led to practical innovations in electrical insulation, hybrid vehicle energy systems, and energy-efficient solutions.

Education

Dr. Ali M DJERIOUI holds a Doctorate in Electrical Engineering from the University of Sciences and Technology Houari Boumediene, Algiers, Algeria, where he completed his thesis on “Nonlinear Control of a Parallel Active Filter Connected to an Electrical Network and a Photovoltaic System.” In 2018, he obtained the Habilitation à Diriger des Recherches (HDR) from the University of M’sila, Algeria. He also holds a Master’s degree in Electrical Engineering, specializing in Energy Conditioning and Electric Drives from the Military Polytechnic School in Algiers, and an engineering degree in Electrotechnics from the University of M’sila.

Professional Experience

Dr. Djerioui’s career spans both academia and industry. Since 2021, he has been the Research and Development Manager at Elecsa Innovation, leading the development of advanced insulation technologies and electrical designs for high-voltage devices. He has also held several teaching and research roles at the University of M’sila and has been involved in international collaborations, including contracts with IREENA Laboratory in France and Centrale Nantes. His professional experience also includes a scientific stay at the IREENA Institute in Saint Nazaire, France, where he focused on hybrid powertrain optimization and energy management systems.

Research Interests

Dr. Djerioui’s primary research interests revolve around electrical engineering, with a focus on energy systems, renewable energy, hybrid powertrains, and nonlinear control systems. His work explores the optimization of energy management in electric buses, the control of active filters in photovoltaic systems, and high-efficiency energy systems for sustainable applications. He has contributed to the development of innovative solutions in electrical insulation, condition monitoring for transformers, and energy systems integration. His research is at the intersection of electrical engineering and sustainable energy, with practical applications in industry and renewable technologies.

Research Skills

Dr. Djerioui has developed a broad skill set in electrical engineering and energy systems research. He is highly skilled in nonlinear control techniques, energy optimization for hybrid systems, and the design and testing of energy-efficient electrical components. His expertise includes multiphysics modeling (electrical and thermal), electrical design of high-voltage devices, and the development of advanced control algorithms for energy systems. Additionally, Dr. Djerioui is proficient in the use of simulation software and tools such as Matlab, Simulink, and Dspace for system modeling and control. His industrial research work also encompasses condition monitoring and lifetime estimation of electrical insulation, ensuring the reliability and longevity of power systems.

Awards and Honors

Dr. Djerioui has been recognized for his exceptional contributions to the field of electrical engineering. In 2021, he received the Innovation Excellence Prize in the Pays de la Loire region of France for his work in developing sustainable energy solutions and optimizing hybrid powertrains for electric vehicles. His role as co-founder of Elecsa Innovation Company has also brought significant innovation in the field of high-voltage electrical systems. These accolades reflect his leadership and pioneering work in sustainable energy technologies. Dr. Djerioui’s accomplishments highlight his dedication to both academic excellence and industry advancement.

Conclusion

Dr. M DJERIOUI Ali is an outstanding candidate for the Best Researcher Award. His impressive academic and professional achievements, including a significant number of publications, citations, and the award for Innovation Excellence, position him as a leading researcher in his field. His work on energy management, sustainable systems, and electrical engineering contributes notably to both academic research and real-world applications, making him a valuable asset to the scientific and engineering communities. His areas for improvement, particularly in broadening international collaborations and diversifying research areas, are minor compared to his overall contributions. Dr. Djerioui’s commitment to innovation, education, and industry collaboration makes him a deserving candidate for this prestigious award.

Publication Top Notes

  • Actuator fault tolerant control using adaptive RBFNN fuzzy sliding mode controller for coaxial octorotor UAV
    Authors: S. Zeghlache, H. Mekki, A. Bouguerra, A. Djerioui
    Journal: ISA Transactions 80, Pages: 267-278
    Year: 2018
    Citations: 106
  • Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer
    Authors: H. Rezk, S. Ferahtia, A. Djeroui, A. Chouder, A. Houari, M. Machmoum
    Journal: Energy 239, Article: 122096
    Year: 2022
    Citations: 98
  • Optimal control and implementation of energy management strategy for a DC microgrid
    Authors: S. Ferahtia, A. Djeroui, H. Rezk, A. Houari, S. Zeghlache, M. Machmoum
    Journal: Energy 238, Article: 121777
    Year: 2022
    Citations: 87
  • Energy management strategy of supercapacitor/fuel cell energy storage devices for vehicle applications
    Authors: A. Djerioui, A. Houari, S. Zeghlache, A. Saim, M. F. Benkhoris, T. Mesbahi
    Journal: International Journal of Hydrogen Energy 44 (41), Pages: 23416-23428
    Year: 2019
    Citations: 74
  • Fault tolerant control for modified quadrotor via adaptive type-2 fuzzy backstepping subject to actuator faults
    Authors: S. Zeghlache, A. Djerioui, L. Benyettou, T. Benslimane, H. Mekki
    Journal: ISA Transactions 95, Pages: 330-345
    Year: 2019
    Citations: 64
  • A hybrid power system based on fuel cell, photovoltaic source and supercapacitor
    Authors: S. Ferahtia, A. Djerioui, S. Zeghlache, A. Houari
    Journal: SN Applied Sciences 2, Pages: 1-11
    Year: 2020
    Citations: 56
  • An Effective Compensation Technique for Speed Smoothness at Low Speed Operation of PMSM Drives
    Authors: H. Azeddine, B. Ahmed, D. Ali, M. Mohamed, A. Francois, D. A, O. J-C, …
    Journal: IEEE Transactions on Industry Applications 99 (August 2017), Pages: 1-1
    Year: 2017
    Citations: 48
  • Optimal adaptive gain LQR-based energy management strategy for battery–supercapacitor hybrid power system
    Authors: S. Ferahtia, A. Djerioui, T. Mesbahi, A. Houari, S. Zeghlache, H. Rezk, T. Paul
    Journal: Energies 14 (6), Article: 1660
    Year: 2021
    Citations: 46
  • Flatness-based grey wolf control for load voltage unbalance mitigation in three-phase four-leg voltage source inverters
    Authors: A. Djerioui, A. Houari, A. Saim, M. Aït-Ahmed, S. Pierfederici, M. F. Benkhoris
    Journal: IEEE Transactions on Industry Applications 56 (2), Pages: 1869-1881
    Year: 2019
    Citations: 43
  • Adaptive droop based control strategy for DC microgrid including multiple batteries energy storage systems
    Authors: S. Ferahtia, A. Djerioui, H. Rezk, A. Chouder, A. Houari, M. Machmoum
    Journal: Journal of Energy Storage 48, Article: 103983
    Year: 2022
    Citations: 42

