Meijin Guo | Chemical Engineering | Best Researcher Award

Mr. Meijin Guo | Chemical Engineering | Best Researcher Award

Professor at East china university of science & technology, China

Professor Meijin Guo is a renowned scholar in the field of bioengineering, currently serving as a full professor at the School of Bioengineering, East China University of Science and Technology (ECUST). With over two decades of academic and research experience, she has made significant contributions to microbial fermentation, stem cell bioprocessing, and metabolic regulation. Professor Guo holds a Ph.D. in Biochemical Engineering from ECUST, a Master’s degree in Microbiology from Guizhou University, and a Bachelor’s degree in Agronomy from Jiangxi Agricultural University. Her research has been instrumental in advancing technologies related to the large-scale production of mesenchymal stem cells, as well as in understanding the metabolic mechanisms of microbial synthesis under stress conditions. As a leading figure in national scientific projects, she has played key roles in high-impact studies supported by the National Natural Science Foundation of China and the Chinese Academy of Sciences. Professor Guo has authored numerous influential papers and serves as a co-corresponding author on multiple internationally recognized publications. Her work has also earned her prestigious national and provincial awards in scientific advancement. She is deeply committed to integrating engineering principles with biotechnology to solve real-world problems, bridge academic research and industrial applications, and foster innovation in biosciences.

Professional Profile

Education

Meijin Guo’s academic foundation reflects a strong interdisciplinary background that underpins her distinguished research career in bioengineering. She earned her Ph.D. in Biochemical Engineering from East China University of Science and Technology (1998–2001), where she began specializing in microbial metabolism and fermentation technologies. Her doctoral research laid the groundwork for her later contributions to bioreactor design and metabolic regulation. Prior to that, she obtained a Master’s degree in Microbiology from Guizhou University (1995–1998), focusing on microbial physiology and enzyme production. This period shaped her understanding of the biological and functional diversity of microorganisms, which remains central to her work. She started her academic journey with a Bachelor’s degree in Agronomy from Jiangxi Agricultural University (1988–1992), where she gained a solid grasp of plant and soil sciences, giving her early insight into life sciences from an agricultural perspective. Her seamless transition across agronomy, microbiology, and biochemical engineering highlights her multidisciplinary approach and commitment to addressing challenges across the life science spectrum. With this broad educational foundation, Professor Guo has cultivated a research style that bridges fundamental biology and practical engineering solutions, making her uniquely positioned to lead innovative research projects in the rapidly evolving field of biological engineering.

Professional Experience

Professor Meijin Guo has built a robust professional career centered on academic research and biotechnological innovation. She currently holds a professorship in the School of Bioengineering at East China University of Science and Technology (ECUST), a role she has occupied since October 2010. In this position, she leads multiple research projects, mentors graduate students, and contributes to academic development within the institution. Prior to this role, she served as an associate professor at ECUST from November 2005 to September 2010, furthering her work in fermentation optimization and bioreactor engineering. Between October 2004 and October 2005, she expanded her academic horizons with a research stint at the University of Strathclyde in the United Kingdom, where she engaged in international collaboration and broadened her scientific perspectives. From July 2001 to September 2004, she worked as an assistant researcher at the Biotechnology Center of Jiangxi Agricultural University, initiating her professional research journey with a focus on microbial technology and fermentation systems. Throughout her career, Professor Guo has consistently demonstrated a commitment to translating scientific knowledge into scalable biotechnological applications, earning respect in academic and industry circles alike. Her diverse experience underscores her capabilities as a leader in bioengineering and applied life sciences.

Research Interest

Professor Meijin Guo’s research interests lie at the intersection of microbial biotechnology, biochemical engineering, and stem cell bioprocessing. Her work primarily focuses on the development and scale-up of bioreactors for the mass production of stem cells, with a particular emphasis on mesenchymal stem cells derived from human embryonic and umbilical cord sources. She is passionate about optimizing bioreactor environments to preserve stem cell activity and function while enabling reproducibility at industrial scales. Another major aspect of her research involves exploring the stress-induced metabolic regulation of microbial systems, especially in vitamin B12 biosynthesis by Pseudomonas denitrificans under oxygen-limited conditions. Her research integrates omics technologies and computational modeling, including computational fluid dynamics, to understand and control bioprocess variables. Additionally, she has shown a keen interest in bioprocess parameter optimization, cell metabolism, and organoid-based toxicity screening platforms. This interdisciplinary approach allows her to develop innovative solutions for therapeutic applications and industrial biotechnology. Through collaboration with clinicians and bioengineers, she aims to bridge the gap between laboratory research and clinical or commercial implementation. Her ongoing projects reflect her commitment to applying systems biology and process engineering tools to improve biomanufacturing practices and advance personalized medicine through scalable and efficient bioprocesses.

