Yuriy Maletin | Energy | Best Researcher Award

Prof. Yuriy Maletin | Energy | Best Researcher Award

Head of laboratory from Institute for sorption and Problems of Endoecology National Academy of Sciences of Ukraine, Ukraine

Yuriy A. Maletin is an accomplished chemist with over five decades of scientific contributions in inorganic and physical chemistry. Born on January 15, 1949, in Moscow, Russia, he has established a profound legacy in the field of nanosized carbon materials and energy storage systems. Currently serving as Head of the Department of Nanosized Carbon Materials for Energy Storage at the Institute for Sorption and Problems of Endoecology in Kyiv, Ukraine, and as Chief Scientist at Yunasko-Ukraine LLC, he combines academic leadership with industrial innovation. His commitment to advancing science has earned him membership in several prestigious boards and societies, including being a Corresponding Member of the National Academy of Sciences of Ukraine. With over 105 published papers and 35 patents, his work has left a significant mark on scientific and technological development in Ukraine and beyond. Throughout his career, he has held notable leadership roles at various institutions, contributing to both theoretical and applied research. Maletin continues to be active in international scientific dialogue, frequently invited to deliver keynote lectures. His distinguished career embodies a blend of research excellence, innovation, and mentorship that reflects an enduring passion for scientific progress.

Professional Profile

Education

Yuriy A. Maletin pursued his academic journey at some of the most prestigious institutions in the former Soviet Union. He graduated in 1971 with an MSc in Chemistry from the renowned Moscow State University named after M.V. Lomonosov, a leading institution known for producing world-class scientists. Following his graduate studies, he earned a Ph.D. in Inorganic Chemistry from the Institute of General and Inorganic Chemistry in Kiev in 1977. This was followed by his Doctor of Science (Dr. habil.) degree in Physical Chemistry from the Institute of Chemical Physics in Moscow in 1989, marking the peak of academic qualifications in the former USSR and Eastern Europe. These degrees reflect a deep academic foundation in both theoretical and applied chemistry. His education laid the groundwork for his later achievements in research and leadership, particularly in the fields of coordination chemistry, sorption technologies, and nanomaterials for energy storage. His multidisciplinary training provided him with the ability to work at the interface of various scientific domains and effectively lead complex research projects with national and international significance.

Professional Experience

Yuriy A. Maletin’s professional career spans over four decades of continuous engagement in scientific research, academic leadership, and industrial collaboration. He is currently the Head of the Department of Nanosized Carbon Materials for Energy Storage at the Institute for Sorption and Problems of Endoecology, National Academy of Sciences of Ukraine, a position he has held since 2009. Since 2010, he has also served as the Chief Scientist at Yunasko-Ukraine LLC, focusing on advanced energy storage solutions. From 2002 to 2008, he was Head of the Physical Chemistry Department at the National Technical University of Ukraine “KPI.” Prior to that, from 1987 to 2002, he headed the Coordination Chemistry Department at the Institute of General and Inorganic Chemistry. His career also includes serving on national advisory boards in inorganic chemistry and electrochemistry. This diverse experience reflects not only his scientific expertise but also his ability to manage research teams, influence policy, and bridge academia with industry. Through each of these roles, he has contributed significantly to Ukraine’s scientific infrastructure and its positioning within global scientific communities.

Research Interests

Yuriy A. Maletin’s research interests lie primarily in the areas of inorganic chemistry, physical chemistry, and materials science, with a particular emphasis on nanosized carbon materials for energy storage. His early work focused on coordination chemistry and the synthesis of complex compounds, while his later career has evolved toward the design, characterization, and application of materials relevant to energy technologies. He has been at the forefront of research on supercapacitors, batteries, and other energy storage systems, developing novel carbon-based nanostructures that enhance storage efficiency and device longevity. His interest in sorption processes and endoecology further reflects his multidisciplinary approach, addressing both energy needs and environmental challenges. In addition to core chemistry domains, he actively engages in applied sciences and industrial innovation, contributing to the development of practical technologies. His current work continues to explore advanced physical and chemical methods for improving material performance in energy devices, guided by a strong foundation in electrochemistry, thermodynamics, and nanotechnology. His long-standing contributions reflect a career dedicated to pushing the boundaries of material science and contributing to global efforts toward sustainable and efficient energy solutions.

Research Skills

Yuriy A. Maletin possesses a diverse set of research skills that span across multiple disciplines within chemistry and materials science. He is proficient in the synthesis and characterization of inorganic compounds, particularly within coordination and physical chemistry. His expertise includes the design and fabrication of nanosized carbon materials, with applications in energy storage technologies such as batteries and supercapacitors. Maletin has demonstrated strong analytical skills through his work on the physical and chemical behavior of materials, employing various spectroscopic, electrochemical, and thermal analysis methods. He also has significant experience in sorption studies, enabling him to assess environmental interactions and the efficiency of materials in filtration and separation processes. Beyond laboratory skills, he has a strategic mindset for guiding research directions, demonstrated through his leadership in multiple scientific institutions. His patent portfolio underscores a practical orientation in translating theoretical insights into functional applications. Additionally, he has cultivated scientific writing, mentoring, and public speaking abilities through numerous publications and invited lectures. These comprehensive research skills position him as a leader capable of both deep scientific inquiry and high-impact innovation.

Awards and Honors

Yuriy A. Maletin has received numerous awards and honors in recognition of his outstanding scientific contributions. Among his most prestigious accolades is his election as a Corresponding Member of the National Academy of Sciences of Ukraine in 2021, acknowledging his lifetime achievements and leadership in chemical sciences. Earlier in his career, he was a Fellow of the Royal Society of Chemistry (United Kingdom) from 1996 to 2014, a testament to his international recognition and influence. He has also served on national and international advisory boards, including the Advisory Board of Inorganic Chemistry Communications (1998–2002), which highlights his authoritative role in the global research community. His consistent presence in high-level scientific committees—such as the All-Ukrainian Boards on Inorganic Chemistry and Electrochemistry—demonstrates his long-standing impact on the development of Ukraine’s scientific ecosystem. With over 105 peer-reviewed articles and 35 patents and applications, Maletin’s research has not only advanced theoretical understanding but also led to practical applications, earning both academic and industrial accolades. These honors reflect a career marked by excellence, influence, and a dedication to scientific advancement at both national and global levels.

Conclusion

Yuriy A. Maletin’s career represents a rare blend of academic brilliance, research innovation, and scientific leadership. His journey from Moscow State University to leading institutions in Ukraine showcases a lifelong dedication to advancing chemistry and materials science. His work on nanosized carbon materials for energy storage has contributed meaningfully to the global pursuit of sustainable energy solutions. Beyond his scientific outputs—evident in his publications and patents—he has influenced generations of researchers through teaching, mentoring, and strategic leadership. His recognition by the National Academy of Sciences of Ukraine and global societies like the Royal Society of Chemistry affirms his standing in the international scientific community. He remains actively involved in shaping future research directions and disseminating knowledge through conferences and advisory roles. Given his comprehensive achievements, Maletin is a distinguished figure whose work continues to inspire innovation in energy, chemistry, and environmental technologies. His legacy is built not only on scientific discovery but also on his commitment to applying research for real-world impact, making him an exemplary candidate for top-level research recognition awards.

Publications Top Notes

  1. Graphene vs activated carbon in supercapacitors
    Journal: Nanosistemi, Nanomateriali, Nanotehnologii, 2020
    Authors: Zelinskyi, S.O.; Stryzhakova, N.G.; Maletin, Y.A.

  2. Supercapacitor technology: Targets and limits
    Conference: LLIBTA 2015 & ECCAP 2015, AABC Europe, 2015
    Authors: Maletin, Y.; Stryzhakova, N.; Zelinsky, S.; Chernukhin, S.; Tretyakov, D.

  3. Electrochemical double layer capacitors and hybrid devices for green energy applications
    Journal: Green, 2014
    DOI: 10.1515/green-2014-0002
    Authors: Maletin, Y.; Stryzhakova, N.; Zelinsky, S.; Chernukhin, S.; Tretyakov, D.; Tychina, S.; Drobny, D.

  4. On the perspectives of supercapacitor technology
    Conference: AABC 2014, 2014
    Author: Maletin, Y.

  5. Ultracapacitor technology: What it can offer to electrified vehicles
    Conference: IEEE IEVC, 2014
    DOI: 10.1109/IEVC.2014.7056227
    Authors: Maletin, Y.; Stryzhakova, N.; Zelinskyi, S.; Chernukhin, S.; Tretyakov, D.; Mosqueda, H.A.; Davydenko, N.; Drobnyi, D.

  6. The impact of aluminum electrode anodic polarization in tetraethylammonium tetrafluoborate acetonitrile solution on the process of film formation
    Journal: Corrosion Science, 2013
    DOI: 10.1016/j.corsci.2012.12.002
    Authors: Gromadskyi, D.G.; Fateev, Y.F.; Maletin, Y.A.

