Xiao Yang | Materials Science | Best Researcher Award

Prof. Xiao Yang | Materials Science | Best Researcher Award

Professor at Sichuan University, China

Professor Xiao Yang is a distinguished scholar in biomedical engineering, specializing in the development of biomaterials and implantable medical devices for the musculoskeletal system. Her research primarily focuses on calcium phosphate-based bioceramics and functionalized implants designed to repair diseased bone, particularly in conditions such as osteoporosis and osteosarcoma. As a core member of Professor Xingdong Zhang’s research group at the National Engineering Research Center for Biomaterials, Sichuan University, she has made significant contributions to understanding cellular interactions between host tissues and implants. Her work aims to enhance the integration and functionality of medical devices within the human body, thereby improving patient outcomes.

Professional Profile

Education

Professor Yang’s academic journey commenced with a Bachelor’s degree in Biotechnology from Wuhan University of Technology, completed between 2004 and 2008. She then pursued her doctoral studies at the National University of Singapore, earning a Ph.D. in Bioengineering in 2013. Her doctoral research laid a robust foundation in biomedical engineering, equipping her with the expertise necessary for her subsequent endeavors in biomaterials and medical device innovation. This comprehensive educational background has been instrumental in shaping her research trajectory and academic career.

Professional Experience

Following her Ph.D., Professor Yang embarked on a postdoctoral fellowship in the Department of Pharmacology at the Yong Loo Lin School of Medicine from 2013 to 2014. In 2014, she joined Sichuan University as an Associate Professor at the National Engineering Research Center for Biomaterials. Over the next decade, her dedication and contributions to the field were recognized with a promotion to full Professor in 2023. Throughout her tenure, she has been an integral part of Professor Xingdong Zhang’s research team, where she continues to advance the development of innovative biomaterials and implantable devices.

Research Interests

Professor Yang’s research interests are deeply rooted in the development of advanced biomaterials and implantable medical devices tailored for the musculoskeletal system. She has a particular focus on engineering calcium phosphate-based bioceramics and creating functionalized implants aimed at repairing bones affected by diseases such as osteoporosis and osteosarcoma. Additionally, her work explores the intricate cellular interactions between host tissues and implants, striving to improve biocompatibility and the overall success of implant integration. Her research endeavors are driven by a commitment to translating scientific discoveries into clinical applications that enhance patient care.

Research Skills

Throughout her career, Professor Yang has honed a diverse set of research skills that underpin her scientific contributions. She possesses expertise in biomechanics, with a focus on analyzing viscoelastic properties at both macro and micro levels, which is crucial for understanding the mechanical behavior of biomaterials. Her proficiency in medical imaging, particularly 3D reconstruction techniques, facilitates the precise design and assessment of implantable devices. Moreover, she has substantial experience in the fabrication of bioceramics and investigating their osteoinductive mechanisms, contributing to advancements in bone disease treatments and the development of more effective therapeutic strategies.

Awards and Honors

In recognition of her innovative research, Professor Yang has secured several significant grants as Principal Investigator over the past five years. In 2023, she was awarded funding from the National Key Research and Development Program of China. The previous year, she received a grant for developing PLA/nano-hydroxyapatite composite materials for craniofacial bone repair. In 2020, her work on bioceramics with anti-tumor and tissue regeneration functions was recognized with a key research and development program grant from Sichuan Province. These accolades underscore her leadership and pioneering contributions to the field of biomedical engineering.

Conclusion

Professor Xiao Yang’s extensive education, professional experience, and research expertise have established her as a leading figure in biomedical engineering. Her unwavering dedication to developing advanced biomaterials and implantable devices has significantly impacted treatments for musculoskeletal disorders. Through her innovative research and numerous contributions to the scientific community, Professor Yang continues to advance the field, setting new standards in biomedical engineering and improving patient outcomes worldwide.

Publication Top Notes

  1. “Antheraea pernyi silk nanofibrils with inherent RGD motifs accelerate diabetic wound healing: A novel drug-free strategy to promote hemostasis, regulate immunity and improve re-epithelization”
    • Authors: Lian Duan, Ga Liu, Fuying Liao, Chunyu Xie, Subhas C. Kundu, Bo Xiao
    • Year: 2025
    • Journal: Biomaterials
    • DOI: 10.1016/j.biomaterials.2025.123127
  2. “Antibacterial cationic porous organic polymer coatings via an adsorption-contact-photodynamic inactivation strategy for treatment of drug-resistant bacteria”
    • Authors: Lingshuang Wang, Jiahao Shi, Shengfei Bao, Ga Liu, Chunyu Xie, Fuying Liao, Subhas C. Kundu, Rui L. Reis, Lian Duan, Bo Xiao, Xiao Yang
    • Year: 2025
    • Journal: Journal of Colloid and Interface Science
    • DOI: 10.1016/j.jcis.2024.09.242
  3. “Piezoelectric Biomaterial with Advanced Design for Tissue Infection Repair”
    • Authors: Siyuan Shang, Fuyuan Zheng, Wen Tan, Xingdong Zhang, Xiao Yang
    • Year: 2025
    • Journal: Advanced Science
  4. “Advancements in nanohydroxyapatite: synthesis, biomedical applications and composite developments”
    • Authors: Rui Zhao, Xiang Meng, Zixian Pan, Xiao Yang, Xingdong Zhang
    • Year: 2025
    • Journal: Regenerative Biomaterials
  5. “3D-Printed custom-made hemipelvic endoprosthetic reconstruction following periacetabular tumor resection: utilizing a novel classification system”
    • Authors: Xin Hu, Minxun Lu, Yitian Wang, Li Min, Chongqi Tu
    • Year: 2024
    • Journal: BMC Musculoskeletal Disorders
  6. “Biomechanical and clinical outcomes of 3D-printed versus modular hemipelvic prostheses for limb-salvage reconstruction following periacetabular tumor resection: a mid-term retrospective cohort study”
    • Authors: Xin Hu, Yang Wen, Minxun Lu, Chongqi Tu, Li Min
    • Year: 2024
    • Journal: Journal of Orthopaedic Surgery and Research
  7. “Enhancing melanoma therapy by modulating the immunosuppressive microenvironment with an MMP-2 sensitive and nHA/GNE co-encapsulated hydrogel”
    • Authors: Zhu Chen, Hongfeng Wu, Yifu Wang, Xiangdong Zhu, Xingdong Zhang
    • Year: 2024
    • Journal: Acta Biomaterialia
  8. “Advancing Osteoporotic Bone Regeneration Through Tailored Tea Polyphenols Functionalized Micro-/Nano-Hydroxyapatite Bioceramics”
    • Authors: Rui Zhao, Hui Qian, Xiangdong Zhu, Zhenhua Chen, Xiao Yang
    • Year: 2024
    • Journal: Advanced Functional Materials
  9. “Harnessing the power of hydroxyapatite nanoparticles for gene therapy”
    • Authors: Zhengyi Xing, Siyu Chen, Zhanhong Liu, Xiangdong Zhu, Xingdong Zhang
    • Year: 2024
    • Journal: Applied Materials Today
  10. “Auxetic Biomedical Metamaterials for Orthopedic Surgery Applications: A Comprehensive Review”
    • Authors: Minghao Sun, Xin Hu, Leilei Tian, Xiao Yang, Li Min
    • Year: 2024
    • Journal: Orthopaedic Surgery

 

 

Chuan-Feng Chen | Materials Science | Best Researcher Award

Prof. Dr. Chuan-Feng Chen | Materials