Research Skills

Professor Meijin Guo brings an exceptional suite of research skills that reflect her deep engagement with modern bioengineering methodologies. She is highly experienced in bioreactor design and scale-up, with specific expertise in stirred suspension systems for stem cell culture. Her ability to integrate computational fluid dynamics (CFD) modeling into bioprocess development enables predictive design and real-time optimization of large-scale cell cultures. She is also proficient in microbial metabolic engineering, particularly for vitamin B12 biosynthesis under stress conditions, leveraging molecular biology tools to dissect and manipulate key biosynthetic pathways. In addition, she employs high-throughput screening technologies and label-free imaging platforms for compound toxicity studies using organoids, demonstrating her strength in cutting-edge cellular analysis techniques. Professor Guo also excels in experimental planning, data analysis, and scientific communication, often serving as co-corresponding author on high-impact journal publications. She is adept at leading multidisciplinary research teams and managing complex, large-scale projects funded by national and institutional grants. Her collaborative mindset and technical versatility enable her to adapt to rapidly evolving research challenges and contribute meaningfully to both fundamental research and translational applications. Through her skills, she not only drives scientific discovery but also enhances the reproducibility and scalability of biotechnological processes.

Awards and Honors

Professor Meijin Guo has received numerous prestigious awards in recognition of her scientific contributions to biochemical engineering and biotechnology. In 2002, she was part of a research team that won the State Scientific and Technological Progress Award (Second Class) from the State Council of China for their work on parameter-driven optimization and scale-up techniques in fermentation bioreactors. She was again honored in 2011 with another Second-Class National Award for Scientific and Technological Progress, recognizing her work in developing fermentation optimization technologies based on physiological and process information analysis. These accolades underscore her leadership in bridging theoretical and practical aspects of bioprocess engineering. Additionally, in 2003, she received a First-Class Provincial and Ministerial Science and Technology Progress Award from the Shanghai Municipal Government for her contributions to the production of thermostable phytase enzymes and gene identification related to high-activity phytase, highlighting her role in enzyme biotechnology. These awards, granted at both national and regional levels, reflect her sustained impact in the scientific community and her capacity to drive innovation in applied life sciences. Professor Guo’s honors not only recognize past achievements but also affirm her ongoing role as a pioneer in the field of biological engineering in China.

Conclusion

Professor Meijin Guo stands as a leading figure in China’s bioengineering landscape, with a career that combines scientific depth, technical innovation, and a collaborative spirit. Her academic journey from agronomy to microbiology and biochemical engineering has shaped a uniquely interdisciplinary research profile. Over the years, she has played a key role in advancing scalable bioprocessing systems, metabolic regulation studies, and the integration of computational modeling with experimental biology. Her extensive publication record and multiple research grants—both national and institutional—demonstrate her status as a trusted and capable leader in scientific inquiry. Through her work on stem cell bioreactors and vitamin biosynthesis, she has made critical contributions to biomanufacturing and therapeutic development. The national recognition she has received, including two prestigious State Scientific and Technological Progress Awards, affirms the real-world impact of her research. As science and technology continue to evolve, Professor Guo remains committed to mentoring young researchers, fostering cross-disciplinary partnerships, and applying engineering principles to solve complex biological challenges. Her continued leadership ensures that the bridge between scientific research and industrial innovation remains strong, timely, and impactful. In every aspect of her professional life, she embodies the values of rigor, creativity, and purpose-driven science.