  7. Anodic processes on aluminum in aprotic electrolytes based on the tetraethylammonium tetrafluoroborate salt in acetonitrile
    Journal: Materials Science, 2010
    DOI: 10.1007/s11003-010-9305-1
    Authors: Hromads’kyi, D.H.; Fateev, Yu.F.; Stryzhakova, N.H.; Maletin, Yu.A.

  8. Ultracapacitors as the key to efficient power solutions
    Conference: AABC 2010, 2010
    Author: Maletin, Y.

  9. Matching the nanoporous carbon electrodes and organic electrolytes in double layer capacitors
    Journal: Applied Physics A: Materials Science and Processing, 2006
    DOI: 10.1007/s00339-005-3416-9
    Authors: Maletin, Y.; Novak, P.; Shembel, E.; Izotov, V.; Strizhakova, N.; Mironova, A.; Danilin, V.; Podmogilny, S.

  10. Complexes of some 3d-metal salts with N,N-dimethylhydrazide of 4-nitrobenzoic acid
    Journal: Russian Journal of Coordination Chemistry / Koordinatsionnaya Khimiya, 2004
    DOI: 10.1023/B:RUCO.0000043902.12955.5e
    Authors: Zub, V.Ya.; Bugaeva, P.V.; Strizhakova, N.G.; Maletin, Yu.A.

Hu Fangyuan | Energy | Best Researcher Award

Prof. Dr. Hu Fangyuan | Energy | Best Researcher Award

Professor from Dalian University of Technology, China

Dr. Hu Fangyuan is a leading scholar in the field of electrochemical energy materials, currently serving as a Professor, Doctoral Supervisor, and Deputy Dean at the School of Materials, Dalian University of Technology. Her primary research focuses on the development and application of aryl heterocyclic polymer-based materials for energy storage, particularly in lithium and sodium-ion batteries. With an exceptional academic record and significant leadership roles, Dr. Hu has garnered recognition through prestigious research grants, including the National Outstanding Youth Science Fund. Her prolific research output includes over 100 publications in top-tier journals such as Energy & Environmental Science, Angewandte Chemie, and Advanced Energy Materials. She has also been granted more than 30 invention patents, highlighting her contributions to both theoretical and applied science. Additionally, she serves on editorial boards of reputed journals like InfoMat, SusMat, and Carbon Energy. Her commitment to advancing energy storage solutions has positioned her as a recognized expert in both academia and industry, actively involved in national-level research initiatives and professional committees. Dr. Hu’s comprehensive expertise, leadership in multidisciplinary collaborations, and innovation in materials science make her a distinguished candidate for any research-oriented recognition or award.

Professional Profile

Education

Dr. Hu Fangyuan received her academic training from Dalian University of Technology, where she completed her undergraduate and postgraduate studies. Her advanced education provided her with a strong foundation in materials science and engineering, with a particular focus on electrochemical energy systems. Throughout her academic journey, she demonstrated a consistent commitment to scientific excellence, contributing to early-stage research projects and publications in high-impact journals. Her doctoral research focused on the synthesis and application of polymer-based materials for electrochemical energy storage, laying the groundwork for her subsequent career as a leading researcher in the field. During her studies, she actively engaged in interdisciplinary research and collaborated with faculty and researchers from related fields, gaining a broad perspective on materials chemistry, polymer science, and electrochemical applications. Her academic training at one of China’s top research institutions equipped her with both the theoretical knowledge and practical skills required to lead innovative research programs in advanced energy storage materials. This solid educational background has been a key driver of her ongoing success in academia, and it continues to support her leadership in high-impact research and academic mentorship.

Professional Experience

Dr. Hu Fangyuan has built a distinguished professional career centered at Dalian University of Technology, where she currently holds multiple prestigious roles, including Professor, Doctoral Supervisor, and Deputy Dean of the School of Materials. Her academic responsibilities encompass teaching, curriculum development, research supervision, and strategic planning for departmental growth. Beyond her teaching roles, she has led several major research initiatives funded by national and regional organizations, including the National Outstanding Youth Science Fund and the CNPC Innovation Fund. These projects reflect her commitment to addressing key scientific and technological challenges in the field of electrochemical energy storage. In addition to her university-based work, Dr. Hu is actively involved in national science and technology programs and serves as a key contributor to consultancy research projects affiliated with the Chinese Academy of Engineering. Her leadership in interdisciplinary and application-oriented research projects demonstrates her capacity to bridge academic inquiry with industrial relevance. Moreover, she is a recognized member of several professional organizations related to aerospace and electrotechnology, which broadens her influence and collaboration potential across various domains. Dr. Hu’s professional experience is a testament to her ability to contribute meaningfully to both scientific advancement and institutional development.

Research Interest

Dr. Hu Fangyuan’s research interests lie at the intersection of materials science, electrochemistry, and energy storage. Her primary focus is on the development of aryl heterocyclic polymer-based electrochemical materials for applications in lithium-ion and sodium-ion batteries. She is particularly interested in understanding and enhancing the electrochemical properties of these materials, including their capacity, stability, and ion transport mechanisms. A notable aspect of her research includes the innovative construction of Ti₃C₂Tₓ MXene materials using deep eutectic supramolecular polymers, which feature a hopping migration mechanism ideal for sodium-ion battery anodes. Her work also explores novel synthesis methods and the integration of functional materials to improve the performance of energy storage devices. In addition to fundamental studies, Dr. Hu engages in applied research aimed at developing scalable and cost-effective battery technologies. Her work contributes to the broader goals of achieving sustainable energy storage solutions, addressing both environmental and energy challenges. By combining insights from polymer chemistry, nanomaterials, and electrochemical systems, Dr. Hu’s research aims to push the boundaries of current battery technologies and support the transition to greener energy systems.

Research Skills

Dr. Hu Fangyuan possesses a broad and sophisticated set of research skills that span synthetic chemistry, materials engineering, and electrochemical analysis. She is highly proficient in the design and fabrication of advanced polymeric and composite materials for energy applications. Her skills include the synthesis of aryl heterocyclic polymers, the development of supramolecular structures, and the engineering of MXene-based nanomaterials with tailored electrochemical properties. Dr. Hu is also well-versed in advanced characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and various spectroscopy methods to analyze material morphology and chemical composition. Furthermore, she employs electrochemical testing methods including cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy to evaluate the performance of battery materials. Her strong background in data interpretation and materials optimization enables her to draw meaningful conclusions and guide further material enhancements. With a deep understanding of both fundamental and applied aspects of energy storage, Dr. Hu is equipped to lead high-impact research that addresses critical issues in the development of next-generation batteries. Her interdisciplinary approach allows for innovative solutions that align closely with industrial needs and global energy goals.

Awards and Honors

Dr. Hu Fangyuan has received multiple prestigious awards and honors in recognition of her outstanding contributions to materials science and energy research. Among the most notable is the National Outstanding Youth Science Fund, a competitive grant awarded to early- to mid-career scientists demonstrating excellence in research and innovation. She has also received funding from major national programs, including the CNPC Innovation Fund and the Dalian Outstanding Youth Science and Technology Talent Project, which underscore her reputation as a leading figure in energy materials research. Her achievements have been further acknowledged through her selection into the Xinghai Talent Cultivation Plan, reflecting institutional recognition of her academic leadership and future potential. In addition to research-based awards, Dr. Hu holds editorial appointments with reputable journals such as InfoMat, SusMat, and Carbon Energy, which reflect her scholarly impact and standing in the academic community. Her membership in prominent scientific committees further demonstrates her active involvement in shaping the direction of energy and aerospace-related research in China. These honors collectively affirm Dr. Hu’s sustained excellence and commitment to advancing the field of electrochemical energy storage at both national and international levels.

Conclusion

Dr. Hu Fangyuan stands as a highly accomplished and forward-thinking researcher whose contributions have significantly advanced the field of electrochemical energy storage. Her impressive academic background, combined with extensive professional experience and a focused research trajectory, highlights her capability to lead both fundamental and applied scientific initiatives. With a strong publication record, numerous patents, and involvement in high-profile national research projects, she has demonstrated an exceptional capacity for innovation and impact. Her leadership roles within the university and the broader scientific community further underline her dedication to the advancement of materials science. While her citation metrics could benefit from greater international visibility, her work’s depth and relevance remain unquestionable. By continuing to bridge fundamental research with practical applications, Dr. Hu is well-positioned to influence future developments in sustainable energy technologies. Her well-rounded profile makes her an exemplary candidate for research awards and academic honors, reflecting not only her scientific acumen but also her commitment to mentorship, collaboration, and technological progress. In conclusion, Dr. Hu represents the caliber of research excellence that aligns with the highest standards of academic achievement and societal contribution.

