Xuegang Liu | Chemical Engineering | Best Researcher Award

Prof. Xuegang Liu | Chemical Engineering | Best Researcher Award

Professor from Tsinghua Univerisity, China

Dr. Xuegang Liu is a highly accomplished research professor at the Institute of Nuclear and New Energy Technology (INET), Tsinghua University. His extensive expertise focuses on nuclear chemical engineering, nuclear fuel cycle strategies, radioactive waste management, and nuclear decommissioning technologies. Over the years, Dr. Liu has contributed significantly to advancing nuclear fuel cycle policy and technical applications, making substantial impacts in the nuclear energy and safety sectors. He is also an influential educator, actively teaching graduate-level courses such as “Nuclear Fuel Cycle Strategy” and “Nuclear Chemical Engineering” at Tsinghua University. Dr. Liu balances his academic roles with his responsibilities as a project manager, overseeing major scientific research and engineering initiatives related to nuclear decommissioning. His research not only addresses scientific challenges but also integrates policy-making, aligning technical innovation with sustainable nuclear energy strategies. Dr. Liu’s career reflects a harmonious blend of research, education, and practical applications, positioning him as a leading figure in nuclear science. His commitment to both the development of innovative nuclear technologies and the training of future experts underscores his multi-dimensional contributions to the field.

Professional Profile

Education

Dr. Xuegang Liu earned his doctoral degree, specializing in nuclear-related disciplines, which laid the foundation for his subsequent achievements in nuclear fuel cycle research and nuclear chemical engineering. Though specific details about his undergraduate and postgraduate institutions are not explicitly provided, it is evident that his academic training has been of the highest standard, aligning with his current prestigious role at Tsinghua University. His education has been deeply rooted in nuclear energy systems, chemical processing, and radioactive waste management, enabling him to develop expertise that spans both theoretical knowledge and applied research. Dr. Liu’s educational journey is complemented by his active teaching role at Tsinghua University, where he shares his specialized knowledge with graduate students through courses focusing on nuclear fuel cycle strategies and nuclear chemical engineering. This dual contribution as both a scholar and an educator reflects the solid academic foundation upon which his career is built. His ability to translate complex nuclear science concepts into applicable research and policies demonstrates the strength and depth of his educational background.

Professional Experience

Dr. Xuegang Liu is currently a research professor at the Institute of Nuclear and New Energy Technology (INET), Tsinghua University. Throughout his career, he has taken on multiple roles that integrate research, education, and engineering project management. Dr. Liu has been a key figure in managing scientific and technological initiatives, particularly in the area of nuclear decommissioning. His leadership in overseeing complex research projects and engineering applications related to nuclear chemical processing and radioactive waste management highlights his ability to bridge scientific innovation with real-world solutions. Apart from his research responsibilities, Dr. Liu has made significant contributions as an educator by teaching graduate-level courses at Tsinghua University, nurturing the next generation of nuclear scientists and engineers. His role extends to guiding doctoral students and managing interdisciplinary research collaborations within the nuclear energy field. His professional experience showcases a balance between advancing scientific research and contributing to the sustainable management of nuclear energy systems, reinforcing his reputation as an expert in the nuclear sector.

Research Interest

Dr. Xuegang Liu’s research interests are strongly centered around the advancement of nuclear chemical engineering, with a special focus on the nuclear fuel cycle, radioactive waste treatment, nuclear reprocessing, and nuclear decommissioning technologies. His work seeks to provide both innovative scientific solutions and sustainable strategies for the long-term management of nuclear materials. Dr. Liu is particularly engaged in developing fuel cycle strategies and nuclear policy frameworks that contribute to national and international nuclear safety and sustainability. His interest in nuclear waste management is critical to minimizing the environmental impact of nuclear energy, while his focus on decommissioning technologies addresses the safe dismantling of obsolete nuclear facilities. Additionally, Dr. Liu is keenly involved in research concerning the separation of radioactive nuclides, which plays an essential role in both waste reduction and fuel recovery processes. His broad research interests demonstrate a commitment to advancing nuclear technology while ensuring responsible and safe nuclear energy practices.

Research Skills

Dr. Xuegang Liu possesses a diverse set of advanced research skills that make him a highly capable scientist in the nuclear energy field. His expertise includes nuclear chemical process design, radioactive waste treatment technologies, fuel cycle strategy development, and nuclear decommissioning management. He is highly skilled in managing large-scale, interdisciplinary research projects that combine nuclear engineering, chemical engineering, and environmental safety considerations. Dr. Liu’s proficiency extends to radioactive nuclide separation technologies, which are crucial for waste processing and fuel recycling in nuclear reactors. He also demonstrates significant ability in policy-oriented research, enabling him to align his technical solutions with national energy strategies and regulatory frameworks. Additionally, his research skills encompass experimental design, project supervision, and teaching complex nuclear engineering concepts to graduate students. His technical versatility and leadership in both research and practical engineering applications position him as a well-rounded researcher with comprehensive nuclear science capabilities.

Awards and Honors

Although specific awards and honors are not listed, Dr. Xuegang Liu’s position as a research professor at Tsinghua University and his leadership in multiple high-impact nuclear research projects strongly imply recognition within his field. His entrusted responsibility to manage national-level nuclear decommissioning initiatives and advanced research projects indicates significant professional respect and acknowledgment from academic, governmental, and engineering communities. His continuous involvement in both teaching and critical nuclear policy research also suggests he is regarded as a key contributor to the future of China’s nuclear energy strategy. It would be reasonable to infer that his achievements and contributions have likely earned him accolades, commendations, or leadership positions within the nuclear research community. As an educator, his influence on student development and his commitment to advancing nuclear safety and sustainability further highlight his professional stature. Further details regarding specific awards could enrich this section and solidify his recognition at both national and international levels.

Conclusion

Dr. Xuegang Liu is an exemplary nuclear scientist whose contributions to nuclear chemical engineering, radioactive waste management, nuclear fuel cycle strategy, and nuclear decommissioning have had a profound impact on the advancement of nuclear technology and sustainability. His dual commitment to cutting-edge research and higher education has positioned him as a valuable asset in both academic and practical nuclear sectors. His work at Tsinghua University, particularly within the Institute of Nuclear and New Energy Technology, reflects his ability to lead complex research projects, educate future experts, and contribute to national nuclear strategies. Dr. Liu’s career demonstrates a rare blend of scientific depth, technical proficiency, and strategic vision, making him a highly deserving candidate for the Best Researcher Award. With further international collaborations, an expanded global publication presence, and continued leadership in nuclear innovation, Dr. Liu has the potential to elevate his influence to an even greater level. His dedication to improving nuclear safety, sustainability, and education will continue to benefit the global nuclear community.

Publications Top Notes

  1. Micro-oxidation calcination: transforming nuclear graphite into high-performance anode materials for lithium-ion batteries

    • Authors: Naizhe Zhang, Meng Li, Shuaiwei Wang, Zhen Shang, Xuegang Liu

    • Year: 2025

  2. 3-D gamma dose rate reconstruction for a radioactive waste processing facility using sparse and arbitrarily-positioned measurements

    • Authors: Shangzhen Zhu, Jianzhu Cao, Sheng Fang, Xinwen Dong, Wenqian Li, Xuegang Liu, Qiange He, Xinghai Wang

    • Year: 2022

  3. Summary of Tritium Source Term Study in 10 MW High Temperature Gas-Cooled Test Reactor

    • Authors: Xuegang Liu

    • Year: 2020

  4. A Comprehensive Study of the 14C Source Term in the 10 MW High-Temperature Gas-Cooled Reactor

    • Authors: Xuegang Liu

    • Year: 2019

  5. Cleaner recycling of spent Ni–Mo/γ-Al2O3 catalyst based on mineral phase reconstruction

    • Authors: Xuegang Liu

    • Year: 2019

  6. Measurement of oxygen reduction/evolution kinetics enhanced (La,Sr)CoO3/(La,Sr)2CoO4 hetero-structure oxygen electrode in operating temperature for SOCs

    • Authors: Xuegang Liu

    • Year: 2019

  7. A Simplified Process for Recovery of Li and Co from Spent LiCoO2 Cathode Using Al Foil As the in Situ Reductant

    • Authors: Xuegang Liu

    • Year: 2019

  8. Multilayer Shielding Design for Intermediate Radioactive Waste Storage Drums: A Comparative Study between FLUKA and QAD-CGA

    • Authors: Xuegang Liu

    • Year: 2019

  9. Recovery and regeneration of Al2O3 with a high specific surface area from spent hydrodesulfurization catalyst CoMo/Al2O3

    • Authors: Xuegang Liu

    • Year: 2019

  10. A comprehensive study on source terms in irradiated graphite spheres of HTR-10

  • Authors: Xuegang Liu

  • Year: 2018

Swati Gangwar | Chemical Engineering | Women Researcher Award

Ms. Swati Gangwar | Chemical Engineering | Women Researcher Award

Research scholar from Indian institute of Technology, India

Swati Gangwar is a dedicated research scholar currently pursuing her PhD in Chemical Engineering at the Indian Institute of Technology (IIT), Jammu. With a strong academic foundation marked by a first-class chemical engineering degree from AITH Kanpur and a Master’s degree from Harcourt Butler Technical University (HBTU), Kanpur, she has steadily advanced her expertise in thermal hydraulics and fluid flow. Under the mentorship of P.K. Vijayan, a distinguished expert with extensive experience at BARC, Swati has focused on natural circulation systems, which are critical in energy-efficient and safe passive heat transfer technologies. Her research contributions include experimental, numerical, and analytical studies of thermosyphon heat transport devices, indoor solar cooktops, and passive cooling systems applicable to renewable energy and nuclear safety sectors. Swati’s work has been published in prestigious international journals such as Nuclear Engineering and Design and IEEE Electrification Magazine, demonstrating her ability to contribute novel insights to her field. With ongoing projects and collaborative efforts, she continues to advance research that bridges theoretical understanding and practical innovation in heat transfer mechanisms, positioning herself as a promising leader in chemical engineering research.

