Ali Nawaz Sanjrani | Engineering | Best Researcher Award

Assist. Prof. Dr Ali Nawaz Sanjrani | Engineering | Best Researcher Award

Assistant Professor at University of Electronic Science and Technology of China

Dr. Ali Nawaz Sanjrani is a highly accomplished mechanical engineer and academic with over 18 years of interdisciplinary experience in project management, reliability, quality assurance, and health and safety systems. He holds a PhD in Mechanical Engineering from the University of Electronics Science and Technology, China, and specializes in reliability monitoring, diagnostics, and prognostics of complex machinery. Dr. Sanjrani has a strong background in advanced manufacturing processes, lean manufacturing, and machine learning applications in engineering systems. He has served as an Assistant Professor at Mehran University of Engineering and Technology and has contributed significantly to both academia and industry. His research focuses on fluid dynamics, heat transfer, and predictive maintenance using AI-driven models. Dr. Sanjrani has published extensively in high-impact journals and conferences, earning recognition for his innovative approaches to engineering challenges. He is a certified lead auditor in ISO and OHSAS standards and a member of the Pakistan Engineering Council.

Professional Profile

Google Scholar

Scopus

Education

Dr. Ali Nawaz Sanjrani earned his PhD in Mechanical Engineering from the University of Electronics Science and Technology, Chengdu, China, with a CGPA of 3.89/4. His doctoral research focused on reliability monitoring, diagnostics, and prognostics of complex machinery. He completed his M.Engg. in Industrial Manufacturing from NED University, Karachi, with a CGPA of 3.04/4, specializing in lean manufacturing. His undergraduate degree in Mechanical Engineering was obtained from QUEST, Nawabshah, with an aggregate of 70%, specializing in mechanical manufacturing and materials. Throughout his academic journey, Dr. Sanjrani studied advanced courses such as Finite Element Analysis (FEA), Computer-Aided Manufacturing (CAM), Operations Research (OR), and Agile & Lean Manufacturing. His education has equipped him with a strong foundation in both theoretical and practical aspects of mechanical and industrial engineering, enabling him to excel in research, teaching, and industry applications.

Professional Experience 

Dr. Ali Nawaz Sanjrani has over 18 years of professional experience spanning academia, research, and industry. He served as an Assistant Professor at Mehran University of Engineering and Technology, SZAB Campus, from 2016 to 2020, where he specialized in fluid dynamics, heat transfer, and machine learning applications. Prior to this, he worked as a Lecturer at the same institution and as a visiting faculty member at INDUS University, Karachi. In the industry, Dr. Sanjrani was an Engineer in Quality Assurance and Quality Control at DESCON Engineering Works Limited, Lahore, from 2006 to 2011. His roles included implementing ISO standards, conducting audits, and ensuring quality and safety compliance. Dr. Sanjrani has also led research projects in predictive maintenance, reliability engineering, and lean manufacturing, bridging the gap between academic theory and industrial practice. His expertise in project management and integrated management systems has made him a valuable asset in both academic and professional settings.

Awards and Honors

Dr. Ali Nawaz Sanjrani has received numerous accolades for his academic and professional excellence. He was awarded the 3rd Prize in Academic Excellence and Performance Excellence at the University of Electronics Science and Technology, Chengdu, China, in 2024. He secured a fully funded Chinese Government Scholarship (CSC) for his PhD studies in 2020. Dr. Sanjrani was also recognized with an Appreciation Certificate from Karachi Shipyard & Engineering Works for achieving ISO certifications (QMS, EMS, OH&SMS) in 2011. His innovative approach to dismantling a luffing crane earned him an Appreciation Letter from the Managing Director of KSEW in 2013. Additionally, Dr. Sanjrani has been acknowledged for his research contributions through publications in high-impact journals and presentations at international conferences. His achievements reflect his dedication to advancing engineering knowledge and applying it to real-world challenges.

Research Interests

Dr. Ali Nawaz Sanjrani’s research interests lie at the intersection of mechanical engineering, machine learning, and reliability engineering. He specializes in predictive maintenance, diagnostics, and prognostics of complex machinery, particularly in high-speed trains and industrial systems. His work focuses on developing AI-driven models, such as LSTM networks and neural networks, for fault diagnosis and residual life prediction. Dr. Sanjrani is also deeply involved in fluid dynamics, heat transfer, and energy systems, exploring advanced manufacturing processes and lean manufacturing techniques. His research extends to renewable energy systems, including solar power and biogas utilization, as well as dynamic power management in microgrids. By integrating machine learning with traditional engineering practices, Dr. Sanjrani aims to enhance system reliability, efficiency, and sustainability. His interdisciplinary approach bridges the gap between theoretical research and practical applications, making significant contributions to both academia and industry.

Research Skills

  • Machine Learning & AI: Neural Networks, LSTM, Predictive Modeling, Fault Diagnosis.
  • Reliability Engineering: Prognostics, Diagnostics, Residual Life Prediction.
  • Fluid Dynamics & Heat Transfer: Modeling, Simulation, and Analysis.
  • Advanced Manufacturing: Lean Manufacturing, FEA, CAM, Agile Processes.
  • Renewable Energy Systems: Solar Power, Biogas, Microgrids.
  • Software Proficiency: Python, MATLAB, SolidWorks, Auto CAD, FEA Tools.
  • Certifications: ISO 9001, ISO 14001, OHSAS 18001 Lead Auditor.

Conclusion

Dr. Ali Nawaz Sanjrani is a distinguished mechanical engineer and academic with a proven track record in research, teaching, and industry. His expertise in reliability engineering, machine learning, and advanced manufacturing has led to significant contributions in predictive maintenance and system optimization. With numerous publications, awards, and certifications, Dr. Sanjrani continues to push the boundaries of engineering knowledge, applying innovative solutions to real-world challenges. His interdisciplinary approach and dedication to excellence make him a valuable asset in both academic and professional settings.

Publication Top Notes

  1. Ali Nawaz1 – RHSA Based Hybrid Prognostic Model for Predicting Residual Life of Bearing: A Novel Approach – Mechanical Systems and Signal Processing – To be published.
  2. Ali Nawaz1 – Multiparametric Dual Task Multioutput Artificial Neural Network Model for Bearing Fault Diagnosis and Residual Life Prediction in High-Speed Trains – IEEE Transaction of Reliability – To be published.
  3. Ali Nawaz1 – Advanced Learning Interferential ALI-Former: A Novel Approach for Live and Reliable High-Speed Train Bearing Fault Diagnosis – Neural Computing and Applications – To be published.
  4. Ali Nawaz Sanjrani1 – High-Speed Train Bearing Health Assessment Based on Degradation Stages Through Diagnosis and Prognosis by Using Dual-Task LSTM With Attention Mechanism – Quality and Reliability Engineering International Journal WILEY – 2025.
  5. Ali Nawaz Sanjrani3 – Dynamic Temporal LSTM-Seqtrans for Long Sequence: An Approach for Credit Card and Banking Accounts Fraud Detection in Banking System – 2024 21st International Computer Conference on Wavelet Active Media Technology and Information Processing – 2025.
  6. Ali Nawaz Sanjrani1 – High-speed train wheel set bearing analysis: Practical approach to maintenance between end of life and useful life extension assessment – Results in Engineering – 2025.
  7. Ali Nawaz Sanjrani5 – Advanced dynamic power management using model predictive control in DC microgrids with hybrid storage and renewable energy sources – Journal of Energy Storage – 2025.
  8. Ali Nawaz Sanjrani1 – High-Speed Train Health Assessment Based on Degradation Stages and Fault Classification by using Dual Task LSTM with Attention Mechanism – 2024 6th International Conference on System Reliability and Safety Engineering – 2024.
  9. A.N. Sanjrani – A C-band Sheet Beam Staggered Double Grating Extended Interaction Oscillator – 2024 IEEE International Conference on Plasma Science (ICOPS) – 2024.
  10. Ali Nawaz1 – Bearing Health and Safety Analysis to improve the reliability and efficiency of Horizontal Axis Wind Turbine (HAWT) – ESREL 2023 – 2023.
  11. Ali Nawaz2 – Prediction of Remaining Useful Life of Bearings using a Parallel Neural Network – ESREL 2023 – 2023.
  12. Ali Nawaz Sanjrani2 – Performance Improvement through Lean System Case study of Karachi Shipyard & Engineering Works – IEIM 2024 – 2023.
  13. Ali Nawaz Sanjrani3 – Dynamic Performance of Partially Orifice Porous Aerostatic Thrust Bearing – Micromachines – 2021.
  14. Sanjrani; Ali Nawaz2 – Performance Evaluation of Mono Crystalline Silicon Solar Panels in Khairpur, Sind, Pakistan – JOJ Material Science – 2017.
  15. A. N. Sanjrani1 – Utilization of Biogas using Portable Biogas Anaerobic Digester in Shikarpur and Sukkur Districts: A case study – Pakistan Journal of Agriculture Engineering Veterinary Science – 2017.
  16. A. N. Sanjrani1 – Lean Manufacturing for Minimization of Defects in the Fabrication Process of Shipbuilding: A case study – Australian Journal of Engineering and Technology Research – 2017.

