Rashmi Fotedar | Environmental Science | Best Researcher Award

Dr. Rashmi Fotedar | Environmental Science | Best Researcher Award

Expert from Ministry of Municipality and Environment, Qatar.

Dr. Rashmi Fotedar is an accomplished microbiologist with over three decades of experience in medical microbiology, molecular biology, and parasitology. With a strong foundation in research and teaching, she has significantly contributed to the scientific community through extensive research on hospital-associated infections, microbial diversity, and marine microbiology. Her work spans across India, Saudi Arabia, Australia, and Qatar, where she has held various academic, research, and leadership positions. Dr. Fotedar has demonstrated expertise in laboratory techniques, microbiological diagnostics, and environmental microbiology, particularly focusing on marine microbial ecosystems. She has published prolifically in peer-reviewed journals, with more than 40 impactful publications and an h-index of 23. Her Google Scholar profile further attests to her long-standing influence in the field. In addition to her research, Dr. Fotedar has provided invaluable teaching and training to undergraduate and postgraduate students, shaping future scientists. She has actively participated in national and international research collaborations and is a member of multiple prestigious scientific societies. Her leadership in establishing the Qatari Culture Collection and securing high-value research grants underlines her capability to lead complex scientific projects. Dr. Fotedar continues to advance microbiological research while contributing to academic excellence and scientific development globally.

Professional Profile

Education

Dr. Rashmi Fotedar holds a Ph.D. in Medical Microbiology from the All India Institute of Medical Sciences (AIIMS), New Delhi, India, where she specialized in hospital-associated fungal infections in immunocompromised patients. This doctoral research laid the foundation for her deep involvement in medical mycology and infectious diseases. Additionally, she earned a Master of Science degree in Medical Microbial Biotechnology from the University of Technology, Sydney, Australia, where she gained advanced skills in the molecular identification of parasitic infections using contemporary techniques. To further enhance her interdisciplinary expertise, Dr. Fotedar underwent specialized training in bioinformatics at the University of Sydney, Australia. Her international educational background combines the strengths of rigorous laboratory research and cutting-edge molecular technologies. She has also participated in specialized international courses such as the Yeast Molecular Genetics program at ICGEB, Trieste, Italy, and the ANGIS Applied Bioinformatics workshop in Australia. These diverse educational experiences have equipped her with a comprehensive skill set that integrates microbiology, molecular biology, and bioinformatics. This solid academic foundation has enabled Dr. Fotedar to pursue complex research in clinical and environmental microbiology, contributing substantially to the fields of infectious diseases and microbial ecology.

Professional Experience

Dr. Rashmi Fotedar’s professional journey spans over 30 years, encompassing roles in teaching, research, and scientific leadership across multiple countries. Since 2012, she has been serving as an Expert in the Department of Genetic Engineering at the Biotechnology Centre in Doha, Qatar, where she is in charge of the Microbiology Unit. Her work involves applying for and managing research grants, training researchers, and curating the Qatari Culture Collection of marine microorganisms. Prior to this, from 2008 to 2012, she worked as a scientist on an independent NHMRC-funded project in Australia focused on the molecular epidemiology of Neisseria gonorrhoea. Between 2004 and 2007, she was a Demonstrator at the University of Technology Sydney, providing theoretical and practical microbiology education. Her earlier roles include Research Scientist at Westmead Hospital, Sydney, and Specialist in Microbiology at King Khalid University Hospital, Saudi Arabia. Dr. Fotedar began her career as a Junior Research Fellow at AIIMS, New Delhi, and progressed through roles as Senior Research Fellow and Research Associate. Across these positions, she has consistently contributed to clinical microbiology, epidemiological studies, and marine microbial research, while also actively engaging in student mentorship and laboratory management.

Research Interests

Dr. Rashmi Fotedar’s research interests encompass a wide spectrum within microbiology, with a primary focus on medical microbiology, molecular diagnostics, and environmental microbiology. Her early work centered on hospital-associated fungal infections, parasitic infections, and the molecular epidemiology of infectious diseases. Over time, her interests have evolved to include marine microbial diversity, hypersaline ecosystems, and the role of microorganisms in environmental preservation. She has made significant contributions to the isolation, identification, and characterization of novel marine fungi and bacteria, leading to the discovery and naming of new microbial species. Her work on microbial stabilization of mobile dunes and monitoring of pathogens in coastal waters reflects her strong commitment to addressing environmental and public health challenges. Dr. Fotedar’s research integrates genomics, metagenomics, and conventional culturing methods to understand microbial ecosystems in extreme environments. She is also keenly interested in bioinformatics applications, microbial culture preservation, and advancing molecular techniques for pathogen detection. Her multidisciplinary approach positions her at the forefront of microbiology research with both clinical and ecological relevance, contributing to our understanding of microbial diversity and its impact on human health and the environment.

