YILIN LI | Chemical Engineering | Best Researcher Award

Dr. YILIN LI | Chemical Engineering | Best Researcher Award

Senior scientist from Heilongjiang Feihe Dairy Co., Ltd, China

Dr. Yilin Li is a highly accomplished researcher specializing in food sensory science with nearly 7 years of experience in both academic and commercial settings. Currently, she serves as the Sensory Lead at Heilongjiang Feihe Dairy Co., Ltd in China, where her work integrates consumer sensory testing techniques to guide research and development in new product creation. Additionally, Dr. Li has contributed significantly to the application of molecular sensory technology, developing quantitative models to monitor flavor compounds in milk powder during its shelf life. Her research has been widely recognized in the field, and her scientific contributions have been published in prestigious journals such as the Journal of Food Science and Food Chemistry. As a committee member of the Sensory Quality and Consumer Insights Standardization Technical Committee and the National Sensory Analysis Standardization Technical Committee, Dr. Li also plays an instrumental role in shaping industry standards.

Her research interests primarily focus on sensory evaluation, flavor perception, and consumer preferences, specifically in relation to food products such as chocolate and milk-based goods. Dr. Li’s work has profound implications for the food industry, where she bridges the gap between scientific discovery and commercial product development.

Professional Profile

Education

Dr. Yilin Li’s educational background reflects a strong foundation in sensory science and food technology. She holds a Ph.D. with research focusing on the impact of nutrient addition on the sensory and oral flavor perception of chocolate by consumers. This research explored how different ingredients in chocolate affect the consumer’s flavor experience, offering valuable insights into how food formulations can be improved to align with consumer preferences.

In addition to her Ph.D., Dr. Li completed her Master’s degree with a specialization in Microencapsulation and Sensory Science. Her education has equipped her with the scientific expertise needed to pursue innovative research in the areas of food sensory science, consumer behavior, and food quality. Her academic training has also led to substantial contributions to the understanding of sensory dynamics in the food industry, particularly regarding how storage conditions and ingredient modifications affect food perceptions.

Dr. Li’s advanced studies, coupled with her practical industry experience, enable her to approach research with a well-rounded perspective, combining theoretical knowledge with hands-on application.

Professional Experience

Dr. Yilin Li has nearly 7 years of professional experience in food sensory science research and 3 years of commercial practice in the sensory science field. She currently holds the position of Sensory Lead at Heilongjiang Feihe Dairy Co., Ltd in China. In this role, she is responsible for overseeing the sensory evaluation of food products, guiding the R&D department in creating new products based on consumer sensory feedback. Dr. Li applies advanced sensory testing techniques to ensure that the flavors, textures, and overall consumer preferences of products meet industry standards.

Her commercial experience also includes the application of molecular sensory technology, where she developed a quantitative model for the flavor compounds in milk powder during its shelf life. This model has had significant practical implications, helping the quality control department at Feihe Dairy maintain product consistency and quality over time.

Dr. Li’s research has always focused on bridging the gap between academic research and real-world commercial application, demonstrating her ability to contribute to both the scientific community and the food industry in meaningful ways.

Research Interests

Dr. Yilin Li’s research interests are centered on sensory science, with a specific focus on consumer preferences and the perception of food flavors. Her work investigates how sensory factors such as taste, smell, and texture affect the consumer experience of food products. One of her key research areas is exploring how different ingredients and nutrient additions can alter the flavor perception of chocolate, a project that has applications in the formulation of better-tasting, more consumer-friendly products.

In addition to chocolate, Dr. Li’s work extends to other food products, including infant formula and milk-based powders. She has conducted extensive research on the sensory evaluation of long-term storage conditions for products such as vacuum-packed corn and infant formula, monitoring how volatile compounds and flavor profiles evolve during storage.

By applying molecular sensory technology, Dr. Li’s research explores how to better predict and control the sensory quality of food over time, with a particular interest in developing models that can be used in both industrial and consumer-facing applications. Her research bridges the gap between food science and consumer behavior, focusing on creating products that align with consumer expectations and preferences.