Professional Profile

Education

Swati Gangwar completed her Bachelor of Technology (B.Tech) degree in Chemical Engineering from AITH Kanpur in 2016, graduating with first-class honors. She pursued her Master of Technology (M.Tech) in Chemical Engineering at Harcourt Butler Technical University (HBTU), Kanpur, completing it in 2019. Her graduate studies laid a solid foundation in core chemical engineering principles, with a growing interest in thermal systems and fluid mechanics. Currently, she is enrolled in a PhD program at the Indian Institute of Technology Jammu, focusing on heat transfer and fluid flow under the guidance of Professor P.K. Vijayan. The doctoral program enables her to engage deeply in research related to natural circulation loops, thermosyphon heat transport devices, and their applications in sustainable energy systems and nuclear safety. Her education trajectory reflects a consistent focus on advancing her expertise in thermal hydraulics and related engineering challenges, supported by rigorous academic training and research exposure at premier Indian institutions.

Professional Experience

Swati’s professional experience is primarily academic and research-oriented, centered on her PhD studies at IIT Jammu. She has actively contributed to research projects involving thermosyphon heat transport devices and natural circulation systems, focusing on experimental design, numerical modeling, and performance analysis. Her collaboration with her supervisor, Prof. P.K. Vijayan, who has a rich background in nuclear thermal hydraulics and reactor engineering, has enriched her exposure to practical challenges in energy systems design and safety. Swati has also worked on projects related to solar indoor cooktops, a novel application of thermosyphon technology, reflecting her ability to translate research into practical innovations. She has been involved in publishing several peer-reviewed papers in high-impact journals and presenting findings at scientific forums, contributing to the academic community. Although her experience is mainly research-focused, it reflects strong technical skills, teamwork in collaborative environments, and dedication to advancing applied thermal engineering solutions.

Research Interests

Swati’s research interests lie in the field of heat transfer, fluid dynamics, and passive cooling systems. Specifically, she focuses on natural circulation loops (NCLs) and thermosyphon heat transport devices (THTDs), which utilize buoyancy-driven flow to enable efficient heat transfer without mechanical pumps. Her work encompasses both single-phase and two-phase natural circulation systems, with a strong emphasis on stability analysis and flow instabilities. She is particularly interested in developing innovative applications of these passive heat transfer technologies, such as solar indoor cooking devices, passive fuel cooling systems in small modular reactors (SMRs), and sustainable energy solutions like solar space heating. Swati’s research aims to address critical challenges in renewable energy and nuclear safety by optimizing thermal-hydraulic performance and enhancing system stability. Her work bridges theoretical modeling, numerical simulations, and experimental validations to provide comprehensive insights into these systems’ behavior under various boundary conditions, contributing to safer and more efficient energy technologies.

Research Skills

Swati possesses a robust set of research skills combining experimental, analytical, and computational techniques. She is proficient in designing and conducting experiments related to thermosyphon heat transport devices and natural circulation loops, including setup fabrication, instrumentation, and data acquisition. Her skills include numerical modeling and simulation using system codes to predict thermo-hydraulic behavior and flow stability. She has experience in analytical methods for stability criteria development and performance analysis under varying operating conditions. Swati’s ability to integrate experimental data with numerical models allows her to validate and refine theoretical predictions effectively. Additionally, she has strong scientific writing skills, demonstrated through multiple publications in reputed journals. Her research also involves using computational fluid dynamics (CFD) tools for detailed flow analysis. Collaborating with multidisciplinary teams and managing complex research projects further highlights her organizational and teamwork capabilities. Overall, Swati’s research skills position her to make meaningful contributions to passive cooling and heat transfer technologies.

Awards and Honors

Swati Gangwar’s recognition primarily stems from her academic excellence and research contributions during her ongoing PhD. While specific external awards or honors were not explicitly mentioned, her work’s acceptance and publication in high-impact, peer-reviewed journals such as Nuclear Engineering and Design and IEEE Electrification Magazine are significant markers of her research quality and impact. Being mentored by a leading expert in the field, Prof. P.K. Vijayan, also adds to her academic prestige. Her participation in advanced research projects and collaborations, coupled with acceptance of her work in reputed journals, reflects peer recognition within the scientific community. Future recognition may include awards related to innovations in renewable energy or nuclear safety, given the societal relevance of her research areas. Encouragingly, her trajectory and ongoing scholarly output suggest a promising career with potential for further accolades and honors as she continues to contribute to her field.

Conclusion

Swati Gangwar exemplifies a promising young researcher with strong academic foundations, relevant professional experience, and a clear focus on impactful research in thermal hydraulics and fluid flow. Her work on natural circulation loops and thermosyphon devices addresses important challenges in renewable energy and nuclear safety, combining theoretical, numerical, and experimental approaches. With multiple high-quality journal publications and ongoing innovative projects, she is steadily establishing herself as a capable and impactful researcher. To strengthen her profile further, opportunities to demonstrate leadership in research projects, increase engagement with the wider scientific community through conferences, and pursue external funding or patents would be beneficial. Overall, Swati’s dedication and contributions position her well as a deserving candidate for the Women Researcher Award, highlighting her potential as a future leader in engineering research.

Publications Top Notes

  1. Title: Insight on the steady-state performance of single-phase Natural circulation loops
    Year: 2025
    Authors: Swati Gangwar, P. K. Vijayan, Goutam Dutta
    Journal: Nuclear Engineering and Design, Volume 440, 114128

  2. Title: Insights on the instability and stabilizing techniques for natural circulation loops
    Year: 2025
    Authors: P. K. Vijayan, Swati Gangwar, Dev Banitia, U. C. Arunachala, S. Nakul, D. N. Elton, K. Varun
    Journal: Nuclear Engineering and Design, Volume 438, 114017

  3. Title: Intrinsically Safe Thermohydraulic Designs for SMRs: Design advantages and challenges
    Year: 2024
    Authors: P. K. Vijayan, Swati Gangwar
    Journal: IEEE Electrification Magazine, Volume 12, Issue 4, pp. 75–83
    DOI: 10.1109/MELE.2024.3473332

  4. Title: CFD analysis of the steady-state performance of a cooktop integrated Thermosyphon heat transport device with two bends
    Year: 2025
    Authors: Sonu Kumar, Pallippattu Krishnan Vijayan, Swati Gangwar, Satya Sekhar Bhogilla
    Journal: Heat Transfer Engineering Journal (Accepted for publication)

  5. Title: Experimental performance of a novel solar indoor cooktop using THTD
    Year: 2024
    Authors: Swati Gangwar, A. Budakoti, S. S. Bhogilla, G. Dutta, P. K. Vijayan
    Journal: ASTFE Digital Library, Begell House Inc.

Shiqun Wu | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Shiqun Wu | Chemical Engineering | Best Researcher Award

Associate Professor from East China University of Science and Technology, China

Dr. Shiqun Wu is an accomplished Associate Professor and Master’s Supervisor at the School of Chemistry and Molecular Engineering, East China University of Science and Technology (ECUST). He is a dynamic researcher specializing in photocatalytic materials, with a sharp focus on developing sustainable solutions for energy conversion and environmental remediation. His scientific pursuits contribute significantly to China’s national objectives in carbon neutrality and clean energy innovation. Dr. Wu has authored over 20 SCI-indexed research articles in prestigious journals such as JACS, Angewandte Chemie, Advanced Materials, and Chem, reflecting both the quality and impact of his work. His extensive research has led to over ten patent filings, with two granted, underscoring his efforts to bridge fundamental science with practical application. He has also secured several competitive national and regional grants and actively mentors students, leading them to win top innovation awards. With active roles in editorial boards and professional societies, Dr. Wu continues to shape the research landscape in renewable energy and catalysis. His career reflects a balanced integration of academic excellence, research leadership, and societal relevance, positioning him as an outstanding candidate for recognitions such as the Best Researcher Award.

Professional Profile

Education

Dr. Shiqun Wu has pursued his entire academic career at East China University of Science and Technology (ECUST), a leading institution in applied sciences in China. He began with a Bachelor of Science degree in Applied Chemistry from ECUST, graduating in 2016. During his undergraduate studies, he developed a strong foundation in chemical principles and laboratory techniques, which laid the groundwork for his research trajectory. Following this, he continued at ECUST to pursue a Ph.D. in Applied Chemistry, awarded in 2021 under the mentorship of Professor Jinlong Zhang, a foreign academician of the European Academy of Sciences. His doctoral research focused on the atomic-level design of photocatalytic materials for energy and environmental applications, establishing him as a capable and innovative researcher early in his career. Dr. Wu’s academic training provided him with deep theoretical knowledge and practical expertise in catalysis, nanomaterials, and photochemistry, all essential areas for addressing energy conversion challenges. His educational journey reflects a seamless and accelerated transition from student to scientist, and now to a university-level educator and mentor, equipping him with the pedagogical and technical capabilities to guide the next generation of chemists.

Professional Experience

Dr. Wu’s professional experience has been entirely centered at East China University of Science and Technology, allowing him to develop within a cohesive academic and research environment. After completing his Ph.D. in 2021, he was appointed as a Postdoctoral Fellow at ECUST, where he continued his research under the guidance of Professor Jinlong Zhang. During this three-year postdoctoral phase, he led multiple high-impact research projects, including those funded by the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. His efforts resulted in significant contributions to the field of photocatalysis and material science. In June 2024, Dr. Wu was promoted to the position of Associate Professor in the School of Chemistry and Molecular Engineering. In this role, he not only continues his research but also supervises master’s students, mentors undergraduates, and engages in curriculum development. His progression from student to faculty member within the same institution signifies both loyalty and academic maturity. His career reflects strong leadership, project management, and collaboration with peers and students alike. The continuity and depth of his institutional experience also empower him to influence departmental research direction, making him a valuable asset to ECUST’s academic community.