Publications Top Notes

  1. Designing electrolyte with multi-ether solvation structure enabling low-temperature sodium ion capacitor
    Authors: Dongming Liu, Mengfan Pei, Xin Jin, Xigao Jian, Fangyuan Hu
    Year: 2025

  2. Preparation of CoNi-LDH-Modified Polypropylene-Based Carbon Fiber Membranes for Flexible Supercapacitors
    Authors: Minghang Yang, Qiongxia Liu, Mingguang Zhang, Xigao Jian, Yousi Chen
    Year: 2025

  3. Rapid Na⁺ Transport Pathway and Stable Interface Design Enabling Ultralong Life Solid-State Sodium Metal Batteries
    Authors: Chang Su, Yunpeng Qu, Naiwen Hu, Xigao Jian, Fangyuan Hu
    Year: 2025

  4. Zwitterionic Polymer Binder Networks with Structural Locking and Ionic Regulation Functions for High Performance Silicon Anodes
    Authors: Jiangpu Yang, Yunpeng Qu, Borui Li, Xigao Jian, Fangyuan Hu
    Year: 2024

  5. Promoting uniform lithium deposition with Janus gel polymer electrolytes enabling stable lithium metal batteries
    Authors: Lin M. Wang, Shugang Xu, Zihui Song, Xigao Jian, Fangyuan Hu
    Year: 2024
    Citations: 2

  6. Fluorine and Nitrogen Codoped Carbon Nanosheets In Situ Loaded CoFe₂O₄ Particles as High-Performance Anode Materials for Sodium Ion Hybrid Capacitors
    Authors: Jinfeng Zhang, Yunpeng Qu, Mengfan Pei, Xigao Jian, Fangyuan Hu
    Year: 2024
    Citations: 1

  7. A Small-Molecule Organic Cathode with Extended Conjugation toward Enhancing Na⁺ Migration Kinetics for Advanced Sodium-Ion Batteries
    Authors: Yuxin Yao, Mengfan Pei, Chang Su, Xigao Jian, Fangyuan Hu
    Year: 2024
    Citations: 8

  8. Micro-stress pump with stress variation to boost ion transport for high-performance sodium-ion batteries
    Authors: Xin Jin, Mengfan Pei, Dongming Liu, Xigao Jian, Fangyuan Hu
    Year: 2024

Xuning Zhang | Energy | Best Researcher Award

Assoc. Prof. Dr. Xuning Zhang | Energy | Best Researcher Award

Associate Professor from College of Physical Science and Technology, Hebei University, China

Dr. Xuning Zhang is a distinguished expert in power electronics, currently serving at Microchip Technology Inc. With over 15 years of experience, he has significantly contributed to the design and optimization of high-efficiency power converters, EMI modeling, and renewable energy systems. His academic journey includes a Ph.D. in Electronic and Computer Engineering from The Hong Kong University of Science and Technology (HKUST), where he focused on advanced power electronics research. Dr. Zhang has authored numerous publications, garnering over 1,200 citations, reflecting his impact in the field. His work is characterized by a blend of theoretical innovation and practical application, aiming to enhance the performance and reliability of power electronic systems. Beyond his technical expertise, Dr. Zhang is recognized for his leadership in collaborative projects and his commitment to advancing technology in sustainable energy solutions. His contributions continue to influence the development of next-generation power systems, making him a pivotal figure in the electronics engineering community.

Professional Profile

Education

Dr. Zhang’s educational background lays a strong foundation for his expertise in power electronics. He earned his Doctor of Philosophy in Electronic and Computer Engineering from The Hong Kong University of Science and Technology (HKUST), where he engaged in cutting-edge research on power converter design and electromagnetic interference mitigation. His doctoral studies were marked by a deep dive into the complexities of high-efficiency energy systems, preparing him for a career at the forefront of electrical engineering innovation. Prior to his Ph.D., Dr. Zhang completed his undergraduate studies in a related field, equipping him with the fundamental knowledge and analytical skills necessary for advanced research. Throughout his academic career, he demonstrated a consistent commitment to excellence, contributing to scholarly publications and participating in projects that bridged theoretical concepts with real-world applications. This rigorous academic training has been instrumental in shaping his approach to problem-solving and innovation in the field of power electronics.

Professional Experience

Dr. Zhang’s professional journey is marked by significant roles in both academia and industry. Currently, he is a key figure at Microchip Technology Inc., where he applies his extensive knowledge to develop advanced power electronic solutions. His work involves designing high-efficiency converters and optimizing electromagnetic compatibility, contributing to the company’s reputation for cutting-edge technology. Previously, Dr. Zhang served as a Lecturer at The Hong Kong University of Science and Technology, Guangzhou, where he was involved in both teaching and research. His academic role allowed him to mentor students and lead research projects, furthering advancements in power electronics and educational technologies. Dr. Zhang’s experience also includes collaborative projects with international teams, showcasing his ability to work across cultures and disciplines. His professional trajectory reflects a balance between theoretical research and practical application, underscoring his versatility and commitment to innovation in electrical engineering.

Research Interests

Dr. Zhang’s research interests are deeply rooted in the field of power electronics, with a particular focus on high-efficiency converter design, electromagnetic interference (EMI) modeling, and renewable energy integration. He is passionate about developing systems that not only perform optimally but also adhere to stringent EMI standards, ensuring reliability and safety. His work often explores the intersection of power density optimization and thermal management, aiming to create compact yet powerful electronic systems. Additionally, Dr. Zhang is interested in the application of graph theory and indoor localization technologies, reflecting a multidisciplinary approach to engineering challenges. His research endeavors are characterized by a commitment to sustainability, seeking solutions that contribute to the efficient use of energy resources. Through his investigations, Dr. Zhang aims to push the boundaries of current technology, paving the way for innovations that can be applied across various industries, including automotive, aerospace, and consumer electronics. His contributions continue to influence the direction of research and development in power electronics.

Research Skills

Dr. Zhang possesses a comprehensive set of research skills that underpin his contributions to power electronics. His expertise includes advanced simulation techniques using MATLAB for modeling complex electrical systems, allowing for precise analysis and optimization. He is adept at designing and implementing high-efficiency power converters, with a keen understanding of the nuances involved in minimizing energy losses and enhancing performance. Dr. Zhang’s skills extend to EMI analysis, where he employs sophisticated methods to predict and mitigate interference in electronic systems. His proficiency in renewable energy technologies enables him to develop solutions that integrate seamlessly with sustainable power sources. Furthermore, his experience with inverters and power quality assessment tools positions him as a valuable asset in projects requiring meticulous attention to electrical performance. Dr. Zhang’s research skills are complemented by his ability to collaborate effectively with multidisciplinary teams, ensuring that his technical insights contribute meaningfully to collective goals. His methodological approach and technical acumen continue to drive innovation in the field of electrical engineering.

Awards and Honors

Throughout his career, Dr. Zhang has received several accolades that recognize his contributions to engineering and academia. Notably, he was honored with the Thomas M. Weser Award at Vanderbilt University, acknowledging his exceptional commitment to intellectual life, cross-cultural appreciation, and personal integrity. This award is a testament to his dedication to fostering inclusive academic environments and his active participation in community service. In addition to this, Dr. Zhang has been recognized for his excellence in research and teaching during his tenure at various institutions. His achievements include being named an Excellent Graduate Student at the College of Computer (NUDT) and receiving the “Tang Lixin” Scholarship at Sichuan University, highlighting his academic prowess and leadership qualities. These honors reflect Dr. Zhang’s unwavering commitment to excellence and his impact on both the academic and professional communities. His decorated career serves as an inspiration to peers and students alike, underscoring the value of dedication, innovation, and cross-cultural engagement in the field of engineering.

Conclusion

Dr. Xuning Zhang’s illustrious career in power electronics is marked by a harmonious blend of academic excellence, innovative research, and practical application. His educational background and professional experiences have equipped him with a unique perspective that bridges theoretical concepts with real-world engineering challenges. Dr. Zhang’s research interests and skills have led to significant advancements in high-efficiency power systems, EMI mitigation, and renewable energy integration.