Research Skills

Dr. Rashmi Fotedar possesses an extensive array of research skills spanning molecular biology, microbiology, and bioinformatics. Her technical expertise includes DNA extraction, PCR, real-time PCR, sequencing, cloning, restriction digestion, and gel electrophoresis. She is proficient in culture techniques for bacteria, fungi, and parasites, as well as antibiotic sensitivity testing using both conventional and automated methodologies. Dr. Fotedar has mastered the isolation and identification of microorganisms from clinical, soil, and marine environments and has significant experience in the maintenance and preservation of bacterial and fungal cultures, including database management. She received specialized training at CBS, Netherlands, in fungal preservation techniques, which she applies in her role as curator of the Qatari Culture Collection. Her bioinformatics training supports her genomic and metagenomic analyses, adding depth to her microbiological research. Additionally, she has a strong command of microbiological safety protocols and occupational health procedures. Dr. Fotedar’s teaching skills are complemented by her laboratory expertise, making her highly effective in both educational and research settings. Her ability to manage large, multidisciplinary projects, combined with her analytical mindset and collaborative spirit, further solidify her reputation as a highly skilled researcher in her field.

Awards and Honors

Dr. Rashmi Fotedar has received numerous prestigious grants and recognitions throughout her career, underscoring her scientific leadership and research excellence. She was awarded several major research grants by the Qatar National Research Fund, including projects on microbial diversity in the Arabian Gulf, pathogen detection in coastal waters, and microbial stabilization of mobile dunes, with total funding exceeding USD 2 million. Her leadership in these projects demonstrates her ability to attract significant research investment and manage complex scientific studies. She also secured an independent research grant from the National Health and Medical Research Council (NHMRC) in Australia for a molecular epidemiological study, highlighting her international research impact. Dr. Fotedar was the recipient of an Australian Postgraduate Award funded by the Commonwealth Government of Australia, which supported her advanced research training. Earlier in her career, she received independent fellowships from India’s Council of Scientific and Industrial Research (CSIR) and the Indian Council of Medical Research (ICMR), recognizing her potential as an emerging scientist. Her long-standing memberships in renowned scientific societies and active roles in peer-review and editorial boards further validate her esteemed position in the scientific community. These accolades collectively affirm Dr. Fotedar’s distinguished contributions to microbiological research.

Conclusion

Dr. Rashmi Fotedar exemplifies the qualities of a world-class researcher, combining scientific excellence, teaching dedication, and leadership in microbiology. Her extensive academic qualifications, international research experience, and sustained contributions to both clinical and environmental microbiology underscore her impact on the scientific community. Throughout her career, she has demonstrated a strong commitment to the advancement of molecular diagnostics, microbial ecology, and pathogen discovery. Dr. Fotedar’s ability to lead multidisciplinary teams, secure high-value research funding, and mentor the next generation of scientists reflects her capability to drive meaningful scientific progress. She has contributed significantly to the identification of novel microbial species, particularly from marine and hypersaline environments, expanding our understanding of microbial biodiversity. Her involvement in prestigious editorial boards and peer review panels further amplifies her influence in shaping microbiological research worldwide. Dr. Fotedar’s outstanding publication record, coupled with her scientific leadership and dedication to teaching, positions her as a highly deserving candidate for recognition. Moving forward, expanding her global collaborations and increasing her involvement in public engagement activities could further elevate her already remarkable career. Overall, Dr. Rashmi Fotedar’s professional journey makes her a strong and worthy contender for the Best Researcher Award.

Publications Top Notes

1. Laboratory Diagnostic Techniques for Entamoeba Species

  • Authors: R. Fotedar, D. Stark, N. Beebe, D. Marriott, J. Ellis, J. Harkness

  • Journal: Clinical Microbiology Reviews 20 (3), 511-532

  • Year: 2007

  • Citations: 694

2. Cockroaches (Blattella germanica) as Carriers of Microorganisms of Medical Importance in Hospitals

  • Authors: R. Fotedar, U.B. Shriniwas, A. Verma

  • Journal: Epidemiology & Infection 107 (1), 181-187

  • Year: 1991

  • Citations: 231

3. PCR Detection of Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii in Stool Samples From Sydney, Australia

  • Authors: J.L.H. R. Fotedar, Stark, N. Beebe, D. Marriott, J. Ellis

  • Journal: Journal of Clinical Microbiology

  • Year: 2007

  • Citations: 221

4. Vector Potential of Houseflies (Musca domestica) in the Transmission of Vibrio cholerae in India

  • Authors: R. Fotedar

  • Journal: Acta Tropica 78 (1), 31-34

  • Year: 2001

  • Citations: 203

5. Ochratoxin Production and Taxonomy of the Yellow Aspergilli (Aspergillus Section Circumdati)

  • Authors: C.M. Visagie, J. Varga, J. Houbraken, M. Meijer, S. Kocsubé, N. Yilmaz, et al.