YUSUF BABATUNDE | Engineering | Best Researcher Award

Dr. YUSUF BABATUNDE | Engineering | Best Researcher Award

Lecturer at University of Ilorin, Ilorin, Nigeria.

Olawale Yusuf Babatunde is a Nigerian civil engineer with expertise in sustainable construction materials. He has been a Lecturer in the Department of Civil Engineering at the University of Ilorin, Nigeria, since 2019. His work primarily focuses on innovative engineering materials and optimization techniques for civil infrastructure. He is passionate about applying sustainable solutions in construction using local and alternative materials.

Profile

Scopus Profile

Education📚🎓

Olawale holds a Ph.D. in Civil Engineering from the Pan African University Institute of Basic Sciences, Technology and Innovation (PAUSTI), Kenya (2023). He also earned a Master of Engineering (M.Eng) in 2018 and a Bachelor of Engineering (B.Eng) in 2013, both from the University of Ilorin, Nigeria. His early education includes attendance at Dalex Royal College, Ilorin, for his secondary education, completed in 2007.

Experience🏗️📐

Babatunde has been a Lecturer at the University of Ilorin since 2019, teaching a variety of courses in Civil Engineering, such as Engineering Mechanics, Strength of Materials, and Structural Design. Prior to this role, he worked as a Consulting Engineer for Aroes Engineering Nigeria Limited, conducting soil investigations for major projects like the Kwara State New Secretariat Complex. He also gained industry experience at Asbirob Works as a Pupil Engineer and has taught Physics and Mathematics at secondary schools.

Research Interests🧪🏢

Olawale’s research focuses on developing sustainable materials for construction. His Ph.D. research involved an in-depth investigation into the effects of material compositions on waste plastic binder composites for pavers and other construction blocks. His other projects explore the use of alternative binders from eggshell waste, rice husk ash, and magnesium-oxide. His work emphasizes material optimization using Response Surface Methodology (RSM) and Artificial Neural Networks (ANN).

Awards🎖️🏆

Babatunde was awarded the prestigious African Union Ph.D. Scholarship in 2020 for his doctoral studies at PAUSTI, Kenya. This scholarship reflects his dedication and excellence in civil engineering and innovation in sustainable materials.

Publications Top Needs

  • Physicomechanical and Thermal Properties of Particle Board Produced Using Waste Ceramic Materials and Corncob
    • Authors: Aladegboye, O.J., Oyedepo, O.J., Awolola, T.J., Ilesanmi, O.T., Ikubanni, P.P.
    • Year: 2024
    • Citations: 0
  • Performance Evaluation of Hospital Waste Ash-Modified Asphalt Mixtures
    • Authors: Oguntayo, D., Ogundipe, O., Aladegboye, O., Babatunde, Y., Aransiola, O.
    • Year: 2023
    • Citations: 6
  • Effect of Mix Proportion on the Strength and Durability of Plastic and Sand Composite for Construction Applications
    • Authors: Babatunde, Y.O., Ibrahim, R.A., Oguntayo, D.O.
    • Year: 2022
    • Citations: 4
  • Influence of Material Composition on the Morphology and Engineering Properties of Waste Plastic Binder Composite for Construction Purposes
    • Authors: Babatunde, Y., Mwero, J., Mutuku, R., Jimoh, Y., Oguntayo, D.
    • Year: 2022
    • Citations: 9
  • Effects of Filler Types on the Microstructural and Engineering Properties of Waste Plastic Binder Composite for Construction Purposes
    • Authors: Babatunde, Y.O., Mwero, J., Mutuku, R., Jimoh, Y., Oguntayo, D.
    • Year: 2022
    • Citations: 1

Conclusion🌱🔧

Olawale Babatunde is an accomplished civil engineer with a strong foundation in academic research and professional practice. His expertise in sustainable materials, optimization techniques, and structural design is shaping the future of eco-friendly construction. With his dedication to sustainable infrastructure and ongoing contributions to research, Olawale is poised to make a lasting impact in the field of civil engineering.