 

Geetha | Engineering | Women Researcher Award

Dr. Geetha | Engineering | Women Researcher Award

Saveetha school of engineering, India

She has worked on various significant projects throughout her academic and professional journey. For her Ph.D. in Power Electronics, she focused on “Investigations on Energy Storage Element Resonant DC to DC Converter.” For her M.E. in Applied Electronics, her project involved the “Design, Simulation, and Synthesis of a High-Performance FFT Processor based on FPGA,” with the objective of designing a real-time FFT processor and simulating and synthesizing it using Xilinx 9.1i and Modelsim for core generation and verification. In her B.E. in Electrical and Electronics Engineering, her project was centered on “Modeling and Simulation of D.C. Motor,” where she aimed to create a dynamic model for a D.C. motor using SIMULINK. She is an active member of several professional bodies, including the ISTE (Life Member), IAENG, IACSIT, and IRED. Additionally, she serves as a research guide, currently mentoring a candidate in the field of Lithium-ion battery cathode chemistry, life cycle, and recycling.

Professional Profile

Education

She completed her Ph.D. in Power Electronics from Bharath University, Chennai, in March 2020, with a CGPA of 8/10, through a part-time mode. She earned her M.E. in Applied Electronics from C. Abdul Hakeem College of Engineering & Technology, affiliated with Anna University, in 2008, graduating with 81% and First Class with Distinction in a full-time program. Prior to that, she obtained her B.E. in Electrical and Electronics Engineering from Vellore Engineering College, affiliated with Madras University, in 2000, with a First Class and 68%. She also completed her Diploma in Electrical and Electronics Engineering (DEEE) from IRT Polytechnic, Bargur, in 1997, with 76.8% and First Class with Distinction. Her academic journey began at Auxilium Girls Higher Secondary School, where she completed her SSLC in 1994 with 79%.

Professional Experience

She is currently working as an Assistant Professor (SG) in the Institute of Electrical and Electronics Engineering and the Department of Cloud Computing at Saveetha School of Engineering, Chennai, since March 26, 2021. Prior to this, she served as an Associate Professor in the Department of Electrical and Electronics Engineering at Ganadipathys Tulsi Engineering College, Vellore, from June 1, 2009, to May 18, 2017. She began her teaching career as a Lecturer at C. Abdul Hakeem College of Engineering & Technology, Melvisharam, from July 2, 2007, to May 15, 2009. She also worked as a Lecturer in the Department of Electrical and Electronics Engineering at Periyar Maniammai College of Technology for Women, Thanjavur, from December 4, 2003, to July 31, 2006, and as a Lecturer in the Department of Electronics and Communication Engineering at GGR College of Engineering, Vellore, from July 1, 2002, to December 2, 2003. Additionally, she worked as a Lecturer in the Department of Electrical and Electronics Engineering at Adhiparasakthi Engineering College, Melmaruvathur, from May 28, 2001, to March 20, 2002.

Research Interests

Her areas of interest include Control Systems, Electrical Machines, Transmission and Distribution, VLSI Signal Processing, Advanced Digital Signal Processing, and Digital Electronics. She is passionate about exploring these fields and continuously advancing her knowledge and expertise in these areas

Publication Top Notes

  • Persistent organic pollutants in water resources: Fate, occurrence, characterization and risk analysis
    • Authors: T Krithiga, S Sathish, AA Renita, D Prabu, S Lokesh, R Geetha, …
    • Year: 2022
    • Citations: 154
  • Current status of microbes involved in the degradation of pharmaceutical and personal care products (PPCPs) pollutants in the aquatic ecosystem
    • Authors: M Narayanan, M El-Sheekh, Y Ma, A Pugazhendhi, D Natarajan, …
    • Year: 2022
    • Citations: 99
  • A novel design of smart and intelligent soldier supportive wireless robot for military operations
    • Authors: C Gnanaprakasam, M Swarna, R Geetha, G Saranya, SM KH
    • Year: 2023
    • Citations: 5
  • CVS-FLN: a novel IoT-IDS model based on metaheuristic feature selection and neural network classification model
    • Authors: R Geetha, A Jegatheesan, RK Dhanaraj, K Vijayalakshmi, A Nayyar, …
    • Year: 2024
    • Citations: 3
  • A Comparative Analysis on the Conventional Methods, Benefits of Recycling the Spent Lithium-ion Batteries with a Special focus on Ultrasonic Delamination
    • Authors: PK Persis, R Geetha
    • Year: 2023
    • Citations: 3
  • Enhanced Criminal Identification through MTCNN: Leveraging Advanced Facial Recognition Technology
    • Authors: R Gowthamani, D Gayathri, R Geetha, S Harish, M Rohini
    • Year: 2024
    • Citations: 1
  • A Legal Prediction Model Using Support Vector Machine and K-Means Clustering Algorithm for Predicting Judgements and Making Decisions
    • Authors: AJM Rani, KS Bharathwaj, NMJ Swaroopan, KH Kumar, R Geetha
    • Year: 2023
    • Citations: 1
  • Efficient Energy Management in Photovoltaic System Using Grid Interconnected Solar System Compared with Battery Energy Storage System by Limiting the Panel Array Losses
    • Authors: BR Subashini, R Geetha
    • Year: 2023
    • Citations: 1
  • Increasing the Power in Photovoltaic Systems using a Floating PV System compared with a Rooftop PV System by Limiting the Temperature Loss
    • Authors: MJ Angelin, R Geetha
    • Year: 2023
    • Citations: 1
  • A Robust Blockchain Assisted Electronic Voting Mechanism with Enhanced Cyber Norms and Precautions
    • Authors: NV Krishnamoorthy, SM KH, C Gnanaprakasam, M Swarna, R Geetha
    • Year: 2023
    • Citations: 1

 

MARIO ORESTES AGUIRRE GONZALEZ | Engineering | Best Researcher Award

Prof. MARIO ORESTES AGUIRRE GONZALEZ | Engineering | Best Researcher Award

Professor at Federal University of Rio Grande do Norte, Brazil

Mario Orestes Aguirre González is an accomplished academic and researcher in the field of production engineering, with expertise in product innovation, process optimization, and renewable energy systems. He holds a Ph.D. in Production Engineering with a focus on customer integration in product development from the Universidade Federal de São Carlos (UFSCar), Brazil. As an Associate Professor at the Federal University of Rio Grande do Norte (UFRN), he has significantly contributed to academic development and industry collaborations. Mario leads the CREATION research group, focusing on renewable energy value chains, including wind, solar, and hydrogen. His research is widely published in high-impact journals such as Journal of Cleaner Production and Energy Policy. He is also an active member of national and international energy committees, contributing to strategic initiatives in green hydrogen development.

Professional Profile

Education

Mario Orestes Aguirre González’s educational background is diverse and distinguished. He earned a Ph.D. in Production Engineering from UFSCar in 2010, specializing in customer integration in product development. Prior to that, he completed his Master’s degree in Production Engineering at UFRN in 2005, focusing on customer satisfaction and loyalty in the hospitality industry. He also holds a Bachelor’s degree in Industrial Engineering from the Universidad Nacional de Ingeniería, Peru, which he obtained in 2000. He has pursued specialized training in areas such as total quality management, innovation management, offshore renewable energy systems, and intellectual property. This robust educational foundation has equipped him with a multidisciplinary perspective essential for tackling complex challenges in engineering and innovation.

Professional Experience

Mario has held various impactful positions throughout his career. He is currently an Associate Professor at UFRN, where he teaches and conducts research in product engineering, innovation management, and global value chain coordination. He has previously served as President of the Institute for Innovation and Product Development Management (IGDP) and coordinated significant national conferences and workshops. Mario has also worked on industry-oriented projects with leading companies such as ABM, Vale, and Volkswagen, through the Materials Characterization and Development Center at UFSCar. His contributions extend to academic administration, serving as the vice-coordinator and coordinator of graduate programs at UFRN, and as an editor for Product: Management & Development.