  • Journal: Studies in Mycology 78, 1-61

  • Year: 2014

  • Citations: 193

6. Amoebiasis: Current Status in Australia

  • Authors: S.J. van Hal, D.J. Stark, R. Fotedar, D. Marriott, J.T. Ellis, J.L. Harkness

  • Journal: Medical Journal of Australia 186 (8), 412-416

  • Year: 2007

  • Citations: 139

7. The Housefly (Musca domestica) as a Carrier of Pathogenic Microorganisms in a Hospital Environment

  • Authors: R. Fotedar, U. Banerjee, S. Singh, A.K. Verma

  • Journal: Journal of Hospital Infection 20 (3), 209-215

  • Year: 1992

  • Citations: 129

8. Prevalence of Enteric Protozoa in HIV-Positive and HIV-Negative Men Who Have Sex With Men From Sydney, Australia

  • Authors: D. Stark, R. Fotedar, S. Van Hal, N. Beebe, D. Marriott, J.T. Ellis, J. Harkness

  • Journal: The American Journal of Tropical Medicine and Hygiene 76 (3), 549-552

  • Year: 2007

  • Citations: 126

9. Comparison of Stool Antigen Detection Kits to PCR for Diagnosis of Amebiasis

  • Authors: D. Stark, S. Van Hal, R. Fotedar, A. Butcher, D. Marriott, J. Ellis, J. Harkness

  • Journal: Journal of Clinical Microbiology 46 (5), 1678-1681

  • Year: 2008

  • Citations: 120

10. Entamoeba moshkovskii Infections in Sydney, Australia

  • Authors: J.E.J.H. R. Fotedar, D. Stark, D. Marriott

  • Journal: European Journal of Clinical Microbiology and Infectious Disease

  • Year: 2008

  • Citations: 104

 

 

Zhao Hu | Environmental Science | Best Researcher Award

Dr. Zhao Hu | Environmental Science | Best Researcher Award

Guizhou University, China

Zhao Hu is an emerging researcher in the field of photocatalysis and environmental chemistry with a strong focus on sustainable energy and advanced catalytic materials. His research primarily addresses environmental challenges through innovative photocatalytic processes for pollutant degradation, CO₂ reduction, water splitting, and hydrogen production. Zhao Hu has made significant contributions to the development of Z-scheme heterojunctions, defect engineering, and advanced catalytic designs that have achieved notable results in photocatalytic efficiency and stability. With 22 published articles in top-tier international journals, his work is well-cited and contributes valuable knowledge to the scientific community. Zhao Hu’s research stands out for its practical relevance, targeting real-world environmental issues with highly efficient and novel solutions. In addition to his research productivity, Zhao Hu has participated in peer-review activities, further demonstrating his academic recognition. His progressive contributions are paving the way for next-generation environmental remediation technologies. Zhao Hu’s consistent publication trajectory and focus on impactful research indicate his potential for leadership in his field. With continued dedication, he is poised to make further significant contributions to science and technology on both national and international levels.

Professional Profile

Education

Zhao Hu is currently pursuing his education at Guizhou University, Guiyang, China, where he has been enrolled since September 2021. His academic background is deeply rooted in materials science, chemistry, and environmental engineering, with a specialized focus on photocatalytic applications. His educational journey is strongly aligned with his research interests, allowing him to contribute novel solutions to energy and environmental challenges. Guizhou University has provided Zhao Hu with a strong research platform and exposure to advanced laboratory techniques and interdisciplinary collaboration. Through rigorous coursework and hands-on research, Zhao Hu has developed a solid theoretical and practical foundation in catalysis, nanomaterials, and photochemical processes. His education has been instrumental in shaping his expertise in designing and characterizing complex photocatalytic systems. The academic environment at Guizhou University, coupled with Zhao Hu’s determination and curiosity, has equipped him with essential problem-solving skills and analytical abilities. As he continues his education, Zhao Hu remains committed to applying his knowledge to address pressing environmental concerns and contribute to sustainable technological advancements. His educational track record reflects both academic excellence and a clear research-driven focus.

Professional Experience

Zhao Hu’s professional experience is predominantly research-intensive, with a strong emphasis on environmental photocatalysis and advanced material synthesis. Since 2021, Zhao Hu has been actively involved in academic research at Guizhou University, where he has significantly contributed to various photocatalytic projects focused on pollutant degradation, water splitting, CO₂ reduction, and hydrogen production. He has independently conducted experimental studies, developed novel photocatalytic materials, and collaborated on multi-authored research papers published in internationally recognized journals such as Applied Catalysis B: Environmental, Journal of Colloid and Interface Science, Advanced Functional Materials, and Chemical Science. Zhao Hu has also participated in peer-review activities, including work for the Alexandria Engineering Journal, demonstrating his growing recognition in the scientific community. His research experience encompasses catalyst design, surface chemistry, interfacial engineering, and reaction mechanism exploration. Although his career is still in its early stages, Zhao Hu’s hands-on involvement in experimental planning, data interpretation, and scholarly publication showcases a high level of professional maturity and dedication. His continuous engagement in cutting-edge research places him on a promising trajectory to become a leading expert in his field.