Publications Top Notes

  1. Efficient and stable hole-transport material for solar cells: from PEDOT:PSS to carbon nanotubes:PSS
    Authors: Y. Zhao, Q. Gao, D. Yang, D. Song, J. Chen
    Year: 2025

  2. Dissolution swelling effect-assisted interfacial morphology refinement enables high efficiency all-polymer solar cells
    Authors: W. Zhang, Y. Yue, F. Han, H. Zhou, Y. Zhang
    Year: 2024

  3. Ultrathin self-assembled monolayer for effective silicon solar cell passivation
    Authors: W. Li, Z. Zhao, J. Guo, X. Zhang, J. Chen
    Year: 2024

  4. Synergistic effect of ionic liquid and embedded QDs on 2D ferroelectric perovskite films with narrow phase distribution for self-powered and broad-band photodetectors
    Authors: L. Guo, X. Yang, Y. Liang, C. Pan, Z. Yang
    Year: 2024
    Citations: 5

  5. Organic passivation-enhanced ferroelectricity in perovskite oxide films
    Authors: H. Meng, B. Chen, X.H. Dai, B. Liu, J. Chen
    Year: 2024

  6. Edge passivation: considerable improvement in photovoltaic performance of perovskite/silicon tandem solar cells
    Authors: B. Chen, M. Cui, X. Wang, X. Zhang, J. Chen
    Year: 2024

  7. The development of carbon/silicon heterojunction solar cells through interface passivation (Review)
    Authors: B. Chen, X. Zhang, Q. Gao, B.S. Flavel, J. Chen
    Year: 2024
    Citations: 4

Xi Lu | Energy | Best Scholar Award

Prof. Xi Lu | Energy | Best Scholar Award

Director at Tsinghua University, China

Professor Xi Lu is a distinguished scholar specializing in renewable energy systems, carbon neutrality, and environmental systems modeling. With an academic foundation from Harvard University, he has established himself as a leading figure in the field of sustainable energy. His research combines engineering principles with advanced computational modeling to address pressing global challenges such as energy transition, climate change mitigation, and renewable energy optimization. Professor Lu’s work has had a profound impact on shaping energy policies and advancing innovative solutions for clean energy deployment. His interdisciplinary approach integrates technological, environmental, and economic dimensions, making his research invaluable for policy-makers and industry leaders. With a prolific publication record in prestigious journals and multiple national awards, Professor Lu continues to push the boundaries of knowledge and influence global energy strategies.

Professional Profile

Education

Professor Xi Lu holds a Doctor of Philosophy (PhD) in Engineering Science from Harvard University, awarded in 2010. His doctoral research focused on the integration of renewable energy sources and the development of large-scale energy systems models. He also earned a Master of Science in Applied Mathematics from Harvard University, which provided him with a robust analytical foundation to address complex energy and environmental challenges. Prior to his graduate studies, Professor Lu completed his Bachelor of Science degree in Environmental Science at Tsinghua University. His interdisciplinary academic background, combining engineering, mathematics, and environmental science, has equipped him with a unique skill set to tackle multifaceted problems in energy systems and sustainability.

Professional Experience

Professor Xi Lu currently serves as a full professor at Tsinghua University, where he leads advanced research in renewable energy systems, carbon mitigation strategies, and environmental policy modeling. Prior to this role, he held a research fellowship at Harvard University, where he contributed to groundbreaking studies on renewable energy integration and grid stability. Professor Lu has also collaborated with international organizations and government agencies, providing data-driven insights for shaping renewable energy policies. His professional career spans over two decades, during which he has led interdisciplinary research projects, supervised doctoral candidates, and facilitated industry-academic partnerships. His expertise is sought after globally, and he frequently participates in high-level discussions on energy policy and sustainable development.

Research Interests

Professor Xi Lu’s research interests revolve around renewable energy systems, carbon neutrality, and environmental systems modeling. He is particularly focused on developing advanced computational models to evaluate and optimize the performance of large-scale renewable energy infrastructures. His work addresses key issues such as integrating renewable energy into national grids, enhancing energy efficiency, and reducing greenhouse gas emissions. Additionally, Professor Lu is interested in policy-oriented research that provides practical solutions to achieve sustainable energy transitions. He explores the intersection of technology, economics, and policy to inform and guide global energy strategies. His interdisciplinary approach allows him to tackle complex problems and develop innovative methodologies to assess environmental and economic trade-offs in energy systems.

Research Skills

Professor Xi Lu possesses a diverse set of research skills that encompass advanced computational modeling, quantitative analysis, and large-scale energy system simulations. He is proficient in developing and applying optimization algorithms to assess renewable energy integration and grid stability. His expertise extends to geospatial analysis, which he uses to evaluate the spatial distribution and potential of renewable energy resources. Additionally, Professor Lu is skilled in policy modeling and the use of statistical methods to analyze the economic and environmental impacts of energy systems. His ability to integrate engineering techniques with environmental science and applied mathematics allows him to develop comprehensive models that inform both academic research and practical policy decisions.

Awards and Honors

Throughout his career, Professor Xi Lu has received numerous prestigious awards and honors recognizing his contributions to renewable energy research and environmental sustainability. In 2020, he was awarded the National Science Fund for Distinguished Young Scholars, a testament to his innovative research and academic excellence. He also received the Youth Scientist Gold Award from the Chinese Society for Environmental Sciences. His achievements have been further recognized through the 15th China Youth Science and Technology Award. These accolades highlight Professor Lu’s significant impact on advancing renewable energy technologies and shaping energy policies. His research has also earned international acclaim, with several of his publications featured as cover articles in top-tier journals like Nature Energy and Science.

Conclusion

Professor Xi Lu stands out as a leading expert in renewable energy systems and environmental policy modeling. His groundbreaking research has advanced the understanding of renewable energy integration and informed sustainable energy policies worldwide. With a strong academic foundation, extensive professional experience, and an impressive track record of high-impact publications, Professor Lu continues to drive innovation and provide actionable solutions for global energy challenges. His work not only addresses current issues in energy sustainability but also paves the way for future advancements in carbon neutrality and renewable technology. Professor Lu’s interdisciplinary expertise, combined with his commitment to scientific excellence, makes him a deserving candidate for the Best Scholar Award in Research. His contributions are instrumental in shaping a sustainable and energy-secure future on a global scale.

Publication Top Notes

  1. The risk-based environmental footprints and sustainability deficits of nations

    • Authors: J. He, Jianjian; P. Zhang, Pengyan; X. Lu, Xi
    • Year: 2025
  2. High-resolution gridded dataset of China’s offshore wind potential and costs under technical change

    • Authors: K. An, Kangxin; W. Cai, Wenjia; X. Lu, Xi; C. Wang, Can
    • Year: 2025
  3. Unraveling climate change-induced compound low-solar-low-wind extremes in China

    • Authors: L. Wang, Licheng; Y. Liu, Yawen; L. Zhao, Lei; T. Zhu, Tong; Y. Qin, Yue
    • Year: 2025
  4. Global disparity in synergy of solar power and vegetation growth

    • Authors: S. Chen, Shi; Y. Wang, Yuhan; X. Lu, Xi; K. He, Kebin; J. Hao, Jiming
    • Year: 2025
  5. Evaluating global progress towards Sustainable Development Goal 7 over space and time by a more comprehensive energy sustainability index

    • Authors: Q. Zhao, Qi; X. Lu, Xi; R. Marie Fleming, Rachael
    • Year: 2025
  6. The 2023 report of the synergetic roadmap on carbon neutrality and clean air for China: Carbon reduction, pollution mitigation, greening, and growth

    • Authors: J. Gong, Jicheng; Z. Yin, Zhicong; Y. Lei, Yu; J. Wang, Jinnan; K. He, Kebin
    • Year: 2025
  7. The future of coal-fired power plants in China to retrofit with biomass and CCS: A plant-centered assessment framework considering land competition

    • Authors: Y. Sun, Yunqi; A. Deng, An; Q. Yang, Qing; H. Yang, Haiping; H. Chen, Hanping
    • Year: 2025
    • Citations: 1
  8. Assessing the synergies of flexibly-operated carbon capture power plants with variable renewable energy in large-scale power systems

    • Authors: J. Li, Jiacong; C. Zhang, Chongyu; M.R. Davidson, Michael R.; X. Lu, Xi
    • Year: 2025
    • Citations: 1
  9. Synergies of variable renewable energy and electric vehicle battery swapping stations: Case study for Beijing

    • Authors: C. Zhang, Chongyu; X. Lu, Xi; S. Chen, Shi; A.M. Foley, Aoife M.; K. He, Kebin
    • Year: 2024
    • Citations: 1
  10. Correction to: Assessing global drinking water potential from electricity-free solar water evaporation device

  • Authors: W. Zhang, Wei; Y. Chen, Yongzhe; Q. Ji, Qinghua; H. Liu, Huijuan; J. Qu, Jiuhui
  • Year: 2024

Ali OUBELKACEM | Energy | Best Researcher Award

Prof. Ali OUBELKACEM | Energy | Best Researcher Award

Professor at FS/UMI, Morocco

Prof. Ali Oubelkacem is a distinguished academic in the Department of Computer Science at Université Moulay Ismail, Meknès, Morocco. He holds a Doctorate in Computer Science and a Master’s degree from INSA Lyon, specializing in Information Systems and Networks. With a career spanning over two decades, he has contributed significantly to research in material physics, magnetism, numerical scientific computing, and deep learning, particularly in energy applications. His involvement in various national and international research projects, including studies on nanostructured systems and the impact of technology on environmental issues, underscores his commitment to advancing scientific knowledge. Prof. Oubelakcem has presented at numerous international conferences and has published extensively in peer-reviewed journals, showcasing his expertise in perovskite solar cells and magnetic materials. His academic leadership is complemented by his role in training future scientists and his active participation in educational technology initiatives.