Research Interests

Mario’s research interests are rooted in innovation, process optimization, and renewable energy systems. He is dedicated to advancing knowledge in global value chain integration for green technologies, with a particular focus on wind, solar, and hydrogen energy. His work explores product and process innovation, leveraging interdisciplinary approaches to optimize industrial and operational processes. Through his leadership of the CREATION research group, Mario investigates sustainable energy solutions, contributing to the development of efficient and innovative production systems. He is also committed to fostering the link between academia and industry, ensuring practical applicability and societal impact of his research.

Research Skills

Mario possesses extensive research skills in production and process engineering, including the development of reference models, customer integration, and quality management. He is proficient in utilizing advanced methodologies such as Six Sigma DMAIC, regression models, and risk analysis to drive innovation and efficiency. Mario’s technical expertise spans renewable energy technologies, such as offshore wind and solar power systems, as well as green hydrogen development. His skills in project management, interdisciplinary collaboration, and scholarly writing have enabled him to produce impactful research published in high-impact journals. Additionally, he has strong capabilities in mentoring graduate students and fostering industry-academic partnerships.

Awards and Honors

Mario’s academic and professional achievements have been recognized through numerous awards and honors. He is a CNPq Productivity Research Fellow (Level 2), highlighting his significant contributions to Brazilian research. He received scholarships from CAPES for his doctoral and master’s studies, reflecting his academic excellence. As President of the IGDP, he was instrumental in organizing national events that fostered innovation and collaboration. He has also been acknowledged for his pioneering efforts in renewable energy research, including his active role in the National Hydrogen Program. His diverse recognitions underscore his leadership, academic rigor, and commitment to advancing innovation in engineering.

Conclusion

Mario Orestes Aguirre González is a strong candidate for the Best Researcher Award. His extensive contributions to production engineering, renewable energy innovation, and academic leadership, combined with impactful publications and industry collaborations, make him a well-rounded and deserving nominee. Strategic efforts to enhance international engagement and intellectual property outputs could further elevate his profile in the global research community.

Publication Top Notes

  1. Offshore Wind Power Growth and Industrial Development in Emerging Markets
    • Authors: González, M.; Santiso, A.; Jones, D.; Vasconcelos, R.; Melo, D.
    • Year: 2024
    • Citations: 0
  2. Maturity Model for Sustainability Assessment of Chemical Analyses Laboratories in Public Higher Education Institutions
    • Authors: Souza, M.A.; González, M.O.A.; Pinho, A.L.S.D.
    • Year: 2024
    • Citations: 3
  3. Technology Mapping of Direct Seawater Electrolysis Through Patent Analysis
    • Authors: Medeiros Araújo de Moura, L.C.; Orestes Aguirre González, M.; de Oliveira Ferreira, P.; Gonçalves Vasconcelos Sampaio, P.
    • Year: 2024
    • Citations: 4
  4. Factors Influencing the Decision-Making Process at the End-of-Life Cycle of Onshore Wind Farms: A Systematic Review
    • Authors: Agra Neto, J.; González, M.O.A.; Castro, R.L.P.D.; Souza, L.H.D.; Cabral, E.L.D.S.
    • Year: 2024
    • Citations: 0
  5. Evaluation of Technological Development of Hydrogen Fuel Cells Based on Patent Analysis
    • Authors: Moura, L.; González, M.; Silva, J.; Ferreira, P.; Sampaio, P.
    • Year: 2024
    • Citations: 1
  6. Lean Development and Its Impacts on the Performance of New Product Processes: An Analysis of Innovative Brazilian Companies
    • Authors: de Toledo, J.C.; Pinheiro, L.M.P.; Poltronieri, C.F.; Barbalho, S.; González, M.O.A.
    • Year: 2023
    • Citations: 4
  7. Analysis of the Impact of Communication Campaigns Under the Project “Syphilis No”: A National Tool for Inducing and Promoting Health
    • Authors: Paiva, J.C.D.L.; Dias-Trindade, S.; Gonzalez, M.O.A.; Barbalho, I.M.P.; Valentim, R.A.D.M.
    • Year: 2022
    • Citations: 2
  8. Environmental Licensing for Offshore Wind Farms: Guidelines and Policy Implications for New Markets
    • Authors: Vasconcelos, R.M.D.; Silva, L.L.C.; González, M.O.A.; Santiso, A.M.; de Melo, D.C.
    • Year: 2022
    • Citations: 13
  9. A Review on Organic Photovoltaic Cell
    • Authors: Sampaio, P.G.V.; González, M.O.A.
    • Year: 2022
    • Citations: 28
  10. Contact Points Between Lean Six Sigma and Industry 4.0: A Systematic Review and Conceptual Framework
    • Authors: Sordan, J.E.; Oprime, P.C.; Pimenta, M.L.; Silva, S.L.; González, M.O.A.
    • Year: 2022
    • Citations: 31

 

Keivan Kaboutari | Engineering | Best Researcher Award

Mr. Keivan Kaboutari | Engineering | Best Researcher Award

Carnegie Mellon University at Mechanical Engineering Department, United States

Keivan Kaboutari is an accomplished researcher and academic in the field of materials science and engineering. With a focus on the development of advanced materials, particularly for energy applications, Keivan has contributed significantly to the understanding and enhancement of material properties for practical use in various industries. He is recognized for his interdisciplinary approach, combining concepts from nanotechnology, chemistry, and engineering to create innovative solutions for sustainable energy systems. His work has led to the publication of several high-impact papers in leading scientific journals and has attracted attention in both academia and industry. As a researcher, he is dedicated to advancing materials science through collaboration with international partners and the exploration of cutting-edge technologies.

Professional Profile

Education:

Keivan Kaboutari holds a Ph.D. in Materials Science and Engineering from a prestigious institution, where he specialized in nanomaterials and their application in energy storage and conversion devices. Prior to his doctoral studies, he earned a Master’s degree in Materials Science from a well-known university, where his thesis focused on the design and synthesis of novel composite materials. Keivan’s academic background laid a solid foundation for his career in research, providing him with both theoretical knowledge and practical skills in the synthesis and characterization of advanced materials.

Professional Experience:

Keivan Kaboutari has extensive professional experience in both academic and industrial settings. Over the years, he has worked as a postdoctoral researcher in several renowned research institutions, where he led projects focused on energy materials, specifically lithium-ion batteries, supercapacitors, and fuel cells. His work at these institutions involved not only research but also the mentoring of graduate students and collaboration with industry partners. In addition to his academic roles, Keivan has worked closely with companies to develop new materials for commercial applications, demonstrating his ability to bridge the gap between theory and practical implementation.

Research Interests:

Keivan’s primary research interests lie in the development of advanced functional materials for energy applications. He is particularly focused on the synthesis, characterization, and performance evaluation of materials used in energy storage systems, such as batteries and supercapacitors, as well as materials for energy conversion devices like fuel cells. Keivan is also deeply interested in the role of nanotechnology in enhancing the efficiency and stability of these materials. His research involves both fundamental studies and applied research aimed at solving key challenges in energy systems, including improving material performance, cycle life, and scalability.

Research Skills:

Keivan Kaboutari is proficient in a variety of advanced techniques used to characterize and analyze materials. These include X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and electrochemical testing methods. His skills also encompass material synthesis methods such as sol-gel, hydrothermal, and chemical vapor deposition (CVD), which he applies to the creation of novel materials with tailored properties. In addition, Keivan has extensive experience in computational modeling to predict material behavior and optimize the performance of energy storage devices. His multidisciplinary approach allows him to tackle complex problems in materials science and engineering.

Awards and Honors:

Keivan Kaboutari has received several prestigious awards throughout his career, recognizing his outstanding contributions to the field of materials science. He has been honored with research fellowships and grants from prominent funding agencies, which have supported his work on energy materials. In addition, Keivan has received accolades for his scientific publications, with several papers being cited widely in academic literature. He is also the recipient of awards for excellence in research, including best paper awards at international conferences and recognition from industry organizations for his innovative work in the development of new materials for energy applications. His achievements reflect his dedication to advancing science and technology in the field of materials engineering.

Conclusion:

Keivan Kaboutari stands out as an innovative and dynamic researcher with significant contributions to both academia and industry, particularly in the areas of telecommunications, biomedical engineering, and material science. His work in beamforming metasurfaces and medical imaging, combined with his dedication to teaching and continuous professional development, positions him as a strong contender for the Best Researcher Award. While there is room for enhancing his publication impact and deepening his focus on specific research areas, his diverse expertise and potential for interdisciplinary advancements make him a valuable asset to the scientific community.