Research Interests

Zhao Hu’s research interests lie at the intersection of photocatalysis, environmental remediation, and sustainable energy solutions. His work primarily focuses on the design and fabrication of advanced photocatalytic materials capable of addressing critical environmental challenges such as air and water pollution, CO₂ emissions, and energy scarcity. He is particularly interested in Z-scheme heterojunctions, defect engineering, and the rational design of nanostructured catalysts that enable efficient visible-light-driven photocatalytic processes. Zhao Hu has a deep interest in exploring reaction mechanisms, surface electron dynamics, and the role of atomic-level modifications to enhance photocatalytic selectivity and stability. His studies also extend to the photocatalytic oxidation of nitrogen oxides (NOx), hydrogen production through water splitting, and photocatalytic CO₂ reduction. Zhao Hu is driven by the goal of developing eco-friendly, high-performance catalytic systems that can be scaled for practical applications in pollution control and renewable energy generation. His research approach combines experimental work with material characterization and reaction pathway analysis to provide comprehensive solutions to pressing environmental problems. Zhao Hu’s research interests are well aligned with global sustainability goals and contribute significantly to the advancement of green technologies.

Research Skills

Zhao Hu possesses a comprehensive set of research skills that enable him to excel in the field of environmental photocatalysis. He is highly proficient in the synthesis of nanostructured photocatalytic materials, including the fabrication of Z-scheme heterojunctions, defect-engineered semiconductors, and atomically dispersed metal catalysts. His skills extend to advanced material characterization techniques, allowing him to investigate surface morphology, electronic structures, and catalytic activity with precision. Zhao Hu is experienced in conducting photocatalytic experiments for pollutant degradation, CO₂ reduction, and hydrogen production under visible-light irradiation. His expertise also includes surface chemistry manipulation, reaction mechanism analysis, and the design of interfacial electron transfer systems to optimize photocatalytic efficiency. Additionally, Zhao Hu is capable of conducting electrochemical measurements to study catalyst stability and performance. His technical skills are complemented by his ability to critically interpret experimental data, publish high-quality research papers, and participate in the peer-review process. Zhao Hu’s multidisciplinary skill set enables him to develop practical solutions for environmental remediation and contribute to the growing body of knowledge in sustainable energy research.

Awards and Honors

Although specific awards and honors are not detailed in the provided profile, Zhao Hu’s consistent publication in top-tier journals and participation in the peer-review process suggest that he is gaining recognition within the scientific community. His contributions to journals such as Advanced Functional Materials, Applied Catalysis B: Environmental, and Chemical Science demonstrate the high quality and impact of his research. Zhao Hu’s inclusion as a peer reviewer for the Alexandria Engineering Journal indicates trust and acknowledgment from fellow researchers and editorial boards. His work on groundbreaking photocatalytic designs and environmental remediation techniques positions him as a strong candidate for future research awards, scholarships, and professional honors. As his career progresses, Zhao Hu is expected to accumulate accolades that will further validate his contributions to science and engineering. His current achievements reflect an upward trajectory and establish a solid foundation for future recognition in national and international academic platforms. Zhao Hu’s growing reputation and publication excellence underscore his potential to become a highly decorated researcher in his domain.

Conclusion

Zhao Hu is a dedicated and impactful researcher whose contributions to photocatalysis and environmental chemistry address some of the most pressing challenges of our time. His innovative approaches in designing advanced photocatalytic materials, coupled with a strong focus on energy efficiency and environmental protection, position him as a valuable asset to the scientific community. Zhao Hu’s comprehensive research portfolio demonstrates originality, technical depth, and practical relevance. His ongoing academic journey and active participation in peer-review activities highlight his commitment to advancing the field and maintaining high research standards. To further enhance his profile, Zhao Hu could benefit from engaging in international collaborations, leading large-scale projects, and participating in professional societies and academic conferences. Expanding his involvement in academic leadership and student mentorship would also contribute positively to his long-term academic impact. Overall, Zhao Hu has established a solid foundation for a successful research career and is well-suited for prestigious research awards and future academic honors. His potential for growth and continued contribution to sustainable environmental solutions make him a strong contender for the Best Researcher Award.