Publications Top Notes

  1. Title: De Novo synthesis of selenium-doped CeO2@Fe3O4 nanoparticles for improving secondary metabolite biosynthesis in Carthamus tinctorius cell suspension culture
    Authors: K. Ashraf, Z. Liu, Q.U. Zaman, … M. Guo, A. Mohsin
    Year: 2025

  2. Title: Scalable Matrigel-Free Suspension Culture for Generating High-Quality Human Liver Ductal Organoids
    Authors: S. Gong, K. He, … Z. Yang, M. Guo
    Year: 2025

  3. Title: Temporal dynamics of stress response in Halomonas elongata to NaCl shock: physiological, metabolomic, and transcriptomic insights
    Authors: J. Yu, Y. Zhang, H. Liu, … M. Guo, Z. Wang
    Year: 2024
    Citations: 7

  4. Title: Uncovering impaired mitochondrial and lysosomal function in adipose-derived stem cells from obese individuals with altered biological activity
    Authors: B. Wang, G. Zhang, Y. Hu, … M. Guo, H. Xu
    Year: 2024
    Citations: 4

  5. Title: Sustainable biosynthesis of lycopene by using evolutionary adaptive recombinant Escherichia coli from orange peel waste
    Authors: M. H. Hussain, S. Sajid, M. Martuscelli, … M. Guo, A. Mohsin
    Year: 2024
    Citations: 2

  6. Title: A novel perspective on the role of long non-coding RNAs in regulating polyphenols biosynthesis in methyl jasmonate-treated Siraitia grosvenorii suspension cells
    Authors: Z. Liu, M. Guo (Meihui), A. Mohsin, … Z. Wang, M. Guo (Meijin)
    Year: 2024

  7. Title: A machine learning-based approach for improving plasmid DNA production in Escherichia coli fed-batch fermentations
    Authors: Z. Xu, X. Zhu, A. Mohsin, … M. Guo, G. Wang
    Year: 2024
    Citations: 3

  8. Title: Uncovering the Role of Hydroxycinnamoyl Transferase in Boosting Chlorogenic Acid Accumulation in Carthamus tinctorius Cells under Methyl Jasmonate Elicitation
    Authors: Z. Liu, X. Zhu, A. Mohsin, … Y. Zhuang, M. Guo
    Year: 2024
    Citations: 2

  9. Title: Research on the Transient Expression of a Novel PCV2 Capsid Fusion Protein in HEK293F Cells
    Authors: Q. Luo, Y. Peng, M. Ali (Mohsin), Y. Zhuang, M. Guo
    Year: 2024

  10. Title: Polyphenol oxidase inhibition by Saccharomyces cerevisiae extracts: A promising approach to prevent enzymatic browning
    Authors: Z. Liu, H. Ding, M. Martuscelli, … M. Guo, Z. Wang
    Year: 2024
    Citations: 5

Corby Anderson | Chemical Engineering | Best Researcher Award

Prof. Dr. Corby Anderson | Chemical Engineering | Best Researcher Award

Director, Kroll Institute for Extractive Metallurgy at Colorado School of Mines, United States

Dr. Corby G. Anderson is a highly experienced Licensed Professional Chemical Engineer with over 40 years in engineering design, industrial plant operations, research, consulting, and teaching. His career spans multiple continents and industries, including metallurgy, pyrometallurgy, hydrometallurgy, environmental recycling, and mineral processing. Dr. Anderson has developed and implemented significant technologies, such as the Nitrogen Species Catalyzed (NSC) Pressure Oxidation and Alkaline Sulfide Leaching (ASL) technologies. Throughout his career, he has successfully led teams in research, process development, engineering design, and industrial operations. In addition to his industrial achievements, Dr. Anderson has published extensively, authored numerous peer-reviewed articles, and contributed to over 600 presentations. His work is highly respected in the global mineral processing and metallurgical sectors.

Professional Profile

Education:

Dr. Corby G. Anderson earned his academic credentials through extensive education, though specific degrees are not detailed in the provided information. His qualifications and hands-on experience in engineering and metallurgy have shaped his professional trajectory. Dr. Anderson’s academic expertise spans various subjects, including chemical engineering, extractive metallurgy, mineral processing, and chemical kinetics. He has taught and mentored students at the graduate level, emphasizing practical applications of these principles.