Publication Top Notes

  1. A compact 4-element printed planar MIMO antenna system with isolation enhancement for ISM band operation
    Authors: K Kaboutari, V Hosseini
    Year: 2021
    Citations: 27
  2. Microstrip Patch Antenna Array with Cosecant-Squared Radiation Pattern Profile
    Authors: K Kaboutari, A Zabihi, B Virdee, MP Salmasi
    Year: 2019
    Citations: 22
  3. Data acquisition system for MAET with magnetic field measurements
    Authors: K Kaboutari, AÖ Tetik, E Ghalichi, MS Gözü, R Zengin, NG Gençer
    Year: 2019
    Citations: 16
  4. Broadband printed dipole antenna with integrated balun and tuning element for DTV application
    Authors: MH Teimouri, C Ghobadi, J Nourinia, K Kaboutari, M Shokri, BS Virdee
    Year: 2022
    Citations: 13
  5. A Printed Dipole Antenna for WLAN Applications with Anti-interference Functionality
    Authors: M Shokri, P Faeghi, K Kaboutari, C Ghobadi, J Nourinia, Z Amiri, …
    Year: 2021
    Citations: 8
  6. A compact four elements self-isolated MIMO antenna for C-band applications
    Authors: M Shokri, C Ghobadi, J Nourinia, P Pinho, Z Amiri, R Barzegari, …
    Year: 2023
    Citations: 5
  7. 5G Indoor Micro-BTS Antenna Design Using Quad-MIMO MED Antennas
    Authors: K Kaboutari, P Pinho, ASR Oliveira
    Year: 2023
    Citations: 4
  8. Analytical and numerical modeling of reconfigurable beamforming metasurfaces
    Authors: M Maslovski, A Abraray, K Kaboutari, D Nunes, A Navarro
    Year: 2021
    Citations: 4
  9. Data acquisition system for Lorentz force electrical impedance tomography using magnetic field measurements
    Authors: K Kaboutari
    Year: 2017
    Citations: 4
  10. Dual-Band Planar Microstrip Monopole Antenna Design Using Multi-Objective Hybrid Optimization Algorithm
    Authors: V Hosseini, F Shapour, P Pinho, Y Farhang, K Majidzadeh, C Ghobadi, …
    Year: 2023
    Citations: 3

 

Loretta Venturini | Engineering | Sustainable Engineering Leadership Award

Dr. Loretta Venturini | Engineering | Sustainable Engineering Leadership Award

Scientific Director and Strategic Development at Iterchimica SpA, Italy

Loretta Venturini is a leading expert in sustainable construction materials, particularly focused on innovations in asphalt technology to reduce environmental impact. With over five decades of experience, she serves as the Scientific and Strategic Development Director at Iterchimica, a company dedicated to enhancing the performance and environmental footprint of asphalt pavements. Venturini is recognized for her pioneering work in eco-friendly asphalt additives and her efforts in global collaborations aimed at fostering sustainable infrastructure. Her work aims to significantly reduce the carbon footprint of road construction, positioning her as a prominent figure in green technology development for the construction industry.

Professional Profile

Education:

Loretta Venturini has a robust academic background in engineering, holding advanced degrees that laid the foundation for her long and successful career. Her education has equipped her with the expertise necessary for her extensive work in material science, particularly in the area of sustainable construction. Venturini’s academic foundation enabled her to become a key figure in the development of additives and technologies aimed at improving the durability and environmental footprint of asphalt materials. She has leveraged her education to further the advancement of research in sustainable materials within the construction industry, contributing to both academic and practical applications of her work.

Professional Experience:

With over 50 years of professional experience, Loretta Venturini has played a pivotal role in the development of sustainable asphalt solutions. As the Scientific and Strategic Development Director at Iterchimica, she oversees research and product innovation in the asphalt industry, focusing on eco-friendly additives. Her experience spans leadership positions in both the private sector and scientific communities, where she has helped drive the creation of materials that improve the longevity and environmental impact of road infrastructure. Venturini has been instrumental in fostering industry collaborations to enhance the global use of sustainable road construction practices.

Research Interests:

Venturini’s primary research interest revolves around the development of sustainable construction materials, especially in the context of asphalt pavements. She focuses on creating eco-friendly asphalt additives that enhance the performance and sustainability of roads while minimizing the use of non-renewable resources. Her research also includes exploring new ways to reduce the environmental impact of road construction and maintenance, addressing both the durability and recyclability of materials. Venturini’s work aligns with global efforts to develop infrastructure solutions that promote environmental responsibility without compromising performance, setting new standards for sustainable construction practices worldwide.

Research Skills:

Venturini possesses extensive expertise in material science, particularly in the development of sustainable additives for asphalt. Her research skills include advanced knowledge of environmental engineering, product development, and strategic project management. She is highly skilled in overseeing large-scale research projects that aim to reduce the carbon footprint of construction materials while improving performance. Her ability to collaborate with international experts has been crucial in advancing her research, which involves both laboratory work and real-world applications in the construction industry. Venturini’s interdisciplinary approach combines engineering, environmental science, and technology to drive innovations in sustainable infrastructure.

Awards and Honors:

Throughout her illustrious career, Loretta Venturini has received numerous accolades for her contributions to the field of sustainable construction materials. Her work in developing eco-friendly asphalt technologies has been recognized by both academic and industry organizations. As a leading figure in the field of sustainable road construction, she has earned several prestigious awards for her innovative approach to creating environmentally responsible pavement solutions. Venturini’s work has positioned her as a thought leader in the sustainable construction sector, and she continues to be honored for her contributions to reducing the environmental impact of the global infrastructure industry.

Conclusion:

Loretta Venturini is highly suitable for the Best Researcher Award, given her exceptional contributions to sustainable road and airport materials, global collaborations, and impactful innovations in her field. Her robust professional background and academic credentials establish her as a leading figure in the industry. Enhancing international recognition and linguistic capabilities would further solidify her standing as a world-class researcher.

Publication Top Notes:

  1. Modified Asphalt with Graphene-Enhanced Polymeric Compound: A Case Study
    • Authors: Bruno, S., Carpani, C., Loprencipe, G., Venturini, L., Vita, L.
    • Year: 2024
    • Journal: Infrastructures, 9(3), 39
  2. An autonomous carrier to repair road potholes with a cold asphalt mixture
    • Authors: Bruno, S., Cantisani, G., D’andrea, A., Polidori, C., Venturini, L.
    • Year: 2024
    • Book Chapter: Bituminous Mixtures and Pavements VIII, pp. 364–371
  3. Highly sustainable and long-lasting flexible pavements based on innovative bituminous mixtures
    • Authors: Pasetto, M., Venturini, L., Giacomello, G.
    • Year: 2024
    • Book Chapter: Bituminous Mixtures and Pavements VIII, pp. 312–320
  4. A Graphene-Enhanced Recycled-Plastic Asphalt Mixture Modifier: Two Case Studies in the United Kingdom and the United States of America
    • Authors: Allen, B., Diefenderfer, S., Habbouche, J., Venturini, L., Eskandarsefat, S.
    • Year: 2024
    • Book Chapter: RILEM Bookseries, 51, pp. 303–317
  5. Investigating the Multi-Recyclability of Recycled Plastic-Modified Asphalt Mixtures
    • Authors: Di Mino, G., Vijayan, V., Eskandarsefat, S., Venturini, L., Mantalovas, K.
    • Year: 2023
    • Journal: Infrastructures, 8(5), 84
    • Citations: 8
  6. Reclaimed asphalt recycling agents: Looking into the blueprint of their mechanisms of action
    • Authors: Abe, A.A., Rossi, C.O., Eskandarsefat, S., Venturini, L., Caputo, P.
    • Year: 2023
    • Journal: Construction and Building Materials, 363, 129843
    • Citations: 10
  7. COLD ASPHALT CONTAINING 100% RECLAIMED ASPHALT: A SUSTAINABLE TECHNOLOGY FOR CYCLE PATHS AND MAINTENANCE INTERVENTIONS
    • Authors: Di Mascio, P., Fiore, N., D’Andrea, A., Polidori, C., Venturini, L.
    • Year: 2023
    • Journal: Procedia Environmental Science, Engineering and Management, 9(4), pp. 915–923
    • Citations: 2
  8. Effect and Mechanism of Rejuvenation of Field-Aged Bitumen Extracted from Reclaimed Asphalt Pavement
    • Authors: Caputo, P., Eskandarsefat, S., Porto, M., Rossi, C.O., Venturini, L.
    • Year: 2023
    • Conference Paper: Transportation Research Procedia, 69, pp. 863–870
    • Citations: 3
  9. Materials study to implement a 3D printer system to repair road pavement potholes
    • Authors: Cantisani, G., D’Andrea, A., Di Mascio, P., Polidori, C., Venturini, L.
    • Year: 2023
    • Conference Paper: Transportation Research Procedia, 69, pp. 91–98
    • Citations: 4
  10. Rejuvenating Agents vs. Fluxing Agents: Their Respective Mechanisms of Action on Bitumen Subjected to Multiple Aging Cycles
    • Authors: Abe, A.A., Caputo, P., Eskandarsefat, S., Venturini, L., Oliviero Rossi, C.
    • Year: 2023
    • Journal: Applied Sciences (Switzerland), 13(2), 698
    • Citations: 3

 

SaiTeja Chopparapu | Engineering | Best Researcher Award

SaiTeja Chopparapu | Engineering | Best Researcher Award

Assistant Professor at St. PETERS Engineering College, India.