Publications Top Notes

  1. Yan Wang, Yan Ma, Shenghong Ding, Zhoujun Yin, You-Nian Liu, Zhao Hu2025

    • Unprecedented stability for photocatalytic selective oxidation of NO achieved by targeted construction of extraction-electron-surface and capture-hole-subsurface sites

  2. Zhiping Yang, Hongmei Xiao, Yudie Mao, Hai Zhang, Yixin Lu, Zhao Hu2024

    • Amplifying chlorinated phenol decomposition via Dual-Pathway O2 Activation: The impact of zirconium loading on BiOCl

  3. Yujiao Zhang, Yan Wang, Zhao Hu, Jinshu Huang, Song Yang, Hu Li2024

    • High-efficiency photocatalytic CO2 reduction enabled by interfacial Ov and isolated Ti3+ of g-C3N4/TiO2 Z-scheme heterojunction

  4. Ling Pu, Jiying Wang, Zhao Hu, Yujiao Zhang2023

    • Universal Water Disinfection by the Introduction of Fe–N3 Traps between g-C3N4 Layers under Visible Light

  5. Yan Wang, Zhao Hu, Wei Wang, Yanan Li, Haichuan He, Liu Deng, Yi Zhang, Jianhan Huang, Ning Zhao, Guipeng Yu et al.2023

    • Rational design of defect metal oxide/covalent organic frameworks Z-scheme heterojunction for photoreduction CO2 to CO

  6. Yujiao Zhang, Zhao Hu, Heng Zhang, Hu Li, Song Yang2023

    • Uncovering Original Z Scheme Heterojunctions of COF/MOx (M = Ti, Zn, Zr, Sn, Ce, and Nb) with Ascendant Photocatalytic Selectivity for Virtually 99.9% NO‐to‐NO3− Oxidation

  7. Yujiao Zhang, Yan Wang, Dan Zhao, Baoyu Wang, Ling Pu, Meng Fan, Xingtang Liang, Yanzhen Yin, Zhao Hu, Ximing Yan2022

    • Visible light in situ driven electron accumulation at the Ti–Mn–O3 sites of TiO2 hollow spheres for photocatalytic hydrogen production

  8. Zhao Hu2022

    • Atomic Ti-Nx sites with switchable coordination number for enhanced visible-light photocatalytic water disinfection

  9. Baoyu Wang, Xiandong Guo, Yujiao Zhang, Yan Wang, Guiqiu Huang, Huixia Chao, Weijian Wang, Zhao Hu, Ximing Yan2022

    • Extraordinary Promotion of Visible-Light Hydrogen Evolution for Graphitic Carbon Nitride by Introduction of Accumulated Electron Sites (BN2)

  10. Zhao Hu2021

  • Boosting the electrochemical performance of hematite nanorods via quenching-induced metal single atom functionalization

Jingying Mao | Environmental Science | Women Researcher Award

Dr. Jingying Mao | Environmental Science | Women Researcher Award

Deputy Director from Scientific Research Academy of Guangxi Environmental Protection, China

Jingying Mao is a Senior Engineer at the Guangxi Environmental Protection Scientific Research Institute, specializing in atmospheric environment and climate change. With a strong educational foundation in ecology and environmental engineering, Mao has developed extensive expertise in air pollution control, atmospheric chemical modeling, and climate impact assessments. Over the years, Mao has significantly contributed to the understanding of aerosol formation, ozone control strategies, and pollutant transport mechanisms in various regional and global contexts. Her leadership in multiple National Natural Science Foundation projects and provincial scientific initiatives demonstrates her capacity for high-level scientific research and project management. Mao’s representative works have been published in internationally recognized journals such as Journal of Geophysical Research: Atmospheres, Science of the Total Environment, and Elementa: Science of the Anthropocene. She has also played key roles in collaborative studies addressing complex air quality issues in China. Her research achievements have been acknowledged through several provincial awards, including second-class prizes in Guangxi Science and Technology Progress. Through her rigorous scientific contributions and dedication to environmental protection, Mao has become a respected figure in the atmospheric science community, making meaningful strides in pollution control and climate impact research.

Professional Profile

Education

Jingying Mao holds a Ph.D. in Ecology from Jinan University (2017–2021), where she deepened her expertise in atmospheric sciences and climate interactions. She completed her Master’s degree in Environmental Engineering at Southwest Jiaotong University (2009–2012), focusing on advanced environmental protection techniques and pollution management. Her undergraduate studies were conducted at Guangxi Normal College (2005–2009), where she earned a Bachelor’s degree in Environmental Science, laying the foundational knowledge in environmental systems and resource management. Throughout her academic journey, Mao demonstrated a consistent focus on environmental issues, particularly air pollution and climate dynamics, which shaped her professional path toward becoming a leading researcher in atmospheric environment and climate change. Her educational background is distinguished by a clear progression toward specialization in air quality modeling, atmospheric chemistry, and pollutant mitigation strategies.

Professional Experience

Mao Jingying currently serves as a Senior Engineer at the Guangxi Environmental Protection Scientific Research Institute’s Atmospheric Environment and Climate Change Research Center (since December 2022). Before this, she held the role of Engineer within the same center from December 2021 to November 2022 and at the Atmospheric Environment Research Center from July 2015 to July 2017. Her initial position at the institute was within the Environmental Analysis and Heavy Metal Pollution Control Center from July 2012 to June 2015. Across these roles, Mao has accumulated over a decade of experience in atmospheric pollution monitoring, climate modeling, and the development of emission reduction strategies. Her responsibilities have included leading major research projects, contributing to national and provincial environmental initiatives, and publishing impactful research in prestigious journals. Mao’s consistent career trajectory within the Guangxi Environmental Protection Scientific Research Institute illustrates her deep-rooted commitment to environmental improvement and scientific advancement.