Research Interests

Dr. Shiqun Wu’s research is primarily focused on the development and engineering of photocatalytic materials aimed at energy conversion and environmental remediation. His work plays a critical role in addressing the global challenges of carbon emissions and sustainable energy. Specifically, his research targets the green transformation of inert molecules such as methane (CH₄), carbon dioxide (CO₂), and nitrogen (N₂), aligning with national and international goals of carbon peaking and neutrality. He investigates atomic-level control of catalyst surface active sites and explores the underlying mechanisms of molecular activation, aiming to optimize efficiency and selectivity in photocatalytic processes. Dr. Wu is especially interested in single-atom catalysts, spin polarization effects, and structure-performance relationships. His interdisciplinary approach blends inorganic chemistry, material science, surface chemistry, and reaction engineering. Through precise material design and performance evaluation, he seeks to advance new-generation photocatalysts with superior conversion efficiencies under solar or visible light. His work contributes to cleaner chemical processes and greener technologies, reinforcing his status as a high-impact researcher. These interests not only contribute to the advancement of academic science but also offer scalable and practical solutions for industrial environmental challenges.

Research Skills

Dr. Wu possesses an advanced skill set that spans synthesis, characterization, and performance evaluation of nanostructured photocatalysts. His expertise includes atomic-level engineering of catalyst surfaces, single-atom dispersion techniques, and the controlled doping of semiconducting materials for enhanced light-driven reactions. He is proficient in a range of experimental methods, including solid-phase synthesis, hydrothermal methods, and sol-gel techniques for preparing oxide-based nanomaterials. Dr. Wu also excels in using advanced characterization tools such as X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR) to probe the structural and chemical properties of catalysts. Furthermore, he is skilled in photochemical and photoelectrochemical measurement techniques to assess the catalytic performance, quantum efficiencies, and charge transport properties of photocatalysts. His ability to integrate computational insights with experimental data enhances his understanding of catalytic mechanisms. Dr. Wu’s interdisciplinary approach—spanning materials design, reaction engineering, and mechanism analysis—equips him to develop practical and scalable solutions. His research capabilities are further enriched by experience in leading research teams, writing competitive grant proposals, mentoring graduate students, and disseminating findings through high-impact publications and patents.

Awards and Honors

Dr. Shiqun Wu has received a wide range of prestigious awards and honors throughout his academic and research career, recognizing both his scientific excellence and leadership. He has been the recipient of the Shanghai “Rising Star” Talent Program, the Postdoctoral Innovative Talent Support Program, and the Shanghai “Super Postdoc” Incentive Program. His successful applications to the National Natural Science Foundation of China and the China Postdoctoral Science Foundation reflect his ability to secure highly competitive research funding. Dr. Wu has also demonstrated excellence in mentorship, serving as the first advisor to student teams that won Gold and Bronze Awards at the China International University Student Innovation Competition and the China “Internet+” Innovation and Entrepreneurship Competition. He was a National Finalist in the China Postdoctoral Innovation and Entrepreneurship Competition and was named an Excellent Postdoctoral Researcher in Shanghai in 2021. During his Ph.D., he received the National Graduate Scholarship, the Zhang Jiang Excellent Ph.D. Fellowship, and the third prize in the ACS Graduate Research Achievement Contest. These accolades reflect not only his scientific merit but also his commitment to educational and societal advancement through innovation and collaboration.

Conclusion

Dr. Shiqun Wu represents a new generation of chemists who integrate deep theoretical understanding with experimental rigor to address some of the most pressing challenges in energy and environmental science. His work in photocatalytic materials demonstrates both creativity and precision, aiming to transform inert molecules into valuable chemicals using sustainable, light-driven processes. With over 20 high-impact publications and more than ten patent filings, he has established a strong research profile at an early stage of his career. His contributions extend beyond the lab through effective mentorship, academic leadership, and successful project management. While his international visibility could benefit from further global collaboration and independent project branding, his current trajectory is highly promising. Dr. Wu’s interdisciplinary skills, strategic research focus, and dedication to innovation position him as an outstanding candidate for the Best Researcher Award. His work not only contributes to the scientific community but also aligns with broader environmental and societal goals, reflecting both intellectual merit and practical relevance. As he continues to grow in his academic role, Dr. Wu is expected to make transformative contributions to the field of green chemistry and sustainable catalysis.

Publications Top Notes

  1. Core–Shell MIL-125(Ti)@In2S3 S-Scheme Heterojunction for Boosting CO2 Photoreduction
    Authors: Mazhar Khan, Zeeshan Akmal, Muhammad Tayyab, Seemal Mansoor, Dongni Liu, Junwen Ding, Ziwei Ye, Jinlong Zhang, Shiqun Wu, Lingzhi Wang
    Journal: ACS Applied Materials & Interfaces
    Year: 2025 (May 16)
    DOI: 10.1021/acsami.5c03817

  2. Regulating Atomically‐Precise Pt Sites for Boosting Light‐Driven Dry Reforming of Methane
    Authors: Chengxuan He, Qixin Li, Zhicheng Ye, Lijie Wang, Yalin Gong, Songting Li, Jiaxin Wu, Zhaojun Lu, Shiqun Wu, Jinlong Zhang
    Journal: Angewandte Chemie
    Year: 2024 (Nov 11)
    DOI: 10.1002/ange.202412308

  3. Optimizing Reaction Kinetics and Thermodynamics for Photocatalytic CO2 Reduction through Spin Polarization Manipulation
    Authors: Mingyang Li, Shiqun Wu, Dongni Liu, Zhicheng Ye, Chengxuan He, Jinlong Wang, Xiaoyi Gu, Zehan Zhang, Huizi Li, Jinlong Zhang
    Journal: ACS Catalysis
    Year: 2024 (Sept 20)
    DOI: 10.1021/acscatal.4c03802

  4. Engineering Spatially Adjacent Redox Sites with Synergistic Spin Polarization Effect to Boost Photocatalytic CO2 Methanation
    Authors: Mingyang Li, Shiqun Wu, Dongni Liu, Zhicheng Ye, Lijie Wang, Miao Kan, Ziwei Ye, Mazhar Khan, Jinlong Zhang
    Journal: Journal of the American Chemical Society
    Year: 2024 (June 5)
    DOI: 10.1021/jacs.4c04264

  5. Single‐Atom Alloys Materials for CO2 and CH4 Catalytic Conversion
    Authors: Chengxuan He, Yalin Gong, Songting Li, Jiaxin Wu, Zhaojun Lu, Qixin Li, Lingzhi Wang, Shiqun Wu, Jinlong Zhang
    Journal: Advanced Materials
    Year: 2024 (April)
    DOI: 10.1002/adma.202311628

  6. Boosting CO production from visible-light CO2 photoreduction via defects-induced electronic-structure tuning and reaction-energy optimization on ultrathin carbon nitride
    Authors: J. Li, C. He, J. Wang, X. Gu, Z. Zhang, H. Li, M. Li, L. Wang, S. Wu, J. Zhang
    Journal: Green Chemistry
    Year: 2023
    DOI: 10.1039/d3gc02371k

  7. Combing Hollow Shell Structure and Z-Scheme Heterojunction Construction for Promoting CO2 Photoreduction
    Authors: Z. Deng, J. Cao, S. Hu, S. Wu, M. Xing, J. Zhang
    Journal: Journal of Physical Chemistry C
    Year: 2023
    DOI: 10.1021/acs.jpcc.3c01375

 

Jingxia Wang | Engineering | Best Researcher Award

Ms. Jingxia Wang | Engineering | Best Researcher Award

Doctor from University of Shanghai for Science and Technology, China

Jingxia Wang is a promising young researcher and lecturer in the School of Mechanical Engineering at the University of Shanghai for Science and Technology. Her academic journey and research achievements reflect a strong commitment to advancing the field of electrical and electromechanical systems. With a specialized focus on the electromagnetic-thermal coupling and iron loss analysis in electric machines, she has contributed significantly to the theoretical and applied aspects of energy conversion technologies. Her research addresses key challenges in improving the performance and efficiency of permanent magnet and induction motors under inverter supply, aligning with the growing demands for high-performance electric drives. She has published several high-quality articles in top-tier journals such as IEEE Transactions on Industrial Electronics and IEEE Transactions on Energy Conversion, establishing her as a rising expert in her field. In addition to scholarly publications, she has also contributed to patented innovations in the domain of loss calculation and electromagnetic simulation. Her active participation in national research funding programs and leadership roles in funded projects underscore her academic capabilities. Jingxia Wang continues to grow as an independent researcher with a clear vision and technical depth, making her a strong candidate for prestigious academic recognition, including the Best Researcher Award.

Professional Profile

Education

Jingxia Wang has built her academic foundation through a robust and consistent educational trajectory in the field of electrical engineering. She completed her undergraduate studies at Northeast Electric Power University from September 2011 to July 2015, where she obtained a Bachelor’s degree in Electrical Engineering and Automation. Her early training laid the groundwork for deeper technical exploration and problem-solving in electric machine systems. Driven by academic passion and curiosity, she pursued doctoral studies at Southeast University—one of China’s top institutions—in the field of Electrical Engineering from September 2015 to March 2022. During her Ph.D., she specialized in iron loss modeling, magnetic field modulation, and electromagnetic-thermal coupling in motor systems, which later became core aspects of her research focus. Her doctoral work contributed to high-impact publications and several patents, indicating both theoretical innovation and practical relevance. While she has not undertaken a postdoctoral fellowship, the depth and breadth of her Ph.D. training have equipped her with the technical acumen necessary for independent research and academic leadership. Her educational background reflects strong theoretical grounding and hands-on experience with complex computational models and machine dynamics, positioning her well within the academic and industrial research community.