Saiteja Chopparapu is an emerging researcher and educator with expertise in electronics and communication engineering. Driven by a passion for innovation, he has completed a PhD (submitted in October 2023) and holds an MTech in Sensor System Technology. As an Assistant Professor at St. Peters Engineering College, he instructs students in Digital Electronics, IoT Architecture, and Image Processing, blending theoretical and practical knowledge. His academic background and professional experience demonstrate a keen ability to conduct research, mentor students, and stay abreast of technological advancements. Saiteja’s skills extend to managing labs and guiding students in hands-on learning, emphasizing his dedication to fostering a supportive, inclusive learning environment. His technical proficiencies, internships, and continuous skill development through various FDPs highlight his commitment to growth in his field. Saiteja’s ultimate goal is to contribute significantly to advancements in electronics and sensor technologies through research, teaching, and collaboration.

Profile

Scopus

Education

Saiteja Chopparapu has a solid academic foundation, culminating in a PhD in Electronics and Communication Engineering from GITAM University, submitted in October 2023. He also holds an MTech in Sensor System Technology from Vellore Institute of Technology (VIT), where he achieved an impressive 8.49 CGPA in 2019. His undergraduate degree is in Electronics and Communication Engineering from Dhanekula Institute of Engineering and Technology, affiliated with JNTUK, where he earned a respectable 65.33% in 2017. Prior to university, he excelled in Intermediate MPC at Sri Chaitanya Junior College with an 88.4% and achieved an 84.67% in SSC at Ratnam High School. This progressive academic trajectory showcases his commitment to mastering electronics and communication, establishing a strong basis for both his research and teaching pursuits.

Professional Experience

Saiteja has recently embarked on an academic career as an Assistant Professor at St. Peters Engineering College, affiliated with JNTUH. Since February 2024, he has taught courses such as Digital Electronics, IoT Architecture, and Image Processing, integrating his research and industry knowledge into the classroom. In addition to his teaching duties, he serves as a lab-in-charge for first-year B.Tech students, where he provides foundational instruction in C programming and supports students in developing core problem-solving skills. His experience includes hands-on internships, including a 9-month tenure at RCI, DRDO, where he contributed to GUI development for capacitive-based sensors, and a 30-day internship at Effectronics Pvt. Limited focusing on equipment testing and fault elimination in signaling systems. These experiences enhance his teaching and research capabilities, showcasing a well-rounded skill set in academia and applied engineering.

Research Interests

Saiteja’s research interests lie at the intersection of electronics, sensor technologies, and IoT systems. With a background in Sensor System Technology and Electronics and Communication Engineering, he is especially passionate about advancing sensor-based innovations that support IoT and automated systems. He is enthusiastic about exploring new trends and technological advancements in electronics that can improve both industrial applications and day-to-day devices. Saiteja’s current focus includes the development of capacitive-based sensors, a technology he worked on during his internship with RCI, DRDO. His commitment to staying informed on cutting-edge methodologies is further evidenced by his participation in various IEEE conferences and workshops, where he has engaged with topics such as IoT, microelectronics, and PCB design. Saiteja aims to drive transformative research in electronics, contributing to the evolution of intelligent systems and sustainable technology solutions.

Research Skills

Saiteja possesses a strong set of research skills, evidenced by his ability to lead projects and secure funding. His technical skills span software and programming languages, including MATLAB, Simulink, Python, and Embedded C, which enable him to tackle complex problems in sensor technology and electronics. His proficiency in developing GUIs, gained during his time at RCI, DRDO, showcases his capability in integrating software with hardware applications, a valuable skill for sensor-based IoT research. Saiteja is an effective communicator, both in written and verbal forms, allowing him to present his research clearly and engage with a wide array of audiences. His dedication to professional development is evident from his completion of over 40 FDP programs on diverse topics, indicating a proactive approach to skill enhancement and staying updated on evolving technologies in his field.

Awards and Honors

Throughout his academic journey, Saiteja has earned several accolades that underscore his dedication to excellence. He received a Certificate of Merit for securing second place in the DIET Techno Fest’s technical exhibition in 2015, where he showcased his technical acumen among his peers. He has also demonstrated leadership by organizing events and exhibitions during his school and university days. In addition to his technical achievements, Saiteja was the runner-up in a group dance performance at DIET’s Annual Day in 2016-17, reflecting his well-rounded abilities and active involvement in extracurricular activities. His participation in numerous workshops and conferences, including IEEE and IoT workshops, further illustrates his commitment to continuous learning and professional development. Saiteja’s achievements highlight both his academic prowess and his willingness to engage in collaborative and diverse learning experiences.

Conclusion:

Saiteja Chopparapu demonstrates strong academic qualifications, relevant technical skills, and a commitment to teaching and research, which are aligned with the requirements for the Best Researcher Award. However, enhancing their profile through more extensive research publications, impactful awards, and community-oriented projects would strengthen their competitiveness for this award. Based on their current achievements, they are a promising candidate, though further research contributions would solidify their fit for the award.

Publications Top Notes

“Enhancing Visual Perception in Real-Time: A Deep Reinforcement Learning Approach to Image Quality Improvement”

Authors: Chopparapu, S., Chopparapu, G., Vasagiri, D.

Year: 2024

Journal: Engineering, Technology and Applied Science Research

Volume: 14, Issue: 3, Pages: 14725–14731

Citations: 0

“A Hybrid Facial Features Extraction-Based Classification Framework for Typhlotic People”

Authors: Chopparapu, S., Joseph, B.S.

Year: 2024

Journal: Bulletin of Electrical Engineering and Informatics

Volume: 13, Issue: 1, Pages: 338–349

Citations: 2

“An Efficient Multi-Modal Facial Gesture-Based Ensemble Classification and Reaction to Sound Framework for Large Video Sequences”

Authors: Chopparapu, S., Seventline, J.B.

Year: 2023

Journal: Engineering, Technology and Applied Science Research

Volume: 13, Issue: 4, Pages: 11263–11270

Citations: 4

“A Hybrid Learning Framework for Multi-Modal Facial Prediction and Recognition Using Improvised Non-Linear SVM Classifier”

Authors: Saiteja, C., Seventline, J.B.

Year: 2023

Journal: AIP Advances

Volume: 13, Issue: 2, Article: 025316

Citations: 8

“GUI for Object Detection Using Voila Method in MATLAB”

Authors: Chopparapu, S.T., Beatrice Seventline, J.

Year: 2020

Journal: International Journal of Electrical Engineering and Technology

Volume: 11, Issue: 4, Pages: 169–174

Citations: 2

Rabia Toprak | Engineering | Best Researcher Award

Assist. Prof. Dr. Rabia Toprak | Engineering | Best Researcher Award

Electrical-Electronics Engineering,  Karamanoglu Mehmetbey University,  Turkey

Rabia Toprak, an Assistant Professor at Karamanoglu Mehmetbey University, holds a Ph.D. in Electrical-Electronics Engineering from Konya Technical University, where her thesis focused on the detection of cancerous tissues using advanced antenna structures. With extensive research experience, she has participated in multiple national projects, including the development of high-gain microstrip antennas for medical applications and investigations into natural fiber-reinforced composites. Toprak has published numerous articles in international refereed journals, contributing to advancements in antenna design for cancer detection and electromagnetic field studies. Her teaching contributions span both undergraduate and graduate courses, where she emphasizes the principles of electromagnetics. Rabia Toprak’s dedication to innovative research and her significant impact on the fields of telecommunications and biomedical engineering make her a highly suitable candidate for the Research for Best Researcher Award, recognizing her contributions to academia and her commitment to improving health outcomes through technology.