Research Interests

Jingying Mao’s primary research interests include atmospheric chemistry, air quality modeling, secondary organic aerosol (SOA) formation, and the impacts of climate change on atmospheric processes. She is particularly focused on the temporal and spatial distribution of IEPOX-SOA (isoprene epoxydiol-derived SOA) in the troposphere and its radiative effects, which she investigates through numerical simulations. Mao is also engaged in studying nitrate aerosols in the stratosphere and their influence on climate dynamics. Her work extends to the development of coordinated emission reduction strategies and the assessment of pollutant sources through both field measurements and chemical transport models. Mao’s studies on ozone control strategies and pollutant transport mechanisms aim to provide actionable solutions for urban and regional air quality management. Her diverse research portfolio contributes significantly to the broader understanding of atmospheric processes and their environmental consequences.

Research Skills

Mao Jingying possesses advanced research skills in atmospheric chemical transport modeling using tools like WRF-Chem and MOSAIC, chemical characterization of aerosols, and source apportionment techniques. She is proficient in designing and conducting large-scale environmental monitoring campaigns, analyzing time-resolved aerosol data, and integrating field observations with numerical simulations. Mao’s expertise also includes regional climate impact assessments, chemical data interpretation, and multi-pollutant control strategy evaluation. Her strong analytical abilities are complemented by a solid understanding of environmental policy and regulatory frameworks, which enhances her capacity to develop practical solutions for air pollution control. Additionally, Mao’s collaborative research experience and multidisciplinary approach have enabled her to address complex atmospheric challenges effectively.

Awards and Honors

Jingying Mao has received several notable scientific recognitions at the provincial level. She was awarded the Guangxi Science and Technology Progress Award (Second Class) in 2023 for her contribution to regional atmospheric research and pollution control strategies. In 2019, she was honored again by the Guangxi People’s Government for her involvement in collaborative air quality studies. Additionally, she received the Guangxi Social Science Excellent Achievement Award in 2018 for her multi-authored research addressing environmental challenges in the region. These accolades highlight her impactful contributions to both scientific advancement and environmental protection in Guangxi. Mao’s continuous recognition through competitive awards reflects her dedication, innovative research, and leadership in atmospheric science.

Conclusion

Jingying Mao is a highly qualified atmospheric scientist with substantial expertise in air pollution modeling, aerosol chemistry, and climate impact studies. Her educational background, professional experience, and successful leadership in both national and regional research projects position her as a valuable contributor to the field of atmospheric environment and climate change. Mao’s research is not only scientifically rigorous but also practically oriented, focusing on developing strategies for pollution control and environmental sustainability. Her recognized contributions and award-winning projects demonstrate her influence and growing leadership within the scientific community. Moving forward, Mao is well-positioned to expand her research on the interaction between atmospheric processes and climate dynamics, furthering her contributions to solving pressing environmental issues.

Publications Top Notes

  • Pollution characteristics of peroxyacetyl nitrate in karst areas in Southwest China

    • Authors: Songjun Guo, Xu Wei, Hongjiao Li, Wen Qin, Yijun Mu, Jiongli Huang, Chuan Nong, Junchao Yang, Dabiao Zhang, Hua Lin, Jingying Mao

    • Year: 2023

  • Ozone control strategies for local formation- and regional transport-dominant scenarios in a manufacturing city in southern China

    • Authors: Jingying Mao, Fenghua Yan, Lianming Zheng, Yingchang You, Weiwen Wang, Shiguo Jia, Wenhui Liao, Xuemei Wang, Weihua Chen

    • Year: 2022

  • Evaluation of Biogenic Organic Aerosols in the Amazon Rainforest Using WRF‐Chem With MOSAIC

    • Authors: Jingying Mao, Luxi Zhou, Liqing Wu, Weihua Chen, Xuemei Wang, Pengfei Yu

    • Year: 2021

  • Comparative study of chemical characterization and source apportionment of PM2.5 in South China by filter-based and single particle analysis

    • Authors: Jingying Mao, Liming Yang, Zhaoyu Mo, Zongkai Jiang, Padmaja Krishnan, Sayantan Sarkar, Qi Zhang, Weihua Chen, Buqing Zhong, Yuan Yang

    • Year: 2021

  • A Comparative Study on Air Pollution Characteristics in Four Key Cities during 2013 in Guangxi Province, China