Professional Experience:

Dr. Anderson has had a distinguished career in both academia and industry. He has worked internationally in over 40 countries, contributing to significant advancements in metallurgy, hydrometallurgy, and pyrometallurgy. As Chief Process Engineer at Sunshine Mining and Refining, he pioneered innovative technologies such as the NSC Pressure Oxidation and ASL. He also served as Director of the Center for Advanced Mineral and Metallurgical Processing at Montana Tech, leading it to become a globally recognized institution. Throughout his career, Dr. Anderson has held leadership positions, including CEO, Director, and Technical Advisor for several private and public companies, while also maintaining an active role in consulting and professional services.

Research Interests:

Dr. Anderson’s research interests primarily focus on hydrometallurgy, pyrometallurgy, mineral processing, and extractive metallurgy. He has developed and implemented technologies aimed at improving the extraction, refining, and recovery of metals such as gold, silver, cobalt, and copper. His work in process development, engineering design, and environmental impact has had substantial industrial and academic implications. He is particularly interested in creating more efficient and sustainable methods of metal recovery, refining processes, and improving recycling techniques. He has also worked on advancing nano-technologies in metallurgy.

Research Skills:

Dr. Anderson possesses a diverse set of research skills, which include the development of new metallurgical processes, pilot plant design, engineering process optimization, and environmental management in mineral processing. He has extensive expertise in laboratory and field research, feasibility studies, and the management of large-scale industrial operations. His experience in mineral and metallurgical processes is complemented by his knowledge in process control, separations, purifications, refining, and electrolysis. He is skilled in working across various engineering and scientific disciplines to drive technological innovations in metallurgy and mining. Additionally, Dr. Anderson has strong analytical, leadership, and communication skills, having guided numerous research teams and published widely.

Awards and Honors:

Dr. Anderson has received numerous prestigious awards and honors throughout his career. These include the TMS Distinguished Service Award, the Milton E. Wadsworth Award for Chemical Metallurgy, and the IPMI Jun-ichiro Tanaka Distinguished Achievement Award. He has also been recognized by the Society for Mining, Metallurgy, and Exploration (SME) with the MPD Millman of Distinction Award and the Taggart Award. In addition, Dr. Anderson has received the Distinguished Researcher Award from Montana Tech and the Distinguished Alumni Award from the same institution. He has been named a Fellow of the Institution of Chemical Engineers and a Fellow of the Institute of Materials, Minerals and Mining. These accolades reflect his significant contributions to the fields of metallurgy, mineral processing, and engineering research.

Conclusion

Dr. Corby G. Anderson exemplifies the epitome of a best researcher through his groundbreaking contributions, leadership in both academia and industry, and a consistent record of innovation and mentorship. His extensive international experience, proven track record in developing novel technologies, and continuous engagement with both the scientific and industrial sectors position him as an ideal candidate for the Best Researcher Award. His diverse achievements, ranging from global patents to leadership roles in professional organizations, make him a standout figure in his field. By expanding his research focus to include emerging technologies and strengthening interdisciplinary collaborations, Dr. Anderson’s future contributions could further cement his legacy in the scientific community.

Publication Top Notes

  • The metallurgy of antimony
    Authors: CG Anderson
    Year: 2012
    Journal: Geochemistry 72, 3-8
    Citations: 340
  • Cyanide: Social, Industrial and Economic Aspects
    Authors: C.G. A. Young, L.G. Twidwell
    Year: 2001
    Journal: TMS
    Citations: 278*
  • Literature review of hydrometallurgical recycling of printed circuit boards (PCBs)
    Authors: H Cui, CG Anderson
    Year: 2016
    Journal: J. Adv. Chem. Eng 6 (1), 142-153
    Citations: 157
  • Rare earths: market disruption, innovation, and global supply chains
    Authors: R Eggert, C Wadia, C Anderson, D Bauer, F Fields, L Meinert, P Taylor
    Year: 2016
    Journal: Annual Review of Environment and Resources 41 (1), 199-222
    Citations: 146
  • Hydrometallurgical recovery of rare earth elements from NdFeB permanent magnet scrap: A review
    Authors: Y Zhang, F Gu, Z Su, S Liu, C Anderson, T Jiang
    Year: 2020
    Journal: Metals 10 (6), 841
    Citations: 96
  • Global electrification of vehicles and intertwined material supply chains of cobalt, copper and nickel
    Authors: RT Nguyen, RG Eggert, MH Severson, CG Anderson
    Year: 2021
    Journal: Resources, Conservation and Recycling 167, 105198
    Citations: 89
  • Extractive metallurgy of rhenium: a review
    Authors: CD Anderson, PR Taylor, CG Anderson
    Year: 2013
    Journal: Mining, Metallurgy & Exploration 30, 59-73
    Citations: 85
  • A review of the cyanidation treatment of copper-gold ores and concentrates
    Authors: D Medina, CG Anderson
    Year: 2020
    Journal: Metals 10 (7), 897
    Citations: 82
  • A primer on hydrometallurgical rare earth separations
    Authors: B Kronholm, CG Anderson, PR Taylor
    Year: 2013
    Journal: Jom 65, 1321-1326
    Citations: 78
  • An assessment of US rare earth availability for supporting US wind energy growth targets
    Authors: DD Imholte, RT Nguyen, A Vedantam, M Brown, A Iyer, BJ Smith, …
    Year: 2018
    Journal: Energy Policy 113, 294-305
    Citations: 75