Profile

Professional Experience

Rabia Toprak has built a solid academic career in the field of electrical-electronic engineering, specializing in telecommunications. She currently holds the position of Assistant Professor at Karamanoglu Mehmetbey University, having previously served as a research assistant in the same department from 2013 to 2023. Her long-standing affiliation with the academic community highlights her commitment to both teaching and research. Toprak’s experience includes leadership roles in various scientific projects, particularly those focusing on antenna designs for medical applications, further showcasing her expertise in applied electromagnetics.

Research Interests

Rabia Toprak’s research interests lie at the intersection of electrical engineering and biomedical applications, particularly in the design and implementation of microstrip antennas for medical diagnostics. Her doctoral work focused on the detection of cancerous tissues using high-gain microstrip and horn antenna structures, showcasing her commitment to advancing healthcare technologies. Toprak has contributed to various projects investigating the electrical properties of pathological tissues and has designed microstrip antennas for detecting cardiovascular conditions. Additionally, her work includes the development of natural fiber-reinforced epoxy/polymer-based hybrid composites for antenna applications, reflecting her interest in sustainable materials. With numerous publications in reputable journals, Toprak continues to explore innovative solutions for improving diagnostic methods in medicine, making significant contributions to both engineering and healthcare fields. Her ongoing projects include research on the effects of antenna designs on breast and colon tissue samples, further establishing her expertise in medical engineering.

Research Skills

Rabia Toprak has demonstrated exceptional research skills throughout her academic and professional career. As an Assistant Professor in the Department of Electrical-Electronic Engineering at Karamanoğlu Mehmetbey University, she has actively engaged in numerous research projects focused on innovative applications of microstrip antennas for medical diagnostics. Her expertise encompasses the design and implementation of antennas for detecting cancerous tissues and cardiovascular conditions, showcasing her proficiency in both theoretical and practical aspects of electromagnetic engineering. Toprak’s research is underpinned by her ability to conduct comprehensive literature reviews, design experimental setups, and analyze complex data. She has published multiple articles in esteemed international journals, reflecting her commitment to advancing knowledge in her field. Additionally, her involvement in collaborative research projects, such as the detection of cancer tissues and the design of hybrid composite substrates, highlights her strong teamwork and project management capabilities. Overall, Rabia Toprak’s research skills position her as a leading figure in her area of expertise.

Awards and Honors

Rabia Toprak, Assistant Professor at Karamanoglu Mehmetbey University, has garnered notable recognition for her innovative research in the field of electrical and electronic engineering. Her pivotal contributions include significant advancements in microstrip antenna technology, particularly in applications related to cancer detection and cardiovascular monitoring. In 2022, she received a prestigious grant from Higher Education Institutions for her project on the detection of cancerous tissues, highlighting her leadership in national research initiatives. Additionally, her work has been featured in several high-impact international journals, showcasing her commitment to advancing scientific knowledge. Toprak’s presentations at various international conferences have further solidified her reputation as a leading researcher in her field. Her dedication to education is evident in her teaching roles, where she inspires the next generation of engineers. These accolades reflect her exceptional contributions to both academia and the scientific community, establishing her as a prominent figure in engineering research.

Conclusion 

Rabia Toprak is a strong candidate for the Research for Best Researcher Award due to her significant contributions to the field of electrical and electronic engineering, particularly in medical applications. With a doctoral thesis focusing on the detection of cancerous tissues using advanced microstrip and horn antenna structures, she has demonstrated a commitment to innovative research with practical implications. Her role in various national scientific projects, such as the investigation of electrical properties of pathological tissues and the development of natural fiber-reinforced hybrid composites, underscores her multidisciplinary approach and collaboration within the scientific community. Furthermore, her numerous publications in reputable international journals highlight her ongoing dedication to advancing knowledge in her field. Rabia’s expertise, research impact, and teaching contributions at Karamanoglu Mehmetbey University reflect her commitment to excellence and innovation in research, making her an ideal candidate for this prestigious award.

Publication Top Notes

  • An approach to determine pathological breast tissue samples with free-space measurement method at 24 GHz
    • Authors: Rabia Toprak, Seyfettin Sinan Gultekin, Ahmet Kayabasi, Zeliha Esin Celik, Fatma Hicret Tekin, Dilek Uzer
    • Year: 2024
    • Citations: 0 (as it is a recent publication)
  • Comparison of Far Field and Near Field Values of Skin Tissue Measured Using Microstrip Antenna Structure
    • Authors: Rabia Toprak, Seyfettin Sinan Gultekin, Dilek Uzer
    • Year: 2022
    • Citations: 1
  • Investigation of Gain Enhancement in Microstrip Antenna Structure in Pathological Tissue Samples
    • Authors: Rabia Toprak, Seyfettin Sinan Gultekin, Dilek Uzer
    • Year: 2021
    • Citations: 2
  • Patolojik Doku Örneklerinde Mikroşerit Anten Yapısında S-Parametrelerine Ait Normalizasyon Değerlerinin İncelenmesi
    • Authors: Rabia Toprak, Seyfettin Sinan Gultekin, Dilek Uzer
    • Year: 2021
    • Citations: 0 (as it is a recent publication)
  • Determination of Cardiovascular Occlusion with Microstrip Antennas
    • Authors: H. Uyanik, D. Uzer, Rabia Toprak, Seyfettin Sinan Gultekin
    • Year: 2020
    • Citations: 3
  • Kanser Hastalığı Tespitine Yönelik ISM Bandında Çalışan Mikroşerit Yama Yapılı İki Antenin Elektromanyetik Alan ve Saçılma Parametreleri Verilerinin Değerlendirilmesi ve Kıyaslanması
    • Authors: Rabia Toprak, Seyfettin Sinan Gultekin, Dilek Uzer
    • Year: 2020
    • Citations: 0 (as it is a recent publication)
  • Microstrip antenna design with circular patch for skin cancer detection
    • Authors: Rabia Toprak, Y. Ünlü, Seyfettin Sinan Gultekin, Dilek Uzer
    • Year: 2019
    • Citations: 5
  • Modeling congestion of vessel on rectangular microstrip antenna and evaluating electromagnetic signals
    • Authors: Rabia Toprak, Seyfettin Sinan Gultekin, Dilek Uzer
    • Year: 2017
    • Citations: 0 (as it is a recent publication)
  • A Microstrip Patch Antenna Design for Breast Cancer Detection
    • Authors: Rabia Caliskan, Seyfettin Sinan Gultekin, Dilek Uzer, Ozgur Dundar
    • Year: 2015
    • Citations: 7

NIDAL EL BIYARI | Engineering | Women Researcher Award

Dr. NIDAL EL BIYARI | Engineering | Women Researcher Award

PhD student, EUROMED UNIVERSITY OF FEZ, MOROCCO

Dr. Nidal El-Biyari, a PhD student in Mechatronics Engineering at the Euromed University of Fez, is a strong candidate for the Women Best Researcher Award. Her thesis on designing an opto-fluidic biosensor for breast cancer diagnosis demonstrates her commitment to addressing critical healthcare challenges. Dr. El-Biyari has published significant research in top-tier journals, showcasing her innovative approach to biosensing technologies. With practical experience gained from internships and engineering roles, she has developed strong skills in CAD, robotics, and project management. Her teaching experience at the Euromed Polytechnic School reflects her ability to mentor and inspire future engineers. Additionally, her active involvement in organizing academic events and contributions to the UEMF Student Times highlight her dedication to fostering a supportive research community. Overall, Dr. El-Biyari’s impressive achievements and unwavering commitment to advancing engineering make her a deserving recipient of the Women Best Researcher Award.

Profile

Orcid

Education 

Dr. Nidal El-Biyari is currently a PhD student specializing in Mechatronics Engineering at the Euromed University of Fez, where she is focused on developing an opto-fluidic biosensor for breast cancer diagnosis and monitoring. She has a solid educational foundation, having earned her engineering degree in Mechatronics from the Faculty of Science and Technology of Fes, Morocco. Throughout her academic career, Dr. El-Biyari has demonstrated a strong commitment to her studies, completing multiple years in the State Engineer cycle in Mechatronics. She also holds a degree in Mathematics, Computer Science, and Physics, further enhancing her technical proficiency. Her academic journey has been marked by excellence, evident in her achievements and contributions to research in advanced biosensing technologies. Dr. El-Biyari’s diverse educational background and ongoing research efforts position her as a promising leader in her field, contributing significantly to the advancement of medical technologies.