    • Authors: Jing-Ying Mao, Zhi-Ming Chen, Zong-Kai Jiang, Zhao-Yu Mo, Hong-Jiao Li, Fan Meng, Bei Chen, Hui-Jiao Ling, Hong Li

    • Year: 2021

  • Highly time-resolved aerosol characteristics during springtime in Weizhou Island

    • Authors: Jingying Mao, Zhiming Chen, Zhaoyu Mo, Xiaoyang Yang, Hong Li, Yonglin Liu, Huilin Liu, Jiongli Huang, Junchao Yang, Hongjiao Li

    • Year: 2018

Prof. Dr. Araceli Tomasini | Environmental Science

Prof. Dr. Araceli Tomasini | Environmental Science | Best Researcher Award

Professor/Investigator at Iztapalapa Metropolitan Autonomous University, Mexico

Dr. Araceli Tomasini Campocossio is a distinguished researcher and professor at the Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Mexico, with extensive experience in the field of microbiology and biotechnology. With a career spanning over three decades, she has made significant contributions to areas like solid-state fermentation, microbial biodegradation, and environmental remediation. Her dedication to academia includes teaching at both undergraduate and graduate levels, leading research projects, and mentoring aspiring scientists. She has been instrumental in administrative roles, contributing to the development of biotechnology curricula and postgraduate programs. Dr. Tomasini’s international exposure through postdoctoral work and collaborative projects reflects her commitment to addressing global challenges in bioconversion and environmental sustainability.

Professional Profile

Education

Dr. Araceli Tomasini Campocósio earned her Ph.D. in Biotechnology and Enzyme Engineering from the Université de Technologie de Compiègne, France. Her doctoral research focused on proteolysis, lipolysis, and enzyme-based aroma production, showcasing her deep understanding of enzyme systems and their biotechnological applications. Prior to her Ph.D., she completed her Master’s degree at the same institution, refining her expertise in fermentation processes and enzyme engineering. Dr. Tomasini’s strong educational foundation began with her undergraduate studies in Biochemical Engineering at Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Mexico, where she developed a passion for microbiology and biotechnology. Throughout her academic journey, she consistently excelled in multidisciplinary environments, gaining specialized knowledge in enzyme technology and bioprocesses. Her education laid the groundwork for a career dedicated to bridging the gap between basic and applied research, particularly in environmental remediation and biochemical innovations. Dr. Tomasini’s continuous pursuit of academic excellence is further highlighted by her participation in advanced training programs and certifications, which have enhanced her technical expertise and ability to lead complex research projects.

Professional Experience

With over 35 years of academic and research experience, Dr. Araceli Tomasini Campocósio has been a cornerstone of Universidad Autónoma Metropolitana-Iztapalapa (UAM-I). She has served as a Professor in Biochemical Engineering, teaching undergraduate and postgraduate courses in microbiology, environmental remediation, and biochemical processes. Her teaching portfolio includes designing and delivering critical courses such as Bioquímica Microbiana and Ingeniería Bioquímica, reflecting her dedication to shaping future scientists. In addition to her teaching, Dr. Tomasini has held significant administrative roles, including Head of the Microbiology Department and membership in committees for academic program development. She has been actively involved in designing curricula for advanced degree programs like the Doctorate in Biotechnology and revising study plans to ensure alignment with modern scientific advancements. Beyond academia, Dr. Tomasini has been principal investigator and key collaborator on 13 high-impact national and international projects funded by CONACYT, UNDP, and IFS. Her extensive experience includes leadership in research initiatives focused on biodegradation, solid-state fermentation, and microbiological processes, demonstrating her capacity for interdisciplinary collaboration and scientific innovation.

Research Interests

Dr. Araceli Tomasini Campocósio’s research interests span a broad spectrum of topics within microbiology and biotechnology. She specializes in environmental remediation through microbial processes, solid-state fermentation, and enzyme technology. Her work addresses the biodegradation of pollutants, focusing on sustainable approaches to combat environmental challenges. Dr. Tomasini has a particular interest in the valorization of agricultural and industrial waste using microbiological and biochemical methods, promoting the circular economy and waste-to-resource strategies. Additionally, her expertise includes the production of bioactive compounds and aroma precursors through enzyme-based technologies, contributing to advancements in food and pharmaceutical industries. Her interdisciplinary research bridges microbiology, biochemistry, and environmental sciences, fostering innovative solutions for global challenges such as pollution and resource scarcity. Dr. Tomasini’s dedication to applied research is evident in her leadership of international projects and collaborations that aim to develop cost-effective and environmentally friendly bioprocesses. Her interests also include mentoring the next generation of researchers, ensuring her work inspires continued innovation and sustainability in biotechnology.