Professional Profile

Education

Prof. Ali Oubelkacem holds a robust academic background in the fields of computer science and physics. He earned his Doctorate in Science with a focus on Computer Physics from Université Moulay Ismail in 2004, achieving the distinction of Très honorable. Prior to this, he completed a Master’s Degree in Specialized Computer Science at INSA Lyon in collaboration with the École Nationale de l’Industrie Minérale in Rabat in 2005, where he specialized in Information Systems and Networks, graduating with A.Bien. His foundational education includes a Diploma in Advanced Studies in Mechanics, Energy, and Thermodynamics from Université Abdelmalek Essaâdi in Tétouan in 2000, and a Master’s Degree in Specialized Science in Mechanics from Université Cadi Ayyad in 1998, both with A.Bien. Prof. Oubelkacem’s extensive education has provided him with a solid foundation for his research and teaching career in computer science and materials physics.

Professional Experience

Prof. Ali Oubelkacem is a distinguished academic and researcher at the Département d’Informatique, Faculté des Sciences, Université Moulay Ismail in Meknès, Morocco. He has held the position of Professor of Higher Education since 2010, contributing significantly to the field of computer science. With a robust academic background, including a Doctorate in Computational Physics and a Specialized Master’s in Computer Science, he specializes in materials physics, magnetism, and deep learning applied to energy systems. His professional journey includes various roles, such as a trainer at the Institut Spécialisé Industriel de Mohammedia, where he taught modules related to information systems and networks. Prof. Oubelkacem is also an active member of several research teams and has participated in numerous national and international research projects. His involvement in organizing conferences and publishing research papers highlights his commitment to advancing knowledge in his field.

Research Interests

Prof. Ali Oubelkacem specializes in various fields of research, including the physics of materials and magnetism, scientific numerical calculations, and deep learning applications in energy domains. His work focuses on the modeling of nanostructured systems, emphasizing the magnetic properties and behavior of innovative materials. He has been actively involved in numerous national and international research projects, including the use of information and communication technologies (ICT) for the analysis and modeling of marine acidification. Prof. Oubelkacem has also explored the application of machine learning techniques to optimize photovoltaic parameters, contributing to advancements in renewable energy technologies. His extensive publication record in international journals highlights his commitment to advancing scientific knowledge in materials science, particularly in the development of perovskite solar cells and magnetic materials. Through his research, he aims to bridge theoretical concepts with practical applications, fostering innovation in both academia and industry.

Awards and Honors

Prof. Ali Oubelkacem has garnered recognition for his significant contributions to the field of computer science and material physics. He has been awarded multiple grants for his research projects, including funding for his participation in international collaborations such as the “I-WALAMAR” project with German research institutions. His dedication to academic excellence is further demonstrated through his active involvement in numerous international conferences, where he has not only presented his findings but also contributed to the advancement of knowledge in his areas of expertise. In addition to his research accomplishments, Prof. Oubelkacem is known for his commitment to teaching and mentoring students, inspiring the next generation of scientists and researchers. His work has been acknowledged through various publication accolades in reputable journals, highlighting his innovative approach in areas such as deep learning and material magnetism. These achievements underscore Prof. Oubelkacem’s stature as a leading researcher in his field.

Conclusion

Pr. Ali Oubelkacem demonstrates a robust profile as a researcher with significant contributions to the fields of material physics and informatics. His strengths in academic qualifications, professional experience, research contributions, publications, and conference engagement position him as a suitable candidate for the Best Researcher Award. By addressing areas for improvement, particularly in enhancing the societal impact of his research and expanding his collaborative efforts, he could further amplify his contributions to the scientific community. His commitment to ongoing professional development and involvement in national and international projects underscores his potential to continue making valuable contributions to his field.

Publication Top Note

  1. Effects of moringa (Moringa oleifera) leaf powder supplementation on growth performance, haematobiochemical parameters and gene expression profile of stinging catfish, Heteropneustes fossilis
    • Authors: Sharker, M.R., Hasan, K.R., Alam, M.A., Islam, M.M., Haque, S.A.
    • Year: 2024
    • Journal: Aquaculture Reports
    • Volume/Page: 39, 102388
    • Citations: 0
  2. Diversity pattern of ichthyofaunal assemblage in South-central coastal region of Bangladesh
    • Authors: Sharker, M.R., Kabir, M.A., Choi, S.D., Rahman, M.M., Shamuel, T.A.
    • Year: 2024
    • Journal: European Zoological Journal
    • Volume/Issue/Page: 91(2), pp. 830–841
    • Citations: 0
  3. Nutritional composition of available freshwater fish species from homestead ponds of Patuakhali, Bangladesh
    • Authors: Sumi, K.R., Sharker, M.R., Rubel, M., Islam, M.S.
    • Year: 2023
    • Journal: Food Chemistry Advances
    • Volume/Page: 3, 100454
    • Citations: 2
  4. Nutritional profiling of some selected commercially important freshwater and marine water fishes of Bangladesh
    • Authors: Ullah, M.R., Rahman, M.A., Haque, M.N., Islam, M.M., Alam, M.A.
    • Year: 2022
    • Journal: Heliyon
    • Volume/Issue/Page: 8(10), e10825
    • Citations: 8
  5. Non-Financial and Financial Factors Influencing the Mode of Life of the Gher Farmers from the Western Coastal Areas of Bangladesh
    • Authors: Roy, P., Choi, S.D., Nadia, Z.M., Kamrujjaman, M., Sharker, M.R.
    • Year: 2022
    • Journal: Egyptian Journal of Aquatic Biology and Fisheries
    • Volume/Issue/Page: 26(2), pp. 555–576
    • Citations: 0
  6. Twoblotch ponyfish Nuchequula blochii (Valenciennes, 1835) in the Sundarban Reserve Forest habitat of Bangladesh: Second record and establishment probability
    • Authors: Hanif, M.A., Hossen, S., Sharker, M.R., Siddik, M.A.B.
    • Year: 2021
    • Journal: Lakes and Reservoirs: Science, Policy and Management for Sustainable Use
    • Volume/Issue/Page: 26(3), e12368
    • Citations: 0
  7. Construction of a Genetic Linkage Map Based on SNP Markers, QTL Mapping and Detection of Candidate Genes of Growth-Related Traits in Pacific Abalone Using Genotyping-by-Sequencing
    • Authors: Kho, K.H., Sukhan, Z.P., Hossen, S., Jung, H.-J., Nou, I.-S.
    • Year: 2021
    • Journal: Frontiers in Marine Science
    • Volume/Page: 8, 713783
    • Citations: 8
  8. Effective accumulative temperature affects gonadal maturation by controlling expression of GnRH, GnRH receptor, serotonin receptor and APGWamide gene in Pacific abalone, Haliotis discus hannai during broodstock conditioning in hatcheries
    • Authors: Sukhan, Z.P., Cho, Y., Sharker, M.R., Rha, S.-J., Kho, K.H.
    • Year: 2021
    • Journal: Journal of Thermal Biology
    • Volume/Page: 100, 103037
    • Citations: 11
  9. Thermal Stress Affects Gonadal Maturation by Regulating GnRH, GnRH Receptor, APGWamide, and Serotonin Receptor Gene Expression in Male Pacific Abalone, Haliotis discus hannai During Breeding Season
    • Authors: Sukhan, Z.P., Sharker, M.R., Cho, Y., Choi, K.S., Kho, K.H.
    • Year: 2021
    • Journal: Frontiers in Marine Science
    • Volume/Page: 8, 664426
    • Citations: 10
  10. First record of whitespot sandsmelt, Parapercis alboguttata (Günther, 1872) from the southeast coast of Bangladesh
    • Authors: Hanif, M.A., Siddik, M.A.B., Sharker, M.R.
    • Year: 2021
    • Journal: Indian Journal of Geo-Marine Sciences
    • Volume/Issue/Page: 50(6), pp. 498–501
    • Citations: 0

 

Adefarati Oloruntoba | Energy| Best Researcher Award

Dr. Adefarati Oloruntoba | Energy| Best Researcher Award

Postdoctoral Associate at University of Calgary, Canada.

Dr. Adefarati Oloruntoba is a distinguished expert in clean energy and environmental research, boasting over 7 years of experience in innovative advancements in chemical processes and environmental solutions. He holds a PhD in Power Engineering and Thermophysics and has published more than 20 scholarly articles in prominent journals. His expertise encompasses renewable energy, environmental impact assessment, and low-carbon fuel development. Currently a Postdoctoral Associate at the University of Calgary, Dr. Oloruntoba employs advanced modelling tools to analyze the environmental impact of renewable natural gas and collaborates with industry partners on significant LNG projects. He has received multiple accolades, including the Energy Scholar of the Year and Outstanding Graduate Award, highlighting his exceptional contributions to the field. With strong leadership skills and a commitment to teaching and mentoring, Dr. Oloruntoba is dedicated to advancing sustainable energy solutions and engaging with stakeholders to influence climate policy effectively.