Research Skills

Dr. Yilin Li possesses advanced research skills in sensory science, consumer behavior analysis, and food quality evaluation. Her expertise includes designing and conducting sensory tests to assess consumer preferences and product acceptability, particularly in the context of flavor and texture. She is proficient in using molecular sensory technology to monitor volatile compounds and flavor changes in food products over time, applying these methods to improve product quality and consistency.

Her ability to integrate both qualitative and quantitative approaches to sensory evaluation allows her to develop predictive models for food flavor compounds, which have been successfully applied in commercial settings. Additionally, Dr. Li is skilled in utilizing techniques such as gas chromatography-olfactometry-mass spectrometry (GC-O-MS) for sensory evaluation, providing detailed insights into the sensory drivers of consumer preferences.

Dr. Li also has a solid foundation in scientific writing and publishing, having authored several articles in high-impact journals. Her research skills extend beyond technical expertise to include leadership and collaboration, particularly in her work with standardization committees that shape the practices and guidelines of sensory science.

Awards and Honors

Dr. Yilin Li has earned recognition in both the academic and commercial sectors for her contributions to food sensory science. Her work has been published in top-tier journals, where it has garnered attention for its innovative approach to sensory evaluation and its impact on food product development. Dr. Li’s commitment to advancing the field has been recognized by her involvement in several key standardization committees, including the Sensory Quality and Consumer Insights Standardization Technical Committee and the National Sensory Analysis Standardization Technical Committee (SAC/TC566).

These roles have not only enhanced her leadership within the industry but also showcased her dedication to improving the standards of sensory science. While specific awards and honors are not listed, her active participation in shaping sensory science practices and her contributions to product development at Feihe Dairy further highlight her recognition within the field.

Conclusion

Dr. Yilin Li stands out as a leading figure in food sensory science, combining a robust academic background with practical, industry-driven research. Her work, which spans both academic theory and commercial application, has made a lasting impact on food product development, particularly in the areas of sensory evaluation, flavor perception, and consumer preferences. Through her innovative use of molecular sensory technology and her contributions to the development of predictive models for food quality, Dr. Li has significantly advanced the understanding of how sensory factors affect food enjoyment. Her leadership roles in industry-standardization committees further emphasize her influence in shaping the future of sensory science practices. While her work is already highly impactful, there is potential for Dr. Li to expand her research scope and enhance collaboration with interdisciplinary teams to further advance the field. Overall, Dr. Li’s dedication to improving both the scientific understanding and commercial applications of sensory science makes her an outstanding candidate for the Best Researcher Award.

Publications Top Notes

  1. Title: Organic Functional Groups and Their Substitution Sites in Natural Flavonoids: A Review on Their Contributions to Antioxidant, Anti‐Inflammatory, and Analgesic Capabilities
    Journal: Food Science & Nutrition
    Year: 2025
    DOI: 10.1002/fsn3.70191
    Authors: Jingxian An, Zhipeng Zhang, Anwen Jin, Muqiu Tan, Shilong Jiang, Yilin Li

  2. Title: Sensory Insights in Aging: Exploring the Impact on Improving Dietary Through Sensory Enhancement
    Journal: Food Science & Nutrition
    Year: 2025
    DOI: 10.1002/fsn3.70074
    Authors: Yilin Li, Shuying Wang, Lanxin Zhang, Qianhui Dong, Xinyu Hu, Yuxin Yang, Ting Liu, Baopei Wu, Bingqi Shan, Chuncao Yin et al.

  3. Title: Changes of the Volatile Compounds and Odors in One-Stage and Three-Stage Infant Formulas During Their Secondary Shelf-Life
    Journal: Current Research in Food Science
    Year: 2024
    DOI: 10.1016/j.crfs.2024.100693
    Authors: Yilin Li, Ruotong Li, Xinyu Hu, Jiani Liu, Guirong Liu, Lipeng Gao, Yongjiu Zhang, Houyin Wang, Baoqing Zhu

  4. Title: Monitoring Volatile Changes in Infant Formula During Long-Term Storage at Room Temperature
    Journal: Current Research in Food Science
    Year: 2023
    DOI: 10.1016/j.crfs.2023.100645
    Authors: Yilin Li, Houyin Wang, Ruotong Li, Guirong Liu, Kui Zhong, Lipeng Gao, Baoqing Zhu, Anwen Jin, Bolin Shi, Lei Zhao et al.