Research Skills

Dr. Araceli Tomasini Campocósio possesses a diverse and highly specialized skill set that aligns with her extensive experience in biotechnology and microbiology. Her technical expertise includes enzyme engineering, fermentation processes, biodegradation techniques, and environmental microbiology. She is adept at designing and implementing solid-state fermentation systems, optimizing microbial processes for pollutant degradation, and developing biocatalytic processes for aroma production. Dr. Tomasini has advanced skills in experimental design, data analysis, and the application of biotechnological tools to address environmental and industrial challenges. Her ability to lead multidisciplinary research projects reflects her strong organizational and problem-solving capabilities. In addition, she is skilled in chromatographic and spectroscopic techniques, crucial for analyzing biochemical and microbial processes. Dr. Tomasini is highly proficient in mentoring students and researchers, equipping them with the technical knowledge and skills needed for independent research. Her ability to manage international collaborations further highlights her leadership and teamwork skills, making her an influential figure in scientific research and academic development.

Awards and Honors

Dr. Araceli Tomasini Campocósio’s distinguished career has earned her several awards and honors in recognition of her contributions to biotechnology and environmental sciences. She has received prestigious grants and funding from organizations such as CONACYT, the International Foundation for Science (IFS), and the United Nations Development Program (UNDP), showcasing her excellence in securing competitive research support. Her leadership in groundbreaking projects has been acknowledged at both national and international levels, cementing her reputation as a leading researcher in environmental microbiology and bioprocess engineering. Dr. Tomasini’s commitment to academic excellence and teaching has also earned her accolades for her role in mentoring students and developing innovative curricula. Her longstanding contributions to Universidad Autónoma Metropolitana-Iztapalapa have been recognized through institutional awards and leadership roles, highlighting her dedication to advancing education and research. Additionally, her participation in global research initiatives has positioned her as a prominent figure in interdisciplinary collaboration, earning her respect and recognition in the international scientific community.

Conclusion

Dr. Araceli Tomasini Campocósio is a highly qualified researcher with over three decades of experience in biotechnology, microbiology, and environmental remediation. Her leadership in national and international projects, combined with significant contributions to academic program development, make her a strong candidate for the Best Researcher Award. To further strengthen her candidacy, showcasing her recent publications, research impact metrics, and industry collaborations will solidify her position as a leading researcher with global influence.

Publication Top  Notes

  • Environmental and Nutritional Factors in the Production of Astaxanthin from Haematococcus pluvialis
    • Authors: MJATC Domínguez-Bocanegra, A.R., I. Guerrero-Legarreta
    • Journal: Bioresource Technology
    • Year: 2004
    • Citations: 253
  • Penicillin production by solid state fermentation
    • Authors: J Barrios-Gonzalez, A Tomasini, G Viniegra-Gonzalez, L Lopez
    • Journal: Biotechnology Letters
    • Year: 1988
    • Citations: 132
  • Microbial secondary metabolites production and strain improvement
    • Authors: J Barrios-Gonzalez, FJ Fernandez, A Tomasini
    • Journal: Indian Journal of Biotechnology
    • Year: 2003
    • Citations: 90
  • Gibberellic acid production using different solid-state fermentation systems
    • Authors: A Tomasini, C Fajardo, J Barrios-González
    • Journal: World Journal of Microbiology and Biotechnology
    • Year: 1997
    • Citations: 89
  • High lovastatin production by Aspergillus terreus in solid-state fermentation on polyurethane foam: an artificial inert support
    • Authors: JG Baños, A Tomasini, G Szakács, J Barrios-González
    • Journal: Journal of Bioscience and Bioengineering
    • Year: 2009
    • Citations: 84
  • Mechanisms of interaction of chromium with Aspergillus niger var tubingensis strain Ed8
    • Authors: A Coreño-Alonso, A Solé, E Diestra, I Esteve, JF Gutiérrez-Corona, …
    • Journal: Bioresource Technology
    • Year: 2014
    • Citations: 64
  • Secondary metabolites production by solid-state fermentation
    • Authors: J Barrios-Gonzalez, FJ Fernandez, A Tomasini, A Mejia
    • Journal: Not specified
    • Year: 2005
    • Citations: 61
  • A fungal phenoloxidase (tyrosinase) involved in pentachlorophenol degradation
    • Authors: AM Montiel, FJ Fernández, J Marcial, J Soriano, J Barrios-González, …
    • Journal: Biotechnology Letters
    • Year: 2004
    • Citations: 60
  • Cr (VI) reduction by an Aspergillus tubingensis strain: role of carboxylic acids and implications for natural attenuation and biotreatment of Cr (VI) contamination
    • Authors: A Coreño-Alonso, FJ Acevedo-Aguilar, GE Reyna-López, A Tomasini, …
    • Journal: Chemosphere
    • Year: 2009
    • Citations: 52
  • Effect of culture conditions on production of butter flavor compounds by Pediococcus pentosaceus and Lactobacillus acidophilus in semisolid maize-based cultures
    • Authors: ML Escamilla-Hurtado, SE Valdes-Martinez, J Soriano-Santos, …
    • Journal: International Journal of Food Microbiology
    • Year: 2005
    • Citations: 51