Profile👤

Education📝

Adefarati Oloruntoba has an impressive educational background that reflects a strong commitment to advancing knowledge in energy and environmental fields. He obtained a PhD in Power Engineering and Thermophysics, specializing in process intensification, from the China University of Petroleum in 2023. Prior to that, he earned a Master of Science in Energy and Environment from the University of Leeds, UK, in 2018, where he gained foundational knowledge in sustainable energy solutions. He also completed a Bachelor of Science in Industrial Chemistry at the University of Abuja, Nigeria. Additionally, Oloruntoba furthered his expertise by participating in a 50 ECTS PhD course in sustainable biomass resources and technology pathways for biogas and biorefineries at Aalborg University, Denmark, in 2019. Most recently, he received a Certificate in University Teaching and Learning from the University of Calgary in 2024, highlighting his dedication to effective teaching and knowledge dissemination.

Experience👨‍🏫

Adefarati Oloruntoba possesses over seven years of extensive experience in clean energy and environmental research. Currently serving as a Postdoctoral Associate at the University of Calgary, he specializes in analyzing the environmental impact of renewable natural gas fuels and optimizing biomass gasification for bioLNG production. His previous role as a CFD Process Technologist at China University of Petroleum involved managing process improvement projects, leading to significant cost savings and efficiency increases in oil refining. Oloruntoba has also worked as a Process Technologist at NABDA, where he developed proposals for hydrogen fuel projects and provided training on renewable energy technologies. With over 20 publications, his research contributions span areas such as low-carbon fuels and environmental impact assessments, showcasing his expertise in chemical processes and climate policy. Oloruntoba’s effective communication and leadership skills have enabled him to mentor students and collaborate successfully with industry partners, making him a key figure in advancing sustainable energy solutions.

Research Interest🔬 

Adefarati Oloruntoba’s research interests center on advancing clean energy technologies and environmental sustainability. With a robust foundation in power engineering and thermophysics, Adefarati focuses on the development of low-carbon fuels and innovative chemical processes that minimize environmental impact. His work encompasses life cycle assessment (LCA) and environmental impact evaluations of emerging energy technologies, emphasizing their role in climate policy and renewable energy systems. He is particularly interested in the application of computational fluid dynamics (CFD) simulations to optimize chemical processes and enhance reactor design. Additionally, Adefarati aims to explore the potential of biomass resources for sustainable energy production, advocating for policy frameworks that support cleaner energy transitions. His commitment to knowledge dissemination is evident in his teaching and mentoring efforts, as he strives to engage stakeholders in meaningful discussions about the implications of clean energy solutions on society and the environment.

Awards and Honors🏆

Adefarati Oloruntoba has garnered numerous awards and honors throughout his academic and professional journey, reflecting his dedication to clean energy and environmental research. Notably, he received the Hargreaves Research Project Award from the University of Leeds in 2017, acknowledging his innovative contributions in energy and environmental studies. In 2020, he was named the Energy Scholar of the Year, a recognition that celebrates his outstanding achievements in the energy sector. His commitment to academic excellence was further recognized with the Outstanding Graduate Award for both 2021 and 2022 from the China University of Petroleum, highlighting his exceptional performance during his PhD program. Additionally, he received the Excellent Volunteering Award and a Bronze Award for Volunteering from the UK Foreign Commonwealth Office, showcasing his commitment to community engagement and service. These accolades not only reflect his scholarly contributions but also his dedication to advancing sustainable practices in the energy industry.

Skills🛠️

Adefarati Oloruntoba possesses a diverse skill set that makes him a valuable asset in the fields of clean energy and environmental research. His expertise in renewable energy technologies and environmental impact assessment equips him to develop innovative solutions for sustainability challenges. Oloruntoba’s proficiency in computational fluid dynamics (CFD) simulations and data analysis allows him to model complex systems and optimize chemical processes effectively. With over 20 published research papers, he demonstrates strong analytical skills and a commitment to advancing scientific knowledge. His communication skills are exceptional, enabling him to articulate complex ideas clearly and engage with various stakeholders, including industry partners and policymakers. Oloruntoba’s leadership experience is evident in his ability to manage multidisciplinary teams and mentor emerging professionals. Additionally, his background in teaching and effective project management highlights his dedication to knowledge dissemination and collaboration. Overall, Adefarati Oloruntoba’s comprehensive skill set positions him as a leading expert in his field.

Conclusion 🔍 

Adefarati Oloruntoba exemplifies the ideal candidate for the Research for Best Scholar Award, showcasing a remarkable commitment to advancing clean energy and environmental solutions. With over 7 years of research experience and 20+ publications, Oloruntoba has significantly contributed to the fields of renewable energy, climate policy, and environmental impact assessments. His impressive educational background, including a PhD in Power Engineering and Thermophysics, coupled with a strong track record of leadership and project management, underscores his capability to drive innovative research initiatives. Additionally, Oloruntoba’s effective communication skills enable him to engage with diverse stakeholders, fostering collaboration and enhancing the societal impact of his work. While he has already made significant strides, further international collaboration and public engagement could amplify his contributions even more. Overall, Adefarati Oloruntoba’s dedication, expertise, and innovative spirit make him a deserving recipient of the Research for Best Scholar Award.

Publication Top Notes
  • Heavy Metal Contamination in Soils, Water, and Food in Nigeria from 2000–2019: A Systematic Review on Methods, Pollution Level and Policy Implications
    • Authors: Oloruntoba, A., Omoniyi, A.O., Shittu, Z.A., Ajala, R.O., Kolawole, S.A.
    • Year: 2024
    • Citations: 1
  • Investigating choking phenomena in CFB risers under different operating parameters
    • Authors: Xiao, H., Ke, X., Oloruntoba, A., Zhang, Y., Liu, C.
    • Year: 2024
    • Citations: 0
  • Improving the precision of solids velocity measurement in gas-solid fluidized beds with a hybrid machine learning model
    • Authors: Xiao, H., Oloruntoba, A., Ke, X., Zhang, Y., Wang, J.
    • Year: 2024
    • Citations: 3
  • Degradation characteristics and utilization strategies of a covalent bonded resin-based solid amine during capturing CO2 from flue gas
    • Authors: Xu, C., Zhang, Y., Peng, Y.-L., Oloruntoba, A., Jiang, S.
    • Year: 2024
    • Citations: 3
  • Experimental Study on Back-Flushing Characteristics of an In-Vessel Filtration System in Fischer-Tropsch Slurry Reactors
    • Authors: Gu, P., Zhang, Y., Du, H., Oloruntoba, A.
    • Year: 2023
    • Citations: 1
  • Performance evaluation of gas maldistribution mitigation via baffle installation: Computational study using ozone decomposition in low-velocity dense fluidized beds
    • Authors: Oloruntoba, A., Zhang, Y., Li, S.
    • Year: 2023
    • Citations: 6
  • Effects of Gas Condition and Baffle Installation on Bed Hydrodynamics in FCC Regenerators
    • Authors: Oloruntoba, A., Zhang, Y.-M., Mukhtar, Y.M.F.
    • Year: 2023
    • Citations: 0
  • An environmentally friendly turnkey method to determine pore volume of powdered catalysts
    • Authors: Jiang, Q., Olarte, M., Guo, Y., Ren, F., Song, H.
    • Year: 2022
    • Citations: 0
  • Hydrodynamics-reaction-coupled simulations in a low-scale batch FCC regenerator: Comparison between an annular and a free-bubbling fluidized beds
    • Authors: Oloruntoba, A., Zhang, Y., Xiao, H.
    • Year: 2022
    • Citations: 5
  • State-of-the-Art Review of Fluid Catalytic Cracking (FCC) Catalyst Regeneration Intensification Technologies
    • Authors: Oloruntoba, A., Zhang, Y., Hsu, C.S.
    • Year: 2022
    • Citations: 2

Pooja Sharma | Energy Transition | Best Researcher Award

Assoc Prof Dr. Pooja Sharma | Energy Transition | Best Researcher Award

Associate Professor at Daulat Ram College, University of Delhi, India

Dr. Pooja Sharma, an Associate Professor in the Department of Economics at Daulat Ram College, University of Delhi, specializes in Environmental Economics, Renewable Energy, and Energy Policy. Her research focuses on critical issues such as energy transition, energy security, and sustainability. Dr. Sharma’s notable projects include studying the role of renewables in energy transition, valuing Green GDP, and developing e-content for economics courses. Her interdisciplinary approach is evident in projects like Clean Energy from Waste with Microbial Fuel Cells. With over fourteen years of teaching experience, she has significantly contributed to economics education. Her work with institutions such as the Institute of Economic Growth and the University of Delhi underscores her impactful research and dedication to advancing knowledge in her field. While she has a strong research foundation, increasing her publication record and expanding international collaborations could further enhance her academic influence.