  5. Title: Oral Processing Preference Affects Flavor Perception in Dark Chocolate with Added Ingredients
    Journal: Journal of Food Science
    Year: 2021
    DOI: 10.1111/1750-3841.15557
    Authors: Yilin Li, Bryony James

Jaemin Baek | Engineering | Best Researcher Award

Prof. Jaemin Baek | Engineering | Best Researcher Award

Professor at Gangneung-Wonju National University, South Korea

Prof. Jaemin Baek is a distinguished researcher and academician specializing in robotics, control theory, and mechatronics. He earned his B.S. degree in Mechanical Engineering from Korea University in 2012 and later completed his Ph.D. in IT Engineering through a joint M.S.-Ph.D. program at Pohang University of Science and Technology (POSTECH) in 2018. His doctoral research focused on time-delayed control schemes and their application to robotic systems. From 2018 to 2020, he served as a senior researcher at the Agency for Defense Development (ADD) in Daejeon, South Korea, where he worked on advanced control systems. Since 2020, he has been an Associate Professor in the Department of Mechanical Engineering at Gangneung-Wonju National University (GWNU). His expertise extends to adaptive and robust control, robot manipulator control, wearable robotics, mechatronics, and synthetic aperture radar (SAR) imaging. Prof. Baek has made significant contributions to academia through numerous high-impact journal articles and conference papers. His research is instrumental in developing advanced control methodologies for robotic and autonomous systems. With a passion for innovation and engineering excellence, he continues to drive advancements in control systems and robotics, contributing to both theoretical and applied aspects of these fields.

Professional Profile

Education

Prof. Jaemin Baek holds a Ph.D. in IT Engineering from Pohang University of Science and Technology (POSTECH), which he completed in 2018. His doctoral research focused on robotics, control theory, robot control, mechatronics, and artificial intelligence, culminating in his thesis titled “A Study on Time-delayed Control Schemes and Its Application to Robotic Systems.” His graduate studies emphasized adaptive control strategies and their real-world applications in robotic manipulation and autonomous systems. Prior to this, he earned his B.S. degree in Mechanical Engineering from Korea University in 2012, where he gained a strong foundation in advanced mechanical engineering principles. His undergraduate studies provided him with critical insights into mechanical design, system dynamics, and automation, forming the basis for his later work in robotics. His multidisciplinary academic background equips him with a comprehensive understanding of both the theoretical and practical aspects of control engineering. His rigorous training at two of South Korea’s top institutions has shaped his expertise in designing sophisticated robotic control systems. Through continuous research and academic contributions, Prof. Baek remains committed to pushing the boundaries of innovation in control theory and robotics.

Professional Experience

Prof. Jaemin Baek has an extensive professional background in academia and research. Since 2020, he has served as an Associate Professor in the Department of Mechanical Engineering at Gangneung-Wonju National University (GWNU), where he teaches and conducts research on advanced robotics, control systems, and signal processing. Prior to his current role, he was a Senior Researcher at the Agency for Defense Development (ADD) from 2018 to 2020, where he worked on defense-related control technologies and developed cutting-edge methodologies for autonomous systems. His tenure at ADD provided him with valuable experience in applying theoretical control concepts to practical defense applications. In addition to his academic and research responsibilities, Prof. Baek has contributed to numerous high-impact journal articles, furthering advancements in robotics and control engineering. His professional journey reflects his dedication to bridging the gap between theoretical research and practical implementation. He continues to mentor students, collaborate with industry experts, and contribute to the scientific community through his research in adaptive and robust control, robotic manipulation, and synthetic aperture radar (SAR) imaging. His expertise is highly regarded in both academic and industrial circles, making him a prominent figure in his field.