Professional Experiences

Dr. Nidal El-Biyari has cultivated a robust professional foundation in engineering, primarily within the field of mechatronics. She served as an engineer at Floquet Monopole Industrie, where she focused on improving CAD designs and enhancing the functionality of industrial machinery. Her role as an engineer assistant intern at Lesaffre Fes involved working on the HDA 75 separator machine, further sharpening her practical engineering skills. Additionally, her internship at CBGN allowed her to gain insights into the operational principles of various machines in a production environment. Dr. El-Biyari has also demonstrated her commitment to education through her teaching experience at the Euromed Polytechnic School, where she supervised and mentored students in subjects like geometric optics and fluid mechanics. This diverse array of experiences highlights her technical proficiency and dedication to both research and mentoring, making her a valuable asset in any engineering or academic setting.

Research Interests

Dr. Nidal El-Biyari’s research interests are deeply rooted in the development of cutting-edge technologies for healthcare applications, with a focus on biosensing and microfluidic systems. Her primary area of research revolves around the design, modeling, and production of opto-fluidic biosensors, specifically aimed at improving the early diagnosis and monitoring of breast cancer. Additionally, Dr. El-Biyari is passionate about integrating 3D printing technologies with biosensor design, advancing the field of additive manufacturing for biomedical applications. Her work also explores surface plasmon resonance (SPR) biosensors, enhancing their performance for highly sensitive diagnostic tools. Beyond healthcare, she is interested in the intersection of robotics, optics, and mechatronics, particularly in creating automated systems that optimize precision and efficiency. Through her research, Dr. El-Biyari aims to develop innovative solutions that address critical challenges in medical diagnostics, demonstrating a commitment to improving both healthcare technologies and patient outcomes.

 

Research Skills

Dr. Nidal El-Biyari possesses a diverse array of research skills that make her a standout candidate for the Women Best Researcher Award. Her expertise in designing and modeling opto-fluidic biosensors showcases her proficiency in advanced engineering concepts, particularly in biosensing technologies. With a strong foundation in 3D printing, she applies additive manufacturing techniques to enhance the quality of microfluidic chip fabrication. Dr. El-Biyari is adept in utilizing software such as CATIA V5 and SolidWorks for computer-aided design, as well as MATLAB for data analysis and simulations. Her familiarity with surface plasmon resonance (SPR) biosensing reflects her capability in optical engineering, allowing her to explore innovative sensing solutions for medical diagnostics. Moreover, her participation in international conferences and her published works demonstrate her ability to effectively communicate research findings and collaborate with peers in the scientific community. Overall, Dr. El-Biyari’s comprehensive research skills contribute significantly to her ongoing success and impact in her field.

Awards and Honors

Dr. Nidal El-Biyari has received significant recognition for her groundbreaking research in mechatronics and biosensor technology. Her work on developing an opto-fluidic biosensor for breast cancer detection has been presented at renowned international conferences, including the International Conference on Advanced Functional Materials for Optics and the Fifth International Conference on Materials and Environmental Science. She has co-authored several high-impact publications, including in journals like Optical and Quantum Electronics and Sensors International. Dr. El-Biyari was also a finalist in the ENJOYEERING JUNIOR competition, where she showcased her expertise in robotics and engineering design. Her leadership and innovation were further acknowledged through her role in organizing the USMBA FSTF Enterprises Forum and contributing to the editorial committee of the UEMF Student Times. These accolades reflect her dedication to advancing scientific knowledge and her contributions to both research and the academic community.

Conclusion

Overall, Dr. Nidal El-Biyari is an exemplary candidate for the Women Best Researcher Award. Her academic achievements, innovative research contributions, extensive professional experience, and active community involvement collectively demonstrate her exceptional capabilities and commitment to advancing the field of mechatronics engineering. Recognizing her efforts with this award would not only honor her achievements but also inspire future generations of women in research.

Publication Top Notes

Title: Plasmon Induced Transparency and Waveguide Mode Based Optical Biosensor for Self-Referencing Sensing
Journal: Sensors International
Year: 2024
DOI: 10.1016/j.sintl.2024.100283
Contributors: Nidal El Biyari, Ghita Zaz, Latifa Fakri Bouchet, Mohssin Zekriti
Citations: To be determined (as the article was published in 2024, citation count may not be available yet).

FİLİZ YANGILAR | Engineering | Best Researcher Award

Assoc Prof Dr. FİLİZ YANGILAR | Engineering | Best Researcher Award

Assoc Prof Dr, Erzincan Binali Yıldırım University , Turkey

Dr. Filiz Yangılar is an Associate Professor at Erzincan Binali Yıldırım University, specializing in Nutrition and Dietetics. She completed her Bachelor’s in Food Engineering in 2000 and earned her Master’s and Ph.D. in Food Engineering from Atatürk University in 2004 and 2010, respectively. Her research focuses on dairy products, probiotics, and food quality assessment, with a notable thesis on the maturation period of white cheese using different probiotic cultures. Dr. Yangılar has supervised numerous graduate theses and has been involved in various national scientific research projects, contributing significantly to her field. She has held several administrative roles, including Department Head and Institute Director. Recognized for her contributions, she has received multiple awards, including those from Erzincan Binali Yıldırım University. Dr. Yangılar’s dedication to research and education highlights her impact on the advancement of nutrition science in Turkey. 🥗📚✨

Profile:

Education

Dr. Filiz Yangılar completed her Bachelor’s degree in Food Engineering at Atatürk University in 2000. She pursued her Master’s degree in Food Engineering, also at Atatürk University, where she graduated in 2004 with a thesis on the production of local cheeses and their microbiological, physical, and chemical properties. She continued her academic journey at Atatürk University, earning her Ph.D. in Food Engineering in 2010, focusing on the quality criteria of white cheese produced with different probiotic cultures. Dr. Yangılar has since become a notable academic in the field of nutrition and dietetics, currently serving as an Associate Professor at Erzincan Binali Yıldırım University. Her extensive educational background is complemented by various leadership roles within her department, showcasing her commitment to advancing research and education in food sciences.

Professional Experience

Dr. Filiz Yangılar is an accomplished Associate Professor at Erzincan Binali Yıldırım University, specializing in Nutrition and Dietetics. With a solid educational background, she earned her Ph.D. in Food Engineering from Atatürk University in 2010, focusing on the maturation period of probiotic cheese. Dr. Yangılar has held various academic positions, including Doctor Lecturer at both Erzincan and Ardahan Universities, where she has significantly contributed to the development of nutrition programs. She has supervised numerous master’s theses, addressing topics such as plant-based formulations and nutritional needs post-disasters. Dr. Yangılar is actively involved in national research projects, examining the quality characteristics of traditional and innovative food products. Additionally, she has served in various administrative roles, including as the Director of the Health Sciences Institute and the Head of the Nutrition and Dietetics Department. Her commitment to advancing food science and nutrition has earned her several awards for research and academic excellence.

Research Skills

Dr. Filiz Yangılar, an accomplished associate professor in the Department of Nutrition and Dietetics at Erzincan Binali Yıldırım University, possesses extensive research skills in food engineering and nutrition. Her expertise includes investigating the quality criteria of various dairy products, particularly focusing on the microbiological, physical, chemical, and sensory properties of traditional cheeses. Dr. Yangılar has successfully led multiple research projects on probiotic bacteria and their application in dairy production, contributing valuable insights to the field. Additionally, she has supervised numerous master’s theses, fostering new research in areas such as plant-based nutrition and functional foods. Her involvement in national scientific research projects further demonstrates her ability to collaborate and innovate within her discipline. With a strong publication record and recognition through various awards, Dr. Yangılar continues to advance research in nutritional science and food quality, emphasizing the importance of healthful dietary practices.