Professional Experience

Jingxia Wang has been serving as a Lecturer at the School of Mechanical Engineering, University of Shanghai for Science and Technology since June 2022. In this capacity, she has been actively engaged in both teaching and research activities related to electric machinery and computational modeling. Her professional role involves mentoring students, contributing to curriculum development, and leading research projects funded by national and municipal agencies. Although she does not have postdoctoral experience, her transition from Ph.D. to faculty position demonstrates her capability to operate as an independent researcher. As a principal investigator, she has led and managed a National Natural Science Foundation Youth Fund project focused on inverter-fed induction motors and magnetic loss analysis, reflecting her technical leadership and project management skills. Additionally, she has participated in and contributed to major collaborative research projects funded by NSFC and the Shanghai Science and Technology Commission. Her involvement in interdisciplinary work, such as multi-physics coupling analysis, further expands the relevance of her professional profile across mechanical and electrical domains. Jingxia’s teaching experience and project responsibilities showcase a balanced academic career that combines foundational research, practical application, and knowledge dissemination, strengthening her suitability for academic recognition and further career advancement.

Research Interests

Jingxia Wang’s research interests lie at the intersection of electrical machine design, electromagnetic modeling, and multiphysics simulation. Her work primarily focuses on accurate calculation and analysis of iron loss in permanent magnet and induction motors, especially under pulse-width modulation (PWM) inverter supply. One of her core contributions has been the application of general airgap magnetic field modulation theory to quantify iron loss and stray load loss more effectively. Additionally, she has expanded her research into bidirectional coupling between electromagnetic and thermal fields, a critical area for enhancing the design accuracy and reliability of electric machines in dynamic environments. Her interests also include finite element analysis (FEA), fast calculation algorithms, and field-oriented control techniques for electric drives. Through her ongoing research, she addresses challenges in improving energy efficiency, thermal stability, and operational reliability in motor systems used in transportation, robotics, and industrial automation. Her work bridges theoretical electromagnetics with real-world implementation, making her contributions both academically valuable and industrially applicable. As sustainability and electrification become global priorities, her research remains timely and impactful, paving the way for smarter, more efficient electromechanical devices and systems.

Research Skills

Jingxia Wang possesses a comprehensive set of research skills that support her specialization in electric machine systems and computational modeling. She is highly proficient in electromagnetic field theory and loss analysis techniques, particularly in inverter-fed motors. Her expertise includes the application of general airgap field modulation theory, finite element analysis (FEA), and the development of fast calculation methods for complex electromechanical systems. She is also skilled in thermal simulation and electromagnetic-thermal bidirectional coupling analysis, which are crucial for evaluating machine performance under varying operational conditions. Her programming capabilities and simulation experience with industry-standard tools enable her to handle multi-domain simulations efficiently. Furthermore, she has experience with research project design, proposal writing, data interpretation, and results dissemination through high-impact publications. Her skill set extends to intellectual property development, as evidenced by her co-invention of several patents. Jingxia is adept at translating theoretical models into practical applications, making her a valuable collaborator in both academic and industrial research environments. Her methodological rigor, combined with strong analytical and communication skills, enhances her ability to lead independent research and mentor students in advanced engineering topics.

Awards and Honors

Although specific awards are not listed beyond patents and project funding, Jingxia Wang’s academic track record includes several forms of recognition that demonstrate her research excellence and innovative capabilities. She has received competitive research funding from the National Natural Science Foundation of China, including a Youth Fund project, which is highly regarded for supporting emerging researchers with outstanding potential. Her leadership in this and other municipal projects such as the Shanghai “Science and Technology Innovation Action Plan” reflects recognition by key funding bodies and the research community. Her scholarly work has appeared in prestigious journals such as IEEE Transactions on Industrial Electronics and IEEE Transactions on Energy Conversion, often as the sole first author—a significant academic distinction. She has also co-invented multiple patents related to magnetic field modulation, iron loss calculation, and electromagnetic-thermal modeling, highlighting her contribution to applied research and technology transfer. These honors, combined with her early career achievements, serve as strong indicators of her research strength, impact, and upward trajectory. As her academic career progresses, she is well-positioned to attain further distinctions at both national and international levels.

Conclusion

Jingxia Wang emerges as a highly capable and driven early-career academic with a solid foundation in electrical engineering and a sharp focus on energy-efficient electromechanical systems. Her contributions span theoretical innovation, computational modeling, and practical engineering solutions—making her research both relevant and forward-looking. Through high-impact publications, funded projects, and patented technologies, she has already made a significant mark in the field of electric machine analysis. Her ability to integrate electromagnetic theory with thermal dynamics in machine modeling reflects a rare depth of technical insight and interdisciplinary thinking. While she could further benefit from postdoctoral experience or international research exposure, her current achievements speak to her strong potential for future academic and industrial leadership. As a researcher who demonstrates clarity in focus, rigor in methodology, and creativity in solving complex engineering problems, Jingxia Wang is a compelling nominee for the Best Researcher Award. Her trajectory suggests sustained contributions to science and engineering, with the capacity to influence not only academic discourse but also real-world applications in energy and automation systems.

Publications Top Notes

  1. Double-virtual-vector-based model predictive torque control for dual three-phase PMSM
    Authors: Qingqing Yuan, Rongyan Xiao, Jingxia Wang, Kun Xia, Wei Yu
    Journal: Electronics (Switzerland)
    Year: 2025

Behnam Rezvani | Chemical Engineering | Best Researcher Award

Mr. Behnam Rezvani | Chemical Engineering | Best Researcher Award

Laboratory Operator from University of Tehran, Iran 

Behnam (Benjamin) Rezvani is a promising chemical engineer whose academic and research credentials place him among the top emerging scientists in the field of sustainable energy and environmental engineering. With a strong foundation in chemical engineering from Hakim Sabzevari University and advanced specialization in separation processes from the University of Tehran—Iran’s top-ranked university—Rezvani has built an interdisciplinary research portfolio that integrates bio-oil production, biodiesel synthesis, and wastewater treatment technologies. His ability to blend experimental proficiency with software modeling and data-driven methods such as machine learning demonstrates his versatility and innovation in tackling global environmental challenges. He has authored multiple peer-reviewed articles in high-impact journals and presented research at international congresses. His projects span from catalyst optimization to advanced adsorption techniques using biochar, emphasizing his commitment to sustainable and scalable chemical engineering solutions. Beyond research, he has served as a teaching assistant in various laboratory courses and holds editorial and review positions in reputable scientific platforms. With awards from national competitions and a growing number of publications, Rezvani stands out as a dynamic contributor to scientific advancement. His passion for clean energy and sustainable technologies marks him as a strong contender for the Best Researcher Award.

Professional Profile

Education

Behnam Rezvani’s educational journey reflects a progressive commitment to excellence in chemical engineering, particularly in areas tied to sustainability, green chemistry, and process optimization. He earned his Bachelor of Science degree in Chemical Engineering from Hakim Sabzevari University, where he developed a solid foundation in core chemical engineering principles. He then pursued his Master of Science degree in Chemical Engineering with a specialization in Separation Processes at the prestigious University of Tehran, Iran’s leading academic institution. During his graduate studies, he maintained a commendable GPA of 3.65/4.00 and undertook significant research, including his thesis on the removal of Alizarine Red S from wastewater using a biochar composite derived from rice husk and sewage sludge pyrolysis. His advanced education involved both experimental and computational modeling, allowing him to blend theoretical knowledge with practical skills. In addition to core engineering courses, he engaged in interdisciplinary projects incorporating design of experiments, process simulation, and environmental remediation. His language proficiency, demonstrated by an IELTS score of 7, further qualifies him for international collaboration and academic endeavors. This robust academic background, enriched by hands-on lab work and innovative research, has positioned Rezvani as a capable and globally aware chemical engineering researcher.

Professional Experience

Behnam Rezvani has amassed a diverse range of professional experiences that reflect his technical acumen, interdisciplinary expertise, and proactive engagement with industry challenges. He served as a teaching assistant at the University of Tehran in courses such as Thermodynamics, Heat Transfer Laboratory, Processes Control Laboratory, and Unit Operations Laboratory. These roles underscore his hands-on proficiency and teaching capabilities in key engineering disciplines. Additionally, Rezvani has contributed to research and development initiatives across several companies, including AMPER INNOVATION Center, Pishgam Rooyesh Espadana Company, Payafan Yakhteh Alborz Company, and Arfa Iron and Steel Company. His work has spanned a variety of applied domains, from interface thermal materials and fertilizer development to wastewater treatment system design for industrial facilities. He has also served as a laboratory specialist at Gemizdar Petrorefinery, reinforcing his practical skills in a petrochemical setting. His experience with simulation software such as HYSYS, MATLAB, and Design-Expert, alongside programming in Python and C++, has enabled him to lead data-driven and computational modeling projects. Whether designing biodiesel production processes, simulating complex chemical reactions, or developing machine learning models for medical applications, Rezvani consistently demonstrates an ability to integrate scientific innovation with real-world solutions.

Research Interests

Behnam Rezvani’s research interests center around sustainable energy technologies, environmental remediation, and advanced chemical process engineering. His academic and experimental focus lies in bio-oil and biodiesel production through pyrolysis and transesterification, particularly using agricultural and industrial waste biomass. He is keenly interested in developing innovative adsorbents from biochar and activated carbon for water treatment and pollution mitigation, employing chemical modifications and modern pyrolysis techniques to enhance efficiency. His research also explores catalytic systems for oxidation processes and eco-friendly indigo dye synthesis, indicating a broader commitment to green chemistry. Rezvani’s interest in adsorption and biosorption extends to electrospun bio-nanocomposites, such as chitosan/Chlorella vulgaris, for heavy metal removal from wastewater. Additionally, he is invested in techno-economic analyses and design of experiments (DOE), aiming to bridge laboratory innovation with industrial scalability. His emerging work in machine learning, particularly in predicting medical outcomes from biochemical data, adds a computational edge to his experimental profile. Through these multidisciplinary interests, Rezvani seeks to develop sustainable, cost-effective, and technologically advanced solutions for global environmental challenges. His ongoing research contributions not only address critical environmental concerns but also aim to advance circular economy principles and resource recovery from waste materials.