Research Interests

Prof. Jaemin Baek’s research interests encompass a broad range of topics in robotics and control systems. His primary focus areas include adaptive and robust control, time-delayed control schemes, robot manipulator control, wearable robotics, mechatronics, and synthetic aperture radar (SAR) imaging. He has extensively studied time-delayed control strategies and their applications in robotic systems, leading to the development of novel methodologies that enhance system stability and performance. His work on adaptive sliding-mode control has contributed to improvements in trajectory tracking and precision in robotic manipulators. Additionally, Prof. Baek is involved in research on signal processing for SAR imaging, optimizing radar-based imaging techniques for various applications. His interdisciplinary approach integrates elements of artificial intelligence and machine learning to refine control algorithms and enhance robotic functionality. Through his research, he aims to advance the efficiency and reliability of autonomous and robotic systems in diverse environments. His contributions have been widely recognized in the scientific community, with multiple publications in prestigious journals and conferences. Prof. Baek’s innovative work continues to shape the future of robotics and control engineering, making significant strides in both theoretical development and real-world applications.

Research Skills

Prof. Jaemin Baek possesses a diverse set of research skills that enable him to excel in control engineering and robotics. His expertise in adaptive and robust control design allows him to develop high-precision robotic control systems that function effectively under uncertain conditions. He is proficient in time-delayed control techniques, ensuring improved stability and performance in robotic applications. His skills extend to mechatronics and signal processing, particularly in synthetic aperture radar (SAR) imaging, where he applies advanced computational methods to enhance radar-based imaging systems. Prof. Baek has substantial experience in developing sliding-mode control algorithms, which have been successfully applied to robot manipulators and autonomous systems. Additionally, he has strong analytical skills in mathematical modeling and simulation, utilizing platforms like MATLAB and Simulink for system analysis and control design. His expertise in artificial intelligence and machine learning enables him to optimize control algorithms for enhanced automation. With a strong publication record in high-impact journals, Prof. Baek demonstrates his ability to conduct cutting-edge research and contribute to advancements in his field. His diverse skill set positions him as a leading researcher in robotics and control engineering.

Awards and Honors

Throughout his career, Prof. Jaemin Baek has received several awards and honors in recognition of his contributions to control engineering and robotics. His research on adaptive control, robot manipulator systems, and SAR imaging has earned him accolades from both academic and industry circles. He has been recognized for his high-impact journal publications in IEEE Transactions, Applied Sciences, and other top-tier journals, demonstrating his excellence in research. His contributions to sliding-mode control and time-delayed control methodologies have been widely cited, highlighting their significance in the field. In addition to his academic achievements, he has been invited to present at prestigious international conferences, where he has shared insights into advanced control strategies and robotics applications. His work at the Agency for Defense Development (ADD) also earned him commendations for his contributions to national defense research projects. As an influential figure in robotics and control engineering, Prof. Baek continues to receive recognition for his innovative research, solidifying his reputation as a leading expert in the field. His awards and honors underscore his commitment to advancing technology and engineering excellence.

Conclusion

Prof. Jaemin Baek is a highly accomplished researcher and educator whose contributions to robotics, control engineering, and mechatronics have significantly impacted the field. With a solid academic foundation from Korea University and POSTECH, he has built a career dedicated to advancing adaptive control systems, time-delayed control strategies, and robotic manipulation. His professional experience spans both academia and defense research, demonstrating his ability to apply theoretical innovations to practical applications. His research interests in robotics, artificial intelligence, and SAR imaging have led to groundbreaking developments in control methodologies. His extensive publication record and numerous accolades highlight his influence and expertise. As an Associate Professor at Gangneung-Wonju National University, he continues to mentor students, conduct pioneering research, and contribute to the scientific community. His diverse skill set and interdisciplinary approach make him a driving force in robotics and automation. Prof. Baek’s ongoing work promises to shape the future of intelligent control systems and robotics, ensuring continued advancements in engineering and technology. His dedication to innovation and excellence establishes him as a leading figure in his field, inspiring the next generation of researchers and engineers.