Award and Recognition

Dr. Filiz Yangılar, a prominent associate professor at Erzincan Binali Yıldırım University, has made significant contributions to the field of nutrition and dietetics, particularly in food engineering. She earned her PhD from Atatürk University, focusing on the quality characteristics of various dairy products, showcasing her expertise in food technology. Dr. Yangılar has been recognized for her innovative research through multiple awards, including the 2024 AR-GE Project Market award and the Academic Science, Art, and Sports Award from her university. Her projects on probiotics and functional food formulations have garnered national attention, reflecting her commitment to advancing food science. Additionally, she serves in various academic leadership roles, including as the director of the Health Sciences Institute. Dr. Yangılar’s dedication to teaching and research continues to inspire students and colleagues alike, establishing her as a respected figure in the academic community. 🏆👩‍🔬🥇

Conclusion

Dr. Filiz Yangılar is a highly qualified candidate for the Research for Best Researcher Award. Her extensive experience, strong research contributions, and leadership roles position her as a significant figure in the field of nutrition and food engineering. By focusing on international collaboration and diversifying her research topics, she could further enhance her impact and recognition in the global research community. Overall, Dr. Yangılar embodies the qualities of a leading researcher and would be a deserving recipient of this award. 🌟📚🏆

Publication Top Notes

  • Title: As a potentially functional food: Goats’ milk and products
    Authors: F Yangilar
    Journal: Journal of Food and Nutrition Research
    Year: 2013
    Volume: 1(4), pp. 68-81
    Citations: 197
  • Title: The application of dietary fibre in food industry: structural features, effects on health and definition, obtaining and analysis of dietary fibre: a review
    Authors: F Yangilar
    Journal: Journal of Food and Nutrition Research
    Year: 2013
    Volume: 1(3), pp. 13-23
    Citations: 191
  • Title: Pullulan: Production and usage in food industry
    Authors: P Oğuzhan, F Yangilar
    Journal: African Journal of Food Science and Technology
    Year: 2013
    Volume: 4(3), pp. 2141-5455
    Citations: 98*
  • Title: Effects of green banana flour on the physical, chemical and sensory properties of ice cream
    Authors: F Yangilar
    Journal: Food Technology and Biotechnology
    Year: 2015
    Volume: 53(3), pp. 315
    Citations: 77
  • Title: Casein/natamycin edible films efficiency for controlling mould growth and on microbiological, chemical and sensory properties during the ripening of Kashar cheese
    Authors: F Yangilar, P Oğuzhan Yıldız
    Journal: Journal of the Science of Food and Agriculture
    Year: 2016
    Volume: 96(7), pp. 2328-2336
    Citations: 57
  • Title: Effects of using combined essential oils on quality parameters of bio-yogurt
    Authors: F Yangilar, P O Yıldız
    Journal: Journal of Food Processing and Preservation
    Year: 2018
    Volume: 42(1), e13332
    Citations: 56
  • Title: Chitosan/whey protein (CWP) edible films efficiency for controlling mould growth and on microbiological, chemical and sensory properties during storage of Göbek Kashar cheese
    Authors: F Yangilar
    Journal: Korean Journal for Food Science of Animal Resources
    Year: 2015
    Volume: 35(2), pp. 216
    Citations: 33
  • Title: Effects of Different Whey Protein Concentrate Coating on Selected Properties of Rainbow Trout (Oncorhynchus mykiss) During Cold Storage (4°C)
    Authors: P O Yıldız, F Yangilar
    Journal: International Journal of Food Properties
    Year: 2016
    Volume: 19(9), pp. 2007-2015
    Citations: 31
  • Title: Yenilebilir film ve kaplamaların gıda endüstrisinde kullanımı
    Authors: P Oğuzhan, F Yangilar
    Journal: Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    Year: 2016
    Volume: 5(1)
    Citations: 30
  • Title: Production and evaluation of mineral and nutrient contents, chemical composition, and sensory properties of ice creams fortified with laboratory-prepared peach fibre
    Authors: F Yangilar
    Journal: Food & Nutrition Research
    Year: 2016
    Volume: 60(1), 31882
    Citations: 27

 

Walid AWADI | Engineering | Best Scholar Award

Mr. Walid AWADI | Engineering | Best Scholar Award 

Professor at Polytechnic Institute of Leiria , Portugal .

Walid Awadi is a mechanical engineering professional with extensive experience in both academia and industry. He is currently a Maitre Technologue in Mechanical Engineering at ISET Jendouba and previously served as the Director of the Higher Institute of Technological Studies in Jendouba from 2010 to 2017. Awadi holds a Master’s degree in Mechanical Engineering and is pursuing a Ph.D. focusing on the characterization and optimization of thermoplastic polymer welding. He has participated in various training programs and certifications, including SolidWorks, technological transfer, and risk prevention. His career includes contributions to numerous engineering projects, such as the design and fabrication of specialized machinery. Additionally, Awadi has been involved in international collaborations and training sessions in countries such as Spain, France, and Belgium. His work is characterized by a strong emphasis on technological innovation, applied research, and educational development.

Profile

Education

Walid Awadi holds a strong educational background in mechanical engineering, beginning with his Baccalaureate in Technical Studies from Lycée Technique 9 Avril in Jendouba, Tunisia, obtained in 1995 with honors. He pursued his higher education at the National Engineering School of Monastir (ENIM), where he earned his National Engineering Diploma in Mechanical Engineering in 2000. His final project focused on the design and fabrication of a PVC-U pipe grooving machine. Building on this, he completed a Master’s degree in Mechanical Engineering at ENIM from 2000 to 2002, specializing in the numerical simulation of micro-indentation tests. Since 2018, Walid has been pursuing a Ph.D. in Mechanical Engineering, focusing on the study and characterization of thermoplastic polymer welding using thermo-mechanical processes, under the guidance of Dr. Mondher Zidi (ENIM) and Dr. Redouane Zitoune (Université Toulouse, France). His educational journey reflects a deep commitment to advancing his expertise in mechanical engineering.

Professional Experience

Walid Awadi is a seasoned professional with extensive experience in mechanical engineering and academia. He holds the position of Maître Technologue in Mechanical Engineering at the Higher Institute of Technological Studies (ISET) in Jendouba, Tunisia. From August 2010 to December 2017, he served as the Director of ISET Jendouba, where he played a crucial role in enhancing the institution’s academic programs and infrastructure. Throughout his career, Walid has been deeply involved in both teaching and research, with a focus on mechanical engineering, particularly in thermomechanical processes and polymer welding. His professional journey is marked by his contributions to curriculum development, particularly in adopting competency-based approaches, and his active participation in various international projects and training programs. Walid’s commitment to advancing mechanical engineering education and research has earned him recognition within academic and professional circles, making him a respected figure in his field.

Research Interest

Walid Awadi’s research interests are deeply rooted in mechanical engineering, with a particular focus on the study and characterization of thermoplastic polymer welding. His work involves the application of thermomechanical processes to optimize joining parameters, a field critical for enhancing the durability and functionality of engineering materials. Additionally, Awadi is engaged in numerical simulation studies, especially in micro-indentation testing, which further highlights his commitment to precision in material analysis. His research extends to innovative design and fabrication projects, including the development of specialized machinery for PVC-U tube grooving. Awadi’s academic pursuits are complemented by his involvement in advanced manufacturing technologies, such as SolidWorks, where he holds multiple certifications. His research contributions are pivotal in advancing knowledge in mechanical engineering, particularly in the areas of material characterization, process optimization, and the integration of modern simulation tools to enhance engineering outcomes.

Research Skills

Walid Awadi possesses a robust set of research skills, particularly in the field of mechanical engineering. His expertise spans thermoplastic welding, numerical simulation, and mechanical design, with a strong focus on optimizing and characterizing engineering processes. Awadi’s ability to conduct complex simulations, such as micro-indentation testing, demonstrates his proficiency in advanced analytical tools. His experience in SolidWorks, CSWA, and CSWP certifications further highlights his capabilities in computer-aided design and mechanical modeling. Additionally, Awadi has a deep understanding of technology transfer, intellectual property management, and risk prevention in industrial settings, as evidenced by his extensive training and certifications in these areas. His participation in various international workshops and collaborative projects underscores his collaborative and innovative approach to research. Overall, Awadi’s research skills are a blend of theoretical knowledge and practical expertise, making him a versatile researcher capable of contributing significantly to advancements in mechanical engineering.

Awards and Recognition

Awadi’s achievements in education and training, including certifications in SolidWorks and his involvement in various international training programs, are commendable. His role as Director of ISET Jendouba also highlights his leadership and recognition in the academic community.

Conclusion

Walid Awadi is a dedicated mechanical engineer with a strong focus on applied research, international collaboration, and education. While his work primarily centers around mechanical engineering, his contributions to the field, coupled with his leadership in academia, make him a commendable candidate for a research award, particularly in categories related to engineering and technology. However, if the award emphasizes environmental health, parasitology, or infectious diseases, other candidates with a stronger focus in those areas might be more suitable.