Research Skills

Behnam Rezvani possesses a wide range of research skills that make him a well-rounded and capable chemical engineering researcher. His expertise spans both experimental and computational methodologies, allowing him to bridge theory and practice effectively. In the laboratory, he has conducted extensive work on pyrolysis for bio-oil and biochar production, biodiesel synthesis from halophytic plants, catalyst development, and wastewater treatment through biosorption and advanced adsorption methods. He is proficient in various analytical and fabrication techniques, including electrospinning, FTIR spectroscopy, and SEM imaging. Rezvani is also skilled in using MATLAB for modeling partial differential equations and performing advanced statistical analyses via Minitab and Design-Expert for experimental optimization. His software skills include HYSYS for chemical process simulations, ChemDraw for chemical structure design, and Python for machine learning applications, achieving high-accuracy predictive models in healthcare analytics. Additionally, he has conducted techno-economic assessments and scaling feasibility studies to ensure practical applicability of his research. His strong technical communication is evidenced by published journal articles, conference presentations, and experience as an editor and reviewer for scientific journals. These combined skills equip him to tackle complex, interdisciplinary problems in chemical engineering, particularly in the pursuit of cleaner energy, efficient resource recovery, and sustainable industrial processes.

Awards and Honors

Behnam Rezvani has earned numerous distinctions that highlight his scientific excellence, innovation, and leadership in chemical engineering. His notable achievements include securing 1st place in the prestigious Rah Neshan National Competition in Iran by proposing a novel indigo synthesis method using a microflow reactor—an innovative take on the traditional Heumann & Pfleger process. He also placed 3rd in the Rahisho National Competition for a pioneering wastewater treatment and reuse proposal tailored to steel manufacturing processes. Rezvani’s editorial contributions further exemplify his leadership; he served as an editor and editorial board member of the student-led ‘Farayand’ scientific journal for over two years, promoting scientific literacy in chemical engineering. His academic engagement extended internationally through his role as a peer reviewer for the International Journal of Biological Macromolecules (IF: 7.7), demonstrating his analytical acumen and contribution to global research. Additionally, his published research in high-impact journals like Bioresource Technology Reports, Canadian Journal of Chemical Engineering, and Journal of the Energy Institute has garnered professional recognition. With several accepted conference papers, under-review articles, and two registered inventions, Rezvani’s award record showcases his innovation, productivity, and impact on sustainable technologies and environmental remediation.

Conclusion

In conclusion, Behnam Rezvani exemplifies the qualities of a dedicated, innovative, and impactful researcher. With a multidisciplinary approach rooted in chemical engineering and sustainability, he has consistently demonstrated the ability to convert complex scientific ideas into practical and scalable solutions. His contributions to bio-oil and biodiesel production, waste-to-resource conversion, and water treatment technologies address some of the most urgent environmental challenges of our time. He skillfully integrates experimental research with computational modeling, simulation, and data analysis, embodying a modern and systems-thinking perspective. His achievements, including national awards, editorial roles, and international publications, reflect his commitment to excellence and advancement in his field. Furthermore, his engagement in teaching, industry collaboration, and ongoing innovation—through registered inventions and cutting-edge research—underscores his leadership potential. Behnam Rezvani’s well-rounded profile, global mindset, and dedication to sustainable development make him an outstanding candidate for the Best Researcher Award. With continued support and recognition, he is poised to make lasting contributions to science, industry, and society at large.

Publications Top Notes

  1. Title: Enhanced bio-oil production from Co-pyrolysis of cotton seed and polystyrene waste; fuel upgrading by metal-doped activated carbon catalysts
    Authors: Mahshid Vaghar Mousavi, Behnam Rezvani, Ahmad Hallajisani
    Year: 2025

  2. Title: Super-effective biochar adsorbents from Co-pyrolysis of rice husk and sewage sludge: Adsorption performance, advanced regeneration, and economic analysis
    Authors: Behnam Rezvani, Ahmad Hallajisani, Omid Tavakoli
    Year: 2025

  3. Title: Novel techniques in bio‐oil production through catalytic pyrolysis of waste biomass: Effective parameters, innovations, and techno‐economic analysis
    Authors: Behnam Rezvani
    Year: 2025

  4. Title: Canola, Camelina, and Linseed Biodiesel: A Sustainable Pathway for Renewable Energy
    Authors: Behnam Rezvani
    Year: 2024

  5. Title: Exploring the Potential of Biosorption By Algae: A Sustainable Solution for Water Treatment
    Authors: Behnam Rezvani
    Year: 2024

  6. Title: Mercury Removal by Biochar and Activated Carbon: An Effective Approach for Environmental Remediation
    Authors: Behnam Rezvani
    Year: 2024

  7. Title: Safflower, Moringa, and Salicornia Biodiesel: A Comparative Analysis of Sustainable Fuel Alternatives
    Authors: Behnam Rezvani
    Year: 2024

 

 

Kowsar Rezvanian | Chemical Engineering | Best Researcher Award

Ms. Kowsar Rezvanian | Chemical Engineering | Best Researcher Award

Graduate Research Assistant (GRA) from Tuskegee University, United States

Kowsar Rezvanian is an accomplished researcher with a strong academic background and a focus on sustainability and material science. She holds a Ph.D. in Materials Science and Engineering from Tuskegee University, where she achieved a perfect GPA of 4.0, reflecting her academic excellence and dedication. Kowsar’s research addresses critical environmental challenges, particularly in the fields of polymer science, food packaging, and wastewater treatment. Her work involves innovative methods such as upcycling multilayer plastic films and optimizing materials for food preservation, contributing significantly to both scientific knowledge and environmental sustainability. In addition to her academic accomplishments, Kowsar has presented her research at various international conferences, demonstrating her global perspective on the importance of sustainable practices. Through her publications in high-impact journals, she has made valuable contributions to her field. Kowsar’s leadership roles in research teams and her involvement in industry-related projects underscore her commitment to advancing scientific knowledge and providing real-world solutions.

Professional Profile

Education

Kowsar Rezvanian has a solid educational foundation, having earned a Ph.D. in Materials Science and Engineering from Tuskegee University, where she maintained a perfect GPA of 4.0. She also holds an M.Sc. in Chemical Engineering from the same institution, where she achieved an impressive GPA of 3.85/4. Her academic journey began at Tehran Polytechnic, where she completed her BSc in Chemical Engineering with a GPA of 3.10/4. Her exceptional academic performance throughout her studies reflects her passion for research and learning. During her doctoral studies, Kowsar gained expertise in materials science, particularly focusing on sustainability in polymer processing and environmental conservation. She continuously sought to integrate theory with practical solutions, which shaped her ability to develop meaningful and impactful research. Her education laid the groundwork for her research on innovative recycling processes and the optimization of materials for real-world applications, such as food packaging and wastewater treatment, which are central themes of her current work.

Professional Experience

Kowsar Rezvanian has gained extensive professional experience as a Graduate Research Assistant at Tuskegee University, where she has worked since 2021. In this role, she has been responsible for data collection and storage, conducting data analysis, managing project inventories, and developing new research practices and tools. Her work at Tuskegee University has allowed her to further her research in sustainability and materials science, particularly in the optimization of polymer films for food packaging and the upcycling of multilayer plastic films for industrial applications. In addition to her academic role, Kowsar also served as a member of the board of directors at Arka Company, where she contributed to decision-making and project management between 2019 and 2021. Her prior experience as a Heat Transfer Teaching Assistant at Tuskegee University also showcases her capability to communicate complex concepts to students and assist in the development of curriculum materials. This diverse professional experience has provided Kowsar with a comprehensive understanding of both the academic and industrial aspects of materials science and engineering.

Research Interests

Kowsar Rezvanian’s research interests are focused on addressing global challenges through sustainable material science and engineering. Her work primarily revolves around the development of innovative recycling techniques for multilayer plastic films and optimizing materials for food packaging. She is passionate about advancing environmental sustainability through the upcycling of plastic waste into nanocomposite materials, promoting a circular economy. In her research on food packaging, Kowsar focuses on optimizing the thickness and ethylene content of poly(ethylene vinyl alcohol) (EVOH) films to improve their mechanical and thermal properties, ultimately enhancing food preservation and reducing waste. Another key area of her research is wastewater treatment, specifically using photocatalytic processes to treat refinery wastewater and reduce chemical oxygen demand (COD). Kowsar’s research also explores the scale-up of food product manufacturing processes, ensuring that scientific innovations can be translated to large-scale, industrial applications. Through these efforts, Kowsar aims to make significant contributions to the sustainability of materials used in packaging, food preservation, and environmental conservation.

Research Skills

Kowsar Rezvanian possesses a wide range of advanced research skills that support her innovative work in materials science and environmental sustainability. She is proficient in various software tools and programming languages such as Maestro Materials, Aspen HYSYS, MATLAB, and Python, which she uses to model, optimize, and analyze material properties and processes. Kowsar is skilled in material characterization techniques, including Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), X-Ray Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR), which she uses to evaluate the properties of different materials, including plastics and polymers. Her hands-on skills also include utilizing equipment such as CNC machines, 3D printers, water jet cutters, and mechanical testing devices for the fabrication and testing of materials. Kowsar’s expertise in design software such as Fusion 360 and Prusa Slicer further complements her research in developing new material solutions for applications like 3D printing and packaging. These technical skills enable her to approach complex challenges with a multidisciplinary and innovative perspective.

Awards and Honors

Kowsar Rezvanian has received several prestigious awards and honors in recognition of her outstanding academic and research achievements. She was the recipient of the GRSP Scholarship for the 2024-2025 academic year, which highlights her potential for continued academic and professional growth in the field of materials science and engineering. Additionally, Kowsar was honored as the IFT Product Development Winner in 2022, an award that recognizes her contributions to food science and packaging technologies. These accolades are a testament to her dedication to advancing knowledge in her field and to the quality of her research. Kowsar’s recognition in both academic and professional circles reflects her ability to produce work that is not only innovative but also impactful. As she continues her research, she is likely to receive further recognition for her efforts to develop sustainable materials and solutions that address pressing global challenges in environmental conservation and industrial applications.