Publications Top Notes

  1. Compressive Sensing-Based Omega-K Algorithm for SAR Focusing”

    • Authors: M. Kang (Minseok), J. Baek (Jaemin)
    • Year: 2025
  2. “Effective Denoising of InSAR Phase Images via Compressive Sensing”

    • Authors: M. Kang (Minseok), J. Baek (Jaemin)
    • Year: 2024
    • Citations: 1
  3. “Dynamic Model Learning and Control of Robot Manipulator Based on Multi-layer Perceptron Neural Network”

    • Authors: S. Shin (Seungcheon), M. Kang (Minseok), J. Baek (Jaemin)
    • Year: 2023

 

 

Meiqi Li | Engineering | Best Researcher Award

Dr. Meiqi Li | Engineering | Best Researcher Award

Engineer at Peking University, China.

Dr. Meiqi Li is a skilled biomedical engineer with a strong focus on cutting-edge imaging technologies. As a Co-Principal Investigator (Co-PI) and Engineer in the Peng Xi Group at the School of Life Sciences, Peking University, she has contributed significantly to the fields of super-resolution microscopy and multi-dimensional live-cell imaging. With several prestigious awards, including teaching accolades and innovation prizes from Peking University, Dr. Li is recognized as an accomplished researcher and educator. Her commitment to advancing knowledge in her field is evident through her leadership in multiple high-impact research projects funded by the National Natural Science Foundation. Dr. Li’s innovative work is positioned to make lasting contributions to biomedical research, particularly in understanding complex cellular structures and dynamics.

Professional Profile

Education

Dr. Li completed her Ph.D. in Biomedical Engineering at Peking University, specializing in super-resolution microscopy and live-cell imaging under the mentorship of the Peng Xi Group. During her Ph.D., she developed expertise in advanced imaging techniques, paving the way for her work in high-resolution cellular imaging. She also holds a Bachelor of Science in Automation from Harbin Institute of Technology, where her research centered on photoacoustic imaging, laying a foundation for her proficiency in engineering and imaging sciences. Her academic background combines rigorous technical training with a focus on real-world applications in life sciences, positioning her for success in the interdisciplinary field of biomedical engineering.

Professional Experience

Since 2022, Dr. Li has held the role of Co-PI and Engineer in the Peng Xi Group at Peking University’s School of Life Sciences. Here, she has been instrumental in managing complex research projects, including the National Natural Science Foundation’s Youth Project and Key Project. In these roles, she oversees the development of advanced imaging technologies and guides research teams in exploring new frontiers in live-cell imaging. Her prior experience includes leading and participating in projects related to photoacoustic imaging, as well as contributing to research that has practical applications for diagnostic and research purposes in cell biology and biomedicine.

Research Interests

Dr. Li’s primary research interests lie in the fields of super-resolution microscopy and multi-dimensional live-cell imaging. She is particularly focused on developing and applying novel imaging techniques to capture the dynamic, three-dimensional structures of living cells. Her goal is to advance biomedical imaging technologies, enabling researchers to view cellular processes at unprecedented spatial and temporal resolutions. Through her work, Dr. Li aims to unlock insights into cellular functions that were previously beyond the reach of conventional imaging tools, with implications for understanding disease mechanisms and developing targeted therapies.

Research Skills

Dr. Li possesses an advanced skill set in various biomedical imaging technologies, particularly in super-resolution microscopy, structured illumination microscopy, and photoacoustic imaging. She is adept in utilizing and refining complex imaging equipment, analyzing multi-dimensional data, and implementing innovative solutions to improve imaging resolution and accuracy. Her technical expertise extends to project management, data interpretation, and scientific writing, enabling her to effectively communicate complex findings. Her strong foundation in automation, gained through her undergraduate education, further complements her imaging skills, allowing her to approach research questions with a unique, interdisciplinary perspective.

Awards and Honors

Throughout her academic and professional career, Dr. Li has received numerous awards that highlight her excellence in research and teaching. Notably, she received the First Prize of the Peking University Innovation in Teaching Application Competition and the Innovation Technology Award. Her teaching prowess was further recognized with awards in the Young Teachers’ Teaching Fundamentals Competition, where she received multiple accolades, including the Best Teaching Demonstration Award. Additionally, Dr. Li has been honored with the Principal Fellowship of Peking University, the Jiaxi Lu Outstanding Graduate Student Award, and the Academic Innovation Prize, among others. These awards reflect her dedication to research, her innovative approach to teaching, and her standing as a respected member of the academic community.