Yerbol Tileuberdi | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Yerbol Tileuberdi | Chemical Engineering | Best Researcher Award

Associate Professor at Abai University, Kazakhstan

Yerbol Tileuberdi is an accomplished researcher and associate professor with over 15 years of experience in chemical engineering, petrochemistry, and nanotechnology. His work primarily focuses on sustainable practices in heavy oil processing, bitumen production, and carbon material development. Yerbol’s extensive academic background, paired with his practical research at the Institute of Combustion Problems, highlights his commitment to ecological innovation. Recognized by numerous awards and honors, he has made impactful contributions through research, patents, and publications. His international collaborations, including multiple internships at Berlin Technical University and other esteemed institutions, have helped shape his expertise in global engineering and environmental solutions. Yerbol’s academic and research achievements make him a notable figure in chemical engineering and sustainable technology development.

Professional Profile

Education

Yerbol Tileuberdi pursued all his higher education at Al-Farabi Kazakh National University (KazNU). He completed his undergraduate studies in 2008, earning a Bachelor’s degree, followed by a Master’s degree in 2010. He later obtained a Ph.D. in 2014 from KazNU, specializing in chemical engineering. Yerbol’s academic journey has equipped him with advanced theoretical knowledge and practical insights, particularly in petrochemistry and nanotechnology. His education laid a strong foundation for his ongoing research work and established a career path that includes leadership roles at Kazakh institutions. Yerbol has further enhanced his expertise through foreign internships and research opportunities at renowned universities, including Berlin Technical University and Petroleum University of China.

Professional Experience

Yerbol Tileuberdi serves as an associate professor at Abai Kazakh National Pedagogical University (KazNPU) and is also a leading researcher at the Institute of Combustion Problems. Over the past 15 years, he has amassed a wealth of experience in chemical engineering, focusing on petrochemistry, nanotechnology, and ecological solutions. His roles involve both teaching and conducting advanced research, emphasizing sustainable practices in energy and material science. Yerbol’s professional journey reflects his dedication to academia and his expertise in addressing complex chemical engineering challenges. His position as a leading researcher has allowed him to contribute significantly to scientific advancements, particularly in recycling and carbon material production.

Research Interests

Yerbol Tileuberdi’s research interests span several areas within chemical engineering and environmental sustainability. He focuses on processing heavy oil, natural bitumen, oil sands, and oil shale, aiming to develop efficient methods for producing and modifying bitumen. He is also interested in hydrocarbons’ oxidation and asphaltene structures, exploring ways to enhance fuel quality and sustainability. Additionally, Yerbol is committed to recycling worn tires and producing carbon materials, which align with his goal of developing eco-friendly solutions in petrochemical engineering. His work on flameless heaters showcases his interest in innovative, sustainable technologies that reduce environmental impact, highlighting his commitment to advancing both ecological and industrial applications.

Research Skills

Yerbol possesses a diverse set of research skills that reflect his extensive experience in chemical engineering and petrochemistry. He is skilled in analyzing complex hydrocarbons, studying bitumen and asphaltene structures, and processing oil sands. His technical expertise extends to sustainable technologies, such as recycling and carbon material production, which contribute to the development of eco-friendly solutions. Yerbol’s skills in hydrocarbon oxidation and material modification are particularly valuable for his work on fuel processing and bitumen improvement. He is proficient in laboratory techniques necessary for his research, complemented by a strong ability to lead and conduct complex experiments at the Institute of Combustion Problems. His practical and analytical skills underscore his commitment to innovative chemical engineering.