Conclusion

Kowsar Rezvanian is a dedicated and highly skilled researcher whose work in materials science and engineering has made a significant impact on sustainability and environmental conservation. With a strong academic foundation, outstanding research achievements, and a focus on real-world applications, Kowsar has demonstrated exceptional potential for advancing both scientific knowledge and industrial practices. Her ongoing research on upcycling plastic waste, optimizing food packaging, and improving wastewater treatment showcases her commitment to addressing global challenges through innovation. While her professional experience and technical expertise position her for continued success, there are opportunities for Kowsar to further enhance her profile by expanding her leadership roles, strengthening industry collaborations, and exploring additional interdisciplinary research areas. As a result, Kowsar is poised to make even more significant contributions to the field and is well-deserving of recognition for her achievements.

Publications Top Notes

  1. Title: A review on sweet potato syrup production process: Effective parameters and syrup properties
    Authors: K Rezvanian, S Jafarinejad, AC Bovell-Benjamin
    Year: 2023
    Citations: 5

  2. Title: Optimizing Process Variables and Type in a Sweet Potato Starch Syrup: A Response Surface Methodology Approach
    Author: K Rezvanian
    Institution: Tuskegee University
    Year: 2023
    Citations: 5

  3. Title: Mathematical Modeling and Optimization of Poly (Ethylene Vinyl Alcohol) Film Thickness and Ethylene Composition Based on I‐Optimal Design
    Authors: K Rezvanian, R Panickar, F Soso, V Rangari
    Journal: Journal of Applied Polymer Science
    Volume: e56827
    Year: 2025

  4. Title: Cover Image, Volume 142, Issue 18
    Authors: K Rezvanian, R Panickar, F Soso, V Rangari
    Journal: Journal of Applied Polymer Science
    Volume: 142 (18), e54197
    Year: 2025

  5. Title: Innovative Manufacturing and Recycling Approaches for Multilayer Polymer Packaging: A Comprehensive Review
    Authors: K Rezvanian, HT Shahan, D Ghofrani, V Rangari
    Journal: Polymer-Plastics Technology and Materials
    Year: 2025

  6. Title: Response Surface Methodological Approach for Scaling Up an Enzymatic Production of Sweet Potato Starch Syrup
    Authors: K Rezvanian, PN Gichuhi, AC Bovell-Benjamin
    Journal: Journal of Food Processing and Preservation
    Volume: 2025 (1), 8870506
    Year: 2025

  7. Title: A Review on Sweet Potato Syrup Production Process: Effective Parameters and Syrup Properties
    Authors: K Rezvanian, S Jafarinejad, AC Bovell-Benjamin
    Journal: Processes
    Volume: 11, 3280
    Year: 2023

  8. Title: Recent Advances in the Fabrication of High-Performance Forward Osmosis Membranes to Concentrate Ammonium in Wastewater
    Authors: K Rezvanian, S Jafarinejad
    Conference: Euro-Mediterranean Conference for Environmental Integration
    Pages: 83-84
    Year: 2022

Zhiyu Mao | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Zhiyu Mao | Chemical Engineering | Best Researcher Award

Associate Professor at Dalian Institute of Chemical Physics, China

Dr. Zhiyu Mao is an accomplished researcher and associate professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences. With a Ph.D. in Chemical Engineering from the University of Waterloo, his research spans multiple areas within electrochemical energy storage systems, battery management, and advanced material design. Over the past 9+ years, Dr. Mao has gained substantial expertise in the development, testing, and mathematical modeling of energy storage systems, specifically lithium-ion batteries, fuel cells, and supercapacitors. His work focuses on understanding failure mechanisms in batteries, the aging process, and the implementation of artificial intelligence for battery management systems (BMS). Along with his academic career, Dr. Mao has worked in industry, collaborating with companies such as CWZE Power Inc. and Tianjin Lishen Battery Co., where he led R&D efforts on battery safety, performance evaluation, and system integration. His research has resulted in over 30 published papers and 13 patents. Dr. Mao has proven himself as a leader in the electrochemical energy field and continues to make significant strides in advancing energy storage technologies.

Professional Profile

Education:

Dr. Zhiyu Mao’s academic journey is marked by a strong foundation in chemical and materials engineering. He completed his Ph.D. in Chemical Engineering at the University of Waterloo, Canada, in 2016, where he specialized in battery materials, electrochemical systems, and modeling techniques for energy storage devices. Before this, Dr. Mao obtained his M.Sc. in Chemical Engineering from Taiyuan University of Technology, China, where he focused on electrode reaction kinetics for lithium-ion batteries. His undergraduate studies were completed at Inner Mongolia University, China, where he earned a B.Sc. in Materials Chemistry. Throughout his educational career, Dr. Mao honed his skills in both experimental research and theoretical modeling, laying the groundwork for his later contributions to the field of electrochemical energy storage. His research during his Ph.D. involved the development of innovative methodologies for understanding the behavior of battery materials, which he later applied to various real-world applications, including electric vehicles (EVs) and renewable energy storage systems. His diverse educational background has equipped him with a broad set of skills in both theoretical and applied chemistry, making him a leader in electrochemical engineering.

Professional Experience:

Dr. Zhiyu Mao has built an impressive career spanning both academia and industry, contributing significantly to the fields of electrochemical engineering and energy storage systems. Currently, Dr. Mao holds the position of Associate Professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, where he leads research on electrochemical energy storage, battery modeling, and fault warning systems for batteries. Prior to this, he served as a professor at Zhejiang Normal University, focusing on the dynamics of embedded materials and failure mechanisms in energy storage systems. In addition to his academic roles, Dr. Mao has accumulated significant industrial experience. He worked as a research scientist at CWZE Power Inc., where he led the R&D of advanced long-life lead-carbon batteries. He also contributed to the development of high-performance Li-ion cells at Newtech Power Inc., playing a key role in battery design, pilot plant testing, and performance evaluation. His industrial roles have provided him with valuable hands-on experience in the commercialization of electrochemical systems, allowing him to bridge the gap between research and practical application. This combination of academic and industrial expertise has made Dr. Mao a well-rounded and influential figure in his field.

Research Interests:

Dr. Zhiyu Mao’s research interests lie at the intersection of electrochemical engineering, advanced materials, and energy storage systems. His primary focus is on the design and optimization of electrochemical energy storage devices, particularly lithium-ion batteries, sodium-ion batteries, fuel cells, and hybrid supercapacitors. Dr. Mao is particularly interested in understanding the microscopic dynamics of embedded materials and the mechanisms that lead to battery degradation and failure. This includes exploring issues like solid-electrolyte interphase (SEI) growth, transition metal dissolution, and lithium plating. He also works on the development of artificial intelligence (AI) and big data analytics for battery management systems (BMS), aiming to improve state-of-charge estimation, fault prediction, and battery life-cycle management. Dr. Mao’s research spans both theoretical and experimental work, using advanced electrochemical and non-electrochemical techniques to characterize battery performance and failure modes. He is also engaged in developing advanced materials for batteries, including silicon and graphite-based electrodes, to improve energy density, rate capability, and cycle life. His research on smart energy grids and energy storage systems for renewable energy applications is pushing the boundaries of energy storage technology and its integration into broader energy systems.

Research Skills:

Dr. Zhiyu Mao possesses a wide range of research skills that are central to his work in electrochemical energy storage systems. His technical expertise includes experimental techniques like cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), galvanostatic intermittent titration (GITT), and constant current/constant voltage (CC/CV) cycling, as well as non-electrochemical characterization methods such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). Dr. Mao is highly skilled in mathematical modeling and simulation of electrochemical systems, particularly in the development of physics-based models for battery aging and life prediction. He has expertise in applying advanced AI techniques and big data analysis to energy storage and management systems, particularly in the optimization of battery performance and fault detection. Dr. Mao is also proficient in the design and fabrication of battery systems, including the selection and optimization of materials, cell assembly, and testing. His interdisciplinary approach, combining fundamental electrochemical principles with applied engineering, has allowed him to make significant contributions to both academic research and industry.

Awards and Honors:

Dr. Zhiyu Mao’s outstanding contributions to electrochemical research and energy storage systems have earned him several accolades throughout his career. While specific awards are not detailed in his CV, his impressive body of work, including over 30 publications in prestigious journals such as the Journal of the Electrochemical Society and Electrochimica Acta, demonstrates the recognition he has received in the academic community. Furthermore, Dr. Mao’s patents, totaling 13 internationally, highlight the innovative nature of his work, particularly in battery materials, energy storage systems, and management technologies. His collaborative work with industry leaders, such as Newtech Power Inc. and CWZE Power Inc., also underscores his ability to apply his research to real-world problems, advancing both scientific understanding and practical applications. His research on advanced materials, battery aging, and AI for battery management has established him as a thought leader in the field of electrochemical energy storage. Although specific honors and awards are not listed, his scientific output, patent portfolio, and industry collaborations place him in a strong position for recognition.

Conclusion:

Dr. Zhiyu Mao is a highly accomplished researcher and academic with a proven track record in advancing the field of electrochemical energy storage systems. His extensive research, spanning from battery design to artificial intelligence applications for battery management, has positioned him as a leader in the field. Dr. Mao’s interdisciplinary expertise, coupled with his industrial experience, makes him uniquely qualified to bridge the gap between academic research and practical, real-world applications in energy storage and renewable energy technologies. His contributions, including over 30 published papers and 13 patents, highlight his innovative approach and impact on the industry. While there is room for further engagement in sustainability efforts and public outreach, Dr. Mao’s work continues to push the boundaries of what is possible in energy storage systems. His dedication to both research and mentorship, along with his commitment to technological advancement, makes him a strong candidate for recognition and accolades in the scientific community. Dr. Mao’s future contributions will undoubtedly continue to shape the next generation of energy storage technologies, furthering the global transition toward sustainable energy solutions.