Conclusion

Dr. Meiqi Li is a promising candidate for the Best Researcher Award. Her academic achievements, funded research projects, and numerous accolades reflect her commitment to innovation in life sciences. While she may benefit from additional years of experience in leading large-scale, independent projects, her potential for growth and impact in biomedical engineering is evident. Her pioneering work in cell imaging and microscopy, coupled with her teaching and mentorship success, make her a strong and competitive candidate for this award.

Publication Top  Notes

  • Expanding super-resolution imaging versatility in organisms with multi-confocal image scanning microscopy
    W. Ren†, M. Guan†, Q. Liang†, M. Li*, B. Jin, G. Duan, L. Zhang, X. Ge, H. Xu, Y. Hou, B. Gao, Sodmergen, P. Xi*
    National Science Review, nwae303 (2024).
  • Multi-organelle interactome through 3D fluorescence super-resolution microscopy and deep learning segmentation
    K. Zhanghao†, M. Li†,, X. Chen, W. Liu, T. Li, Y. Wang, F. Su, Z. Wu, C. Shan, J. Wu, Y. Zhang, J. Fu, P. Xi, D. Jin*
    Nature Communications, Third round of review.
  • Multi-resolution analysis enables fidelity-ensured computational super-resolution and denoising for fluorescence microscopy
    Y. Hou, W. Wang, Y. Fu, X. Ge, M. Li*, P. Xi*
    eLight, 4, 14 (2024).
  • Three-dimensional dipole orientation mapping with high temporal-spatial resolution using polarization modulation
    S. Zhong, L. Qiao, X. Ge, X. Xu, Y. Fu, S. Gao, K. Zhanghao, H. Hao, W. Wang, M. Li*, P. Xi*
    PhotoniX, 5, 19 (2024).
  • Fluorescence Lifetime Super-Resolution Imaging Unveils the Dynamic Relationship between Mitochondrial Membrane Potential and Cristae Structure Using the Förster Resonance Energy Transfer Strategy
    F. Peng, X. Ai, J. Sun, X. Ge, M. Li*, P. Xi, B. Gao*
    Analytical Chemistry, 96, 11052-11060 (2024).
  • High-dimensional Super-Resolution Imaging of Heterogeneous Subcellular Lipid Membranes
    K. Zhanghao†, W. Liu†, M. Li†, Z. Wu, X, Wang, X. Chen, C. Shan, H. Wang, X. Chen, Q. Dai, P. Xi, D. Jin
    Nature Communications, 11, 5890 (2020).
  • Structured illumination microscopy using digital micro-mirror device and coherent light source
    M. Li†, Y. Li†, W. Liu, A. Lal, S. Jiang, D. Jin, H. Yang, S. Wang, K. Zhanghao, P. Xi
    Applied Physics Letters, 116 (2020).
  • High-speed autopolarization synchronization modulation three-dimensional structured illumination microscopy
    Y. Li, R. Cao, W. Ren, Y. Fu, H. Y. Hou, S. Zhong, K. Zhanghao, M. Li*, P. Xi*
    Advanced Photonics Nexus, 3, 016001 (2023).
  • Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy
    K. Zhanghao†, X. Chen†, W. Liu, M. Li, Y. Liu, Y. Wang, S. Luo, X. Wang, C. Shan, H. Xie, J. Gao, X. Chen, D. Jin, X. Li, Y. Zhang, Q. Dai, P. Xi
    Nature Communications, 10, 4694 (2019).
    Highlight on Nature Methods (16, 1206 (2019)). DOI: 10.1038/s41592-019-0682-6
  • Visualization of cristae and mtDNA interactions via STED nanoscopy using a low saturation power probe
    W. Ren, X. Ge, M. Li, J. Sun, S. Li, S. Gao, C. Shan, B. Gao, P. Xi
    Light: Science & Applications, 13, 116 (2024).