Profile

Education

Dr. Pooja Sharma’s educational background is distinguished by her focus on economics and energy studies. She completed her Bachelor’s degree in Economics (B.A. Hons) from Miranda House, University of Delhi in 1997, followed by a Master’s degree in Economics from the Delhi School of Economics in 1999. Her academic journey continued with an MPhil in Economics from Jawaharlal Nehru University (JNU) in 2007, where her research focused on “Rural Electrification and Poverty.” Dr. Sharma further advanced her expertise with a Ph.D. from the Energy Studies Program at JNU, where she conducted a comparative study of renewables in energy transition between India and Norway. Her academic pursuits also included a research fellowship at the University of Agder, Norway, and various specialized trainings, such as the ASEAN Investment Law Specialization and workshops on GIS, reflecting her commitment to interdisciplinary learning and research.

Professional Experience

Dr. Pooja Sharma is an Associate Professor in the Department of Economics at Daulat Ram College, University of Delhi. With over fourteen years of teaching experience, she has delivered courses in Environmental Economics, Econometrics, and Public Economics. Dr. Sharma has led several significant research projects, including studies on the role of renewables in energy transition and the valuation of Green GDP. Her work extends to interdisciplinary projects such as Clean Energy from Waste with Microbial Fuel Cells and contributions to e-content development for various educational institutions. She has also engaged in research as a PhD Research Fellow at the University of Agder, Norway, focusing on energy policy and sustainability. Dr. Sharma’s academic and research endeavors reflect her commitment to advancing knowledge in environmental economics and energy policy, making her a prominent figure in her field.

Research Interest

Dr. Pooja Sharma’s research interests are centered around Environmental Economics, Energy Policy, and Renewable Energy. She focuses on the role of renewable energy in energy transition, emphasizing comparative studies between countries like India and Norway. Her work delves into the intersection of energy security and sustainability, exploring how renewable resources can address global energy challenges. Dr. Sharma’s research also encompasses the valuation of Green GDP and the economic impacts of environmental policies, such as reducing air pollution. Additionally, she has investigated innovative approaches to clean energy, including the use of microbial fuel cells. Her interdisciplinary approach, integrating economics with environmental science, reflects her commitment to advancing sustainable development and addressing critical issues in energy and environmental economics. Through her projects and academic contributions, Dr. Sharma aims to contribute to effective energy policies and sustainable economic practices.

Research Skills

Dr. Pooja Sharma’s research skills are distinguished by her profound expertise in environmental economics, energy policy, and econometrics. Her ability to analyze complex data sets, such as those related to energy transition and renewable energy, is demonstrated through her projects on Green GDP valuation and air pollution reduction. Dr. Sharma excels in applying advanced econometric techniques to assess the impacts of environmental policies and energy security. Her interdisciplinary approach is evident in her involvement with projects like Clean Energy from Waste using microbial fuel cells, showcasing her capacity to integrate insights from various fields. Additionally, her experience in e-content development for economics courses highlights her skill in translating complex concepts into accessible educational material. Her proficiency in using statistical tools and software, combined with her practical research experience, positions her as a highly capable and innovative researcher in her domain.

Award and Recognition

Dr. Pooja Sharma has garnered recognition for her impactful contributions to the field of environmental economics and energy policy. Her research, notably on the role of renewables in energy transition and valuation of Green GDP, has been instrumental in advancing understanding in these critical areas. Dr. Sharma’s dedication is also evident in her interdisciplinary projects, such as the Clean Energy from Waste initiative and her extensive work on e-content development for educational institutions. Her efforts in these diverse domains underscore her commitment to sustainability and education. Despite her commendable achievements, further recognition could be bolstered by increasing her publication output in high-impact journals and expanding her international collaborations. Overall, Dr. Sharma’s contributions reflect her exceptional expertise and significant potential for continued influence in her field.

Conclusion

Dr. Pooja Sharma is a strong candidate for the Best Researcher Award due to her substantial contributions to environmental economics and energy policy. Her extensive research experience and interdisciplinary approach are notable strengths. By focusing on increasing her publication record and expanding her collaborative network, she can further enhance her influence and recognition in the field.

Publication Top Notes

  1. Economic performance assessment of building integrated photovoltaic system with battery energy storage under grid constraints
    • Authors: P. Sharma, M. Kolhe, A. Sharma
    • Published in: Renewable Energy
    • Volume: 145, Pages: 1901-1909
    • Year: 2020
    • Citations: 69
  2. Inflation rate and Poverty: Does poor become poorer with inflation?
    • Authors: M. Paul, P. Sharma
    • Available at: SSRN
    • Year: 2019
    • Citations: 15
  3. Role of human capital in economic growth: a comparative study of India and China
    • Author: P. Sharma
    • Available at: SSRN
    • Year: 2019
    • Citations: 12
  4. Economic analysis of a building integrated photovoltaic system without and with energy storage
    • Authors: P. Sharma, M. Kolhe, A. Sharma
    • Published in: IOP Conference Series: Materials Science and Engineering
    • Volume: 605, Issue: 1, Article number: 012013
    • Year: 2019
    • Citations: 8
  5. The impact of oil prices on stock prices and other macroeconomic variables in India: pre‐and post‐2008 crises
    • Authors: V. Gupta, P. Sharma
    • Published in: OPEC Energy Review
    • Volume: 42, Issue: 3, Pages: 212-223
    • Year: 2018
    • Citations: 7
  6. Analyzing the Role of Renewables in Energy Security by Deploying Renewable Energy Security Index
    • Author: P. Sharma
    • Published in: Journal of Sustainable Development of Energy, Water and Environment Systems
    • Year: 2023
    • Citations: 5
  7. A Decentralized Pathway for Energy Security and Energy Transition in Asia and the Pacific Region
    • Author: P. Sharma
    • Available at: SSRN
    • Year: 2018
    • Citations: 5
  8. Evaluating Health Impact of Air Pollution
    • Authors: P. Sharma, P. Jain, D. Pragati, S. Kumar
    • Published in: Environment and Ecology Research
    • Volume: 7, Issue: 1, Pages: 59-72
    • Year: 2019
    • Citations: 4
  9. Health benefits derived by reducing air pollution: An East Delhi analysis
    • Authors: P. Sharma, R. Galhotra, P. Jain, P. A. Goel, B. Aggarwal, D. Narula, C. Singh, …
    • Published in: Journal of Advances in Humanities and Social Sciences
    • Volume: 3, Issue: 3, Pages: 164-181
    • Year: 2017
    • Citations: 4

 

 

Armel Zambou Kenfack | Energy | Young Scientist Award

Mr. Armel Zambou Kenfack | Energy | Young Scientist Award

Mr. Armel Zambou Kenfack, University of Yaoundé I, Cameroon

Based on the details provided, Armel Zambou Kenfack appears to be a strong candidate for the Research for Young Scientist Award. Here are a few reasons why:

Publication profile

Academic Background

Armel holds a Master’s degree in Energy and Environment from the University of Yaoundé 1, Cameroon, with a commendable “Very Good” distinction. His academic path also includes a Bachelor’s degree in Physics, specializing in Mechanics and Energetics, showcasing his foundational knowledge in energy-related fields.

Research Experience

He has actively contributed to research in renewable energy, particularly focusing on photovoltaic/thermal (PV/T) hybrid systems, solar energy optimization, and thermal storage. His involvement in multiple projects, including designing AI models for optimizing PV/T systems, demonstrates his commitment to advancing renewable energy technologies.

Publications 

  • Sensitivity analysis of the thermal performance of a parabolic trough concentrator using Al2O3 and SiO2/Vegetable oil as heat transfer fluid 🌡️🌞 – Cited by 6, 2024
  • Exergetic optimization of some design parameters of the hybrid photovoltaic/thermal collector with bi-fluid air/ternary nanofluid (CuO/MgO/TiO2) 🔋🔧 – Cited by 4, 2023
  • Techno-economic and environmental analysis of a hybrid PV/T solar system based on vegetable and synthetic oils coupled with TiO2 in Cameroon 📉🌿 – Cited by 3, 2024
  • Sectoral Assessment of the Energy, Water, Waste and Land Nexus in the Sustainability of Agricultural Products in Cameroon 🌾💧 – Cited by 2, 2024
  • Energy and exergo-environmental performance analysis of a Stirling micro-fridge with imperfect regenerator ❄️🔄 – Cited by 1, 2024
  • Performance Improvement of Hybrid Photovoltaic/Thermal Systems: A Metaheuristic Artificial Intelligence Approach to Select the Best Model Using 10E Analysis 🤖⚡  2024
  • Evaluation of the Hydrogen/Oxygen and Thermoelectric Production of a Hybrid Solar Pv/T-Electrolyzer System ⚡🔋  2024

Awards and Recognition

He has received several awards, such as the Zacharias Tanee Excellence Award for the most successful young student-researcher, and accolades for his master’s thesis, highlighting his academic and research excellence.