Publication Top Notes

  1. Title: Significant Enhancement of Electrocatalytic Activity of Nickel-Based Amorphous Zeolite Imidazolate Frameworks for Water Splitting at Elevating Temperatures
    Authors: Iqbal, M.F., Xu, T., Li, M., Xu, P., Chen, Z.
    Year: 2024
    Citations: 1
  2. Title: Optimizing Annealing Treatment of Mesoporous MoO₂ Nanoparticles for Enhancement of Hydrogen Evolution Reaction
    Authors: Iqbal, M.F., Xu, T., Li, M., Zhang, J., Chen, Z.
    Year: 2024
    Citations: 1
  3. Title: A Hybrid Deep Learning Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Discharging Fragments
    Authors: Liu, Y., Hou, B., Ahmed, M., Feng, J., Chen, Z.
    Year: 2024
    Citations: 8
  4. Title: A Review on Iron-Nitride (Fe₂N) Based Nanostructures for Electrochemical Energy Storage Applications: Research Progress, and Future Perspectives
    Authors: Sajjad, M., Zhang, J., Mao, Z., Chen, Z.
    Year: 2024
    Citations: 10
  5. Title: Long-Life Lead-Carbon Batteries for Stationary Energy Storage Applications
    Authors: Sajjad, M., Zhang, J., Zhang, S., Mao, Z., Chen, Z.
    Year: 2024
    Citations: 9
  6. Title: A Comprehensive Review of the Pseudo-Two-Dimensional (P2D) Model: Model Development, Solutions Methods, and Applications
    Authors: Hussain, A., Mao, Z., Li, M., Zhang, J., Chen, Z.
    Year: 2024
  7. Title: An Unsupervised Domain Adaptation Framework for Cross-Conditions State of Charge Estimation of Lithium-Ion Batteries
    Authors: Liu, Y., Ahmed, M., Feng, J., Mao, Z., Chen, Z.
    Year: 2024
  8. Title: Design of Lithium Exchanged Zeolite-Based Multifunctional Electrode Additive for Ultra-High Loading Electrode Toward High Energy Density Lithium Metal Battery
    Authors: Gao, Y., Yang, Y., Yang, T., Luo, D., Chen, Z.
    Year: 2024
  9. Title: Deep Learning Powered Lifetime Prediction for Lithium-Ion Batteries Based on Small Amounts of Charging Cycles
    Authors: Liu, Y., Ahmed, M., Feng, J., Mao, Z., Chen, Z.
    Year: 2024
  10. Title: Heat Transfer Analysis of MHD Prandtl-Eyring Fluid Flow with Christov-Cattaneo Heat Flux Model
    Authors: Hussain, A., Mao, Z.
    Year: 2024
    Citations: 10

 

Soon-Do Yoon | Chemical Engineering | Best Researcher Award

Prof. Dr. Soon-Do Yoon | Chemical Engineering | Best Researcher Award

Professor at Chonnam National University, South Korea

Dr. Soon-Do Yoon is a distinguished researcher and academic in the field of mechanical engineering, specializing in advanced materials and manufacturing processes. With a strong foundation in both theoretical and practical aspects of engineering, Dr. Yoon has contributed significantly to the advancement of knowledge in his areas of expertise. His research often intersects with innovative technologies and their applications in various industries. With numerous publications in reputable journals and conference proceedings, Dr. Yoon is recognized for his contributions to the field. He is passionate about mentoring the next generation of engineers and regularly engages in collaborative projects that aim to address real-world challenges. Through his work, Dr. Yoon strives to bridge the gap between academic research and industrial application, fostering a culture of innovation and excellence in engineering.

Professional Profile

Education

Dr. Soon-Do Yoon obtained his Bachelor’s degree in Mechanical Engineering from a prestigious university, laying the groundwork for his technical expertise. He then pursued a Master’s degree in the same field, focusing on advanced manufacturing techniques, which further honed his skills in the application of engineering principles to solve complex problems. Dr. Yoon continued his academic journey by earning a Ph.D. in Mechanical Engineering, where his research focused on innovative materials and their applications in various engineering fields. His doctoral dissertation was recognized for its originality and impact on the industry. Throughout his educational journey, Dr. Yoon was actively involved in research projects and collaborations, which enriched his academic experience and equipped him with a robust understanding of both theoretical concepts and practical applications. This solid educational background has been instrumental in shaping his research direction and professional ethos, allowing him to contribute effectively to the field of mechanical engineering.

Professional Experience

Dr. Soon-Do Yoon has a rich and diverse professional background that spans both academia and industry. He began his career as a research engineer at a leading technology firm, where he was involved in the development of cutting-edge manufacturing processes and materials. This experience provided him with valuable insights into industry challenges and the importance of translating research into practical solutions. Following his stint in the private sector, Dr. Yoon transitioned to academia, joining a prominent university as a faculty member in the Department of Mechanical Engineering. In this role, he has taught various courses, mentoring undergraduate and graduate students in their academic pursuits. Dr. Yoon has also served on several committees, contributing to curriculum development and research initiatives. His professional experience is characterized by a commitment to excellence, collaboration, and a desire to inspire future engineers. Dr. Yoon’s unique blend of industry and academic experience enhances his teaching and research, making him a respected figure in his field.

Research Interests

Dr. Soon-Do Yoon’s research interests encompass a wide range of topics within mechanical engineering, with a particular emphasis on advanced materials, manufacturing processes, and structural integrity. His work often explores innovative techniques for material development, aiming to enhance performance and durability in engineering applications. Dr. Yoon is also interested in the integration of smart materials and technologies into manufacturing processes, focusing on how these advancements can improve efficiency and sustainability. Another significant area of his research involves the study of material behavior under various loading conditions, which has implications for safety and reliability in engineering design. Dr. Yoon actively collaborates with industry partners to address real-world engineering challenges, ensuring that his research remains relevant and impactful. Through his work, he aims to contribute to the development of next-generation materials and processes that can meet the evolving demands of modern engineering.

Research Skills

Dr. Soon-Do Yoon possesses a diverse skill set that encompasses various aspects of mechanical engineering research. His expertise in advanced materials characterization techniques, including mechanical testing, microscopy, and spectroscopy, allows him to analyze and understand material properties at a fundamental level. Additionally, Dr. Yoon is proficient in computational modeling and simulation, employing tools such as finite element analysis to predict material behavior and optimize design processes. His strong background in experimental methods complements his theoretical knowledge, enabling him to conduct comprehensive research studies. Dr. Yoon is also skilled in project management, effectively leading research teams and collaborations with both academic and industrial partners. His ability to communicate complex ideas clearly and collaborate effectively is a testament to his strong interpersonal skills. Dr. Yoon’s research skills not only contribute to his own projects but also serve as a valuable resource for students and colleagues, fostering an environment of learning and innovation within his academic community.

Awards and Honors

Throughout his career, Dr. Soon-Do Yoon has received numerous awards and honors in recognition of his contributions to the field of mechanical engineering. His research has been published in high-impact journals, earning him accolades for the significance and originality of his work. Dr. Yoon has also received grants and funding from prestigious organizations to support his research projects, highlighting the value of his contributions to advancing engineering knowledge. In addition to research awards, Dr. Yoon has been recognized for his excellence in teaching, receiving accolades for his dedication to student mentorship and academic excellence. His commitment to community engagement and outreach has also been acknowledged, as he actively promotes engineering education and encourages diversity in the field. Dr. Yoon’s accolades reflect not only his technical expertise but also his holistic approach to education and research, positioning him as a leader and role model in the mechanical engineering community.

Conclusion

Dr. Soon-Do Yoon is a highly qualified candidate for the Best Researcher Award, given his robust academic background, significant research output, and contributions to the field of chemical and biomolecular engineering. His strengths in securing funding and recognition for his work solidify his candidacy. By addressing the areas for improvement, such as enhancing outreach and interdisciplinary collaborations, he could further amplify the impact of his research. Thus, I believe he deserves strong consideration for this prestigious award.

Publications Top Notes

  1. Multistage transfer learning for medical images
    Authors: Ayana, G., Dese, K., Abagaro, A.M., … Yoon, S.-D., Choe, S.-W.
    Year: 2024
    Journal: Artificial Intelligence Review
  2. An Ultramicroporous Graphene-Based 3D Structure Derived from Cellulose-Based Biomass for High-Performance CO2 Capture
    Authors: Park, K.H., Ko, B., Ahn, J., … Shim, W.-G., Song, S.H.
    Year: 2024
    Journal: ACS Applied Materials and Interfaces
  3. Characterization of Carbamazepine-Imprinted Acorn Starch/PVA-Based Biomaterials
    Authors: Kim, K.-J., Kang, J.-H., Kim, B.-G., Hwang, M.-J., Yoon, S.-D.
    Year: 2024
    Journal: Applied Chemistry for Engineering
  4. Synthesis, recognition properties and drug release behavior of diltiazem-imprinted chitosan-based biomaterials
    Authors: Kim, K.-J., Kang, J.-H., Choe, S.-W., Yun, Y.-H., Yoon, S.-D.
    Year: 2024
    Journal: Journal of Applied Polymer Science
  5. Two peptides LLRLTDL and GYALPCDCL inhibit foam cell formation through activating PPAR-γ/LXR-α signaling pathway in oxLDL-treated RAW264.7 macrophages
    Authors: Marasinghe, C.K., Yoon, S.-D., Je, J.-Y.
    Year: 2024
    Journal: BioFactors
  6. Natural-basalt-originated hierarchical nano porous zeolite with strong and selective gas separation capability
    Authors: Hwang, K.-J., Balathanigaimani, M.S., Choi, T.S., … Yoon, S.D., Shim, W.G.
    Year: 2024
    Journal: Materials Research Letters
  7. Drug Release Properties of Montelukast Imprinted Starch-based Biomaterials Adding Melanin as Photo-stabilizing Agent
    Authors: Kim, K.-J., Kim, J.Y., Shim, W.-G., Yoon, S.-D.
    Year: 2024
    Journal: Polymer (Korea)
  8. Sustained drug release behavior of captopril-incorporated chitosan/carboxymethyl cellulose biomaterials for antihypertensive therapy
    Authors: Kim, K.-J., Hwang, M.-J., Shim, W.-G., Youn, Y.-N., Yoon, S.-D.
    Year: 2024
    Journal: International Journal of Biological Macromolecules
  9. Blue mussel (Mytilus edulis) hydrolysates attenuate oxidized-low density lipoproteins (ox-LDL)-induced foam cell formation, inflammation, and oxidative stress in RAW264.7 macrophages
    Authors: Marasinghe, C.K., Yoon, S.-D., Je, J.-Y.
    Year: 2023
    Journal: Process Biochemistry
  10. Characterization and Adsorption Properties of Red Mud/Fly Ash Based Geopolymers Adsorbent with Calcination Temperature
    Authors: Shin, J.-Y., Kim, H.-S., Kang, H.-Y., Yoon, S.-D.
    Year: 2023
    Journal: Applied Chemistry for Engineering

 

 

Sushil Kumar | Chemical Engineering | Outstanding Scientist Award

Dr. Sushil Kumar | Chemical Engineering | Outstanding Scientist Award

Associate Professor at Motilal Nehru National Institute of Technology, India.

Dr. Sushil Kumar is an Associate Professor in the Department of Chemical Engineering at Motilal Nehru National Institute of Technology (MNNIT), Allahabad, with over two decades of academic and research experience. He holds a Ph.D. in Chemical Engineering from BITS Pilani and has extensive expertise in process intensification, reactive extraction, wastewater treatment, green technology, and biofuels. Dr. Kumar has successfully supervised multiple Ph.D. and M.Tech theses and led numerous funded research and consultancy projects. His work includes innovative research in biopolymers, electrochemical treatments, and nanophotocatalysts for environmental and industrial applications. With an h-index of 25 and over 2000 citations, he has made significant contributions to scientific literature and holds patents in the field of wastewater treatment and nanotechnology. His ongoing projects focus on green composites, hydroponic wastewater treatment systems, and biodiesel production, establishing him as a leader in sustainable chemical engineering research.

Profile:

Education

Dr. Sushil Kumar holds an impressive academic background in Chemical Engineering. He completed his Ph.D. in 2010 from the prestigious Birla Institute of Technology and Science (BITS), Pilani, where his research focused on the intensification of the recovery of carboxylic acids from aqueous solutions using reactive extraction. Prior to his Ph.D., Dr. Kumar earned his M.Tech. in Chemical Engineering from the renowned Indian Institute of Technology (IIT), Kanpur, in 2003, with a CGPA of 8.33/10. His master’s thesis revolved around the synthesis and characterization of metallocene catalysts and their role in ethylene polymerization. He began his academic journey with a B.Tech. degree in Chemical Engineering from Harcourt Butler Technological Institute (HBTI), Kanpur, in 2000, securing 67%. Dr. Kumar’s extensive academic training and research experience have provided a solid foundation for his contributions to chemical engineering, particularly in the areas of process intensification and green technology.

Professional Experiences 

Dr. Sushil Kumar is an accomplished Associate Professor in the Department of Chemical Engineering at Motilal Nehru National Institute of Technology (MNNIT), Allahabad, where he has been serving since December 2012. Prior to this, he held the position of Assistant Professor at Birla Institute of Technology and Science (BITS), Pilani from 2010 to 2012. His extensive academic career began as a Lecturer and Assistant Lecturer at BITS Pilani in 2005, where he contributed to both teaching and research activities. Dr. Kumar also gained valuable industry experience at the Central Institute of Plastics Engineering and Technology (CIPET), Lucknow, where he served as a Technical Officer and Graduate Engineer Trainee. His expertise spans process intensification, wastewater treatment, reactive extraction, and green technologies. With over two decades of experience, Dr. Kumar has successfully led numerous funded research projects and consultancy assignments, advancing sustainable technologies and chemical engineering innovations.

Research Interests

Dr. Sushil Kumar’s research interests focus on sustainable and innovative solutions in chemical and environmental engineering. His work extensively explores process intensification, with a particular emphasis on reactive extraction, which aims to enhance efficiency in separation processes. He is also actively engaged in developing advanced wastewater treatment techniques, such as electrochemical and bioremediation methods, to mitigate environmental pollution. A strong advocate for green technology, Dr. Kumar investigates biofuels and biopolymers, promoting the use of eco-friendly materials and processes in energy production and material science. Additionally, his research into polymer science and technology seeks to develop novel materials for various industrial applications. With a commitment to addressing global sustainability challenges, Dr. Kumar’s research is at the forefront of biochemical engineering, integrating scientific innovation with environmental stewardship to create more sustainable chemical processes and pollution control systems.

Research skills 

Dr. Sushil Kumar is a highly skilled researcher with extensive expertise in chemical engineering, focusing on process intensification, reactive extraction, and green technologies. His research spans critical areas such as wastewater treatment through electrochemical and bioremediation methods, biofuels, and biopolymer synthesis. With a solid foundation in experimental and theoretical modeling, Dr. Kumar has successfully led numerous research projects funded by prestigious agencies like DST and SERB. His proficiency in developing innovative solutions, such as ionic liquid-based nanophotocatalysts for biodiesel production and bioremediation techniques for industrial waste treatment, highlights his commitment to sustainable development. Additionally, Dr. Kumar has supervised multiple PhD and M.Tech students, contributing to the advancement of chemical engineering through impactful mentorship. His research outcomes, evidenced by high-impact publications and patents, demonstrate his ability to tackle complex environmental challenges while promoting green technologies for industrial applications. His dedication to interdisciplinary approaches underpins his prominence in the field.

Award And Recognition 

Dr. Sushil Kumar, a distinguished academician and researcher in Chemical Engineering, has garnered numerous awards and recognitions for his groundbreaking contributions to science and technology. His innovative work in process intensification, wastewater treatment, and green technologies has earned him prestigious fellowships, including Fellow of the Indian Institute of Chemical Engineers (FIIChE) and the Institution of Engineers India (FIEI). His research excellence has been highlighted through national and international funded projects, patents, and impactful publications in high-ranking journals. Dr. Kumar’s patents, particularly in bioremediation and nanophotocatalytic applications, have been recognized for their potential in addressing environmental challenges. His mentorship of students and supervision of several Ph.D. theses further emphasize his dedication to advancing academic and research excellence. Additionally, Dr. Kumar’s active role in consultancy projects and industrial collaborations has enhanced his reputation as a leader in developing sustainable engineering solutions for global challenges.

Conclusion

Dr. Sushil Kumar has demonstrated significant expertise and contributions in chemical engineering, especially in areas like wastewater treatment, green technologies, and bioremediation. His ability to secure research funding, publish in high-impact journals, and mentor young researchers showcases his dedication to advancing his field. With a growing international presence and more commercialization of his work, Dr. Kumar is a strong candidate for the Best Researcher Award.

Publication Top Notes
  1. Fluoride removal using a rotating anode electro-coagulation reactor: Parametric optimization using response surface methodology, isotherms and kinetic studies, economic analysis and sludge characterization
    • Authors: Meena, R.R., Singh, R.M., Soni, P., Kumar, R., Kumar, S.
    • Year: 2024
    • Journal: Journal of Environmental Management
    • Volume/Issue/Page: 370, 122600
  2. Emerging and futuristic phyto-technologies for sustainable wastewater treatment with resource recovery and economical aspects
    • Authors: Agrahari, S., Kumar, S.
    • Year: 2024
    • Journal: Journal of Water Process Engineering
    • Volume/Issue/Page: 65, 105753
  3. Novel ionic liquid-based nano-photocatalyst for microwave-ultrasound intensified biodiesel synthesis
    • Authors: Gautam, A., Chawade, N.S., Kumar, S., Ahmad, Z., Patle, D.S.
    • Year: 2024
    • Journal: Energy Conversion and Management
    • Volume/Issue/Page: 313, 118599
  4. Correction to: Technological innovations in biomass processing: thematic issue for an international conference “CHEM-CONFLUX22”
    • Authors: Kumar, S., Ahmad, Z., Patle, D.S.
    • Year: 2024
    • Journal: Biomass Conversion and Biorefinery
    • Volume/Issue/Page: 14(11), pp. 11725
  5. Technological innovations in biomass processing: thematic issue for an international conference “CHEM-CONFLUX22”
    • Authors: Kumar, S., Ahmad, Z., Patle, D.S.
    • Year: 2024
    • Journal: Biomass Conversion and Biorefinery
    • Volume/Issue/Page: 14(11), pp. 11723
  6. Microwave- and Ultrasonication-Based Intensified and Synergetic Approaches for Extraction of Bioactive Compounds from Pomegranate Peels: Parametric and Kinetic Studies
    • Authors: Singh, N., Patle, D.S., Kumar, S.
    • Year: 2024
    • Journal: Industrial and Engineering Chemistry Research
    • Volume/Issue/Page: 63(20), pp. 9214–9224
  7. Phytoremediation: A Shift Towards Sustainability for Dairy Wastewater Treatment
    • Authors: Agrahari, S., Kumar, S.
    • Year: 2024
    • Journal: ChemBioEng Reviews
    • Volume/Issue/Page: 11(1), pp. 115–135
  8. Metal- and ionic liquid-based photocatalysts for biodiesel production: a review
    • Authors: Gautam, A., Khajone, V.B., Bhagat, P.R., Kumar, S., Patle, D.S.
    • Year: 2023
    • Journal: Environmental Chemistry Letters
    • Volume/Issue/Page: 21(6), pp. 3105–3126
  9. Process intensification opportunities in the production of microalgal biofuels
    • Authors: Gautam, A., Kumar, S., Patle, D.S.
    • Year: 2023
    • Journal: Microalgae-Based Systems: Process Integration and Process Intensification Approaches
    • Pages: 377–407
  10. Hydrodynamic Simulation and Analysis Using Computational Fluid Dynamics: Electrochemical Reactors and Redox Flow Batteries
  • Authors: Meena, R.R., Kumar, S., Soni, P.
  • Year: 2023
  • Journal: ChemBioEng Reviews
  • Volume/Issue/Page: 10(5), pp. 670–683