Awards and Honors

Yerbol Tileuberdi has received numerous awards and honors that recognize his achievements in research and education. In 2024, he won the “Best Paper Award” from the Engineered Science Society and the “Best Youth Scientist” title at the Institute of Combustion Problems. Yerbol was also awarded the prestigious state grant for “The Best Teacher of Higher Education Institution” in 2018 and held the DAAD scholarship in the same year, marking his contributions to teaching and research. Earlier, he received the state scholarship for talented young scientists (2015–2016) and the “Best Youth Scientist” award at KazNU. These honors emphasize Yerbol’s dedication to excellence in both research and teaching, showcasing his influence in the academic and scientific communities.

Conclusion

Yerbol Tileuberdi’s extensive research background, notable achievements, and contributions to his field make him a strong contender for the Best Researcher Award. His experience in petrochemistry and commitment to sustainable practices position him as an impactful researcher in the field. Focusing on publishing in more high-impact journals and furthering interdisciplinary projects could further enhance his research influence and international recognition.

Publications Top Notes

  • Demetallization and desulfurization of heavy oil residues by adsorbents
    Authors: Y. Ongarbayev, S. Oteuli, Y. Tileuberdi, G. Maldybaev, S. Nurzhanova
    Journal: Petroleum Science and Technology
    Year: 2019
    Citations: 29
  • Study of asphaltene structure precipitated from oil sands
    Authors: F. R. Sultanov, Y. Tileuberdi, Y. K. Ongarbayev, Z. A. Mansurov, K. A. Khasseinov, et al.
    Journal: Eurasian Chemico-Technological Journal
    Year: 2013
    Citations: 23
  • Changing the structure of resin-asphaltenes molecules in cracking
    Authors: Y. Imanbayev, Y. Tileuberdi, Y. Ongarbayev, Z. Mansurov, A. Batyrbayev, et al.
    Journal: Eurasian Chemico-Technological Journal
    Year: 2017
    Citations: 18
  • Antimicrobial and Other Biomedical Properties of Extracts from Plantago major, Plantaginaceae
    Authors: K. Zhakipbekov, A. Turgumbayeva, R. Issayeva, A. Kipchakbayeva, et al.
    Journal: Pharmaceuticals
    Year: 2023
    Citations: 17
  • Thermocatalytic cracking of the natural bitumens of Kazakhstan
    Authors: Y. K. Ongarbayev, A. K. Golovko, E. B. Krivtsov, Y. I. Imanbayev, E. Tileuberdi, et al.
    Journal: Solid Fuel Chemistry
    Year: 2016
    Citations: 17
  • Functionalization and modification of bitumen by silica nanoparticles
    Authors: A. Zhambolova, A. L. Vocaturo, Y. Tileuberdi, Y. Ongarbayev, P. Caputo, et al.
    Journal: Applied Sciences
    Year: 2020
    Citations: 15
  • High temperature transformation of tar-asphaltene components of oil sand bitumen
    Authors: Y. Imanbayev, Y. Ongarbayev, Y. Tileuberdi, E. Krivtsov, A. Golovko, et al.
    Journal: Journal of the Serbian Chemical Society
    Year: 2017
    Citations: 15
  • Rice husk ash for oil spill cleanup
    Authors: K. Kudaibergenov, Y. Ongarbayev, M. Zulkhair, M. Tulepov, Y. Tileuberdi
    Journal: Applied Mechanics and Materials
    Year: 2014
    Citations: 14
  • Study of natural bitumen extracted from oil sands
    Authors: Y. Tileuberdi, Y. Ongarbaev, B. Tuleutaev, Z. Mansurov, F. Behrendt
    Journal: Applied Mechanics and Materials
    Year: 2014
    Citations: 12
  • Structural study and upgrading of Kazakhstan oil sands
    Authors: Y. Tileuberdi, Z. A. Mansurov, Y. K. Ongarbayev, B. K. Tuleutaev
    Journal: Eurasian Chemico-Technological Journal
    Year: 2015
    Citations: 11