Professional and Teaching Experience

Currently working as a research and development engineer and a part-time teacher at the University of Yaoundé 1, Armel balances his time between hands-on research and mentoring students. His dual roles enrich his professional experience and demonstrate his capability to contribute to both practical and theoretical aspects of his field.

Skills and Expertise

His expertise includes the simulation and optimization of energy systems, proficiency in various programming and simulation tools (Matlab, Fortran, Python, ANSYS), and experience in techno-economic and thermo-electric analysis, all of which are critical skills for an impactful career in renewable energy research.

Conclusion

Armel Zambou Kenfack’s combination of academic achievements, research contributions, publication record, and recognition make him a promising candidate for the Research for Young Scientist Award. His focus on innovative solutions in energy and environmental sustainability aligns with the award’s objectives, making him a deserving nominee.

 

Andrii Hrubiak | Renewable Energy Sources | Best Researcher Award

Dr. Andrii Hrubiak | Renewable Energy Sources | Best Researcher Award

Emeritus at Cornell University, School of Integrative Plant Science, United States.

Dr. Andrii Hrubiak is a distinguished Senior Researcher at the G. V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine. With a PhD in Physical and Mathematical Sciences, his research specializes in the physics and chemistry of surfaces, focusing on nanostructured materials, high-capacity electrochemical energy storage, photocatalysis, and Mossbauer spectroscopy. His work involves developing functional nanomaterials for energy storage and conversion and enhancing photocatalytic efficiency. Dr. Hrubiak has earned multiple accolades, including scholarships from the President of Ukraine and the Verkhovna Rada of Ukraine Prize for Young Scientists. His research contributions are well-recognized through numerous publications and patents, underscoring his impact in advancing material science and technology. His expertise extends to optimizing synthesis methods and improving performance characteristics of electrochemical and photocatalytic systems, making him a leading figure in his field.

Profile

Education🎓

Dr. Andrii Hrubiak’s educational journey reflects a robust foundation in physical and mathematical sciences with a focus on materials science. He began his academic path at the Galician Secondary School, where he graduated with honors in 2007. Pursuing higher education, he enrolled in the Faculty of Physics and Technology at Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, earning a Master’s degree in Physics in 2012. His dedication to the field continued through postgraduate studies at the same institution, where he specialized in the physics of colloidal systems from 2012 to 2015. Building on this, Dr. Hrubiak furthered his expertise by completing doctoral studies at the G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, focusing on applied physics and nanomaterials between 2020 and 2022. This rigorous educational background underpins his significant contributions to nanomaterials and energy storage systems.

Professional Experience 🏢

Dr. Andrii Hrubiak has a distinguished career at the G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, where he has served as a Senior Researcher in the Laboratory of Magnetic Film Physics since 2016. His expertise lies in the physics and chemistry of surfaces, focusing on nanostructured materials, high-capacity electrochemical energy storage, and photocatalysis. Prior to this role, Dr. Hrubiak conducted significant research as a Junior Researcher at Vasyl Stefanyk Precarpathian National University, contributing to international projects on nanodispersed rutile and iron oxides. His career also includes experience with Horizon 2020 programs and various national research grants. Dr. Hrubiak’s work has earned him several prestigious awards, including the Verkhovna Rada of Ukraine Prize and Scholarships from the President of Ukraine, underscoring his impactful contributions to the field of applied physics and nanomaterials.

Environmental Health

Dr. Hrubiak’s work in photocatalysis contributes to environmental health by developing materials that can efficiently degrade organic pollutants. His research on titanium dioxide and iron oxide composites aims to address environmental contamination and improve air and water quality.

Research Interests 🔬

Dr. Andrii Hrubiak’s research interests are centered on the development and application of advanced nanomaterials with a focus on the physics and chemistry of surfaces. His work predominantly explores nanostructured materials, including high-capacity electrochemical energy storage and generation systems. Dr. Hrubiak is deeply engaged in photocatalysis and Mossbauer spectroscopy, aiming to enhance the performance of functional materials. His research involves optimizing sol-gel and hydrothermal synthesis methods to create mesoporous systems based on transition metal oxides and hydroxides. These materials are tailored for use as active photocatalysts and electrode components in energy storage devices. His investigations have led to significant findings, such as improved photocatalytic activity in anatase/brookite composites and enhanced capacitance in hybrid supercapacitors. Dr. Hrubiak’s work contributes to advancements in both energy technology and environmental remediation.

Award and Honors

Dr. Andrii Hrubiak has been recognized with several prestigious awards for his significant contributions to the field of physical and mathematical sciences. In 2023, he was honored with the Scholarship named after Academician B.E. Paton for young scientists of the National Academy of Sciences of Ukraine. His innovative research also earned him the Scholarship of the President of Ukraine for young scientists in 2020, reflecting his impactful work in nanomaterials and energy storage. Dr. Hrubiak was awarded the Verkhovna Rada of Ukraine Prize for Young Scientists in 2019 for his pioneering work on nanostructured electrodes. Additionally, he received multiple grants from the National Academy of Sciences of Ukraine and the President of Ukraine, underscoring his excellence in advancing scientific knowledge. His accomplishments are further highlighted by his international accolades, including grants for research conducted in the United States and China.

Research Skills

Dr. Andrii Hrubiak possesses a robust skill set in the field of nanostructured materials and electrochemical energy systems. His expertise encompasses the synthesis and characterization of advanced nanomaterials, particularly transition metal oxides and hydroxides, which are pivotal for energy storage and photocatalysis. He excels in employing sol-gel and hydrothermal methods to create materials with optimized structural and electrochemical properties. Dr. Hrubiak is proficient in techniques such as Mossbauer spectroscopy, which he uses to investigate material properties at a microscopic level. His skills extend to the development of innovative electrode materials and photocatalysts, where he has significantly contributed to enhancing the performance of energy storage devices and environmental remediation processes. His ability to integrate theoretical research with practical applications underscores his proficiency in advancing the field of materials science and energy technologies.

Conclusion

Dr. Andrii Hrubiak is a distinguished researcher whose work has made substantial contributions to the fields of nanomaterials, energy storage, and photocatalysis. His international collaborations, applied research, and numerous awards highlight his impact and recognition in the scientific community. His innovative approaches and dedication to advancing material science and environmental technologies make him a strong candidate for the Research for Best Researcher Award.

Publications Top Notes 📚
  1. Insight into the Slag Foaming Behavior Utilizing Biocoke as an Alternative Carbon Source in Electric Arc Furnace-Based Steel Production
    • Authors: Kieush, L., Schenk, J., Koveria, A., Hrubiak, A.
    • Year: 2024
  2. Biocoke Thermochemical Properties for Foamy Slag Formations in Electric Arc Furnace Steelmaking
    • Authors: Kieush, L., Schenk, J., Koveria, A., Hrubiak, A.
    • Year: 2024
  3. Structurally dependent electroconductivity properties of ultrafine composites α-FeOOH/α-Fe2O3
    • Authors: Hrubiak, A.B., Ostafiychuk, B.K., Gasiuk, M.I., Gasiuk, I.M., Bushkova, V.S.
    • Year: 2024
  4. Evaluation of Slag Foaming Behavior Using Renewable Carbon Sources in Electric Arc Furnace-Based Steel Production
    • Authors: Kieush, L., Schenk, J., Koveria, A., Hopfinger, H., Zheng, H.
    • Year: 2023
  5. Influence of machining duration of 0.8SiO2/ 0.2Al2O3 nanopowder on electrochemical characteristics of lithium power sources
    • Authors: Yavorskyi, Y.V., Hrubiak, A.B., Zaulychnyy, Y.V., Gun’ko, V.M., Dudka, O.I.
    • Year: 2023
  6. Utilization of Renewable Carbon in Electric Arc Furnace-Based Steel Production: Comparative Evaluation of Properties of Conventional and Non-Conventional Carbon-Bearing Sources
    • Authors: Kieush, L., Schenk, J., Koveria, A., Hrubiak, A., Hopfinger, H.
    • Year: 2023
  7. Influence of biocoke on iron ore sintering performance and strength properties of sinter
    • Authors: Kieush, L., Hrubiak, A., Koveria, A., Molchanov, L., Moklyak, V.
    • Year: 2022
  8. Electroconductive Properties of Carbon Biocomposites Formed by the Precipitation Method
    • Authors: Hrubiak, A.B., Moklyak, V.V., Yavorsky, Yu.V., Ivanichok, N.Ya., Ilnitsky, N.R.
    • Year: 2022
  9. Transformation of the electrical impedance spectra of biological tissues under the influence of destructive factors
    • Authors: Pryimak, T.V., Gasyuk, I.M., Grubyak, A.V., Chervinko, D.M.
    • Year: 2022
  10. Structurally dependent electrochemical properties of ultrafine superparamagnetic ‘core/shell’ γ-Fe2O3/defective α-Fe2O3 composites in hybrid supercapacitors
    • Authors: Bazaluk, O., Hrubiak, A., Moklyak, V., Lozynskyi, V., Fedorov, S.
    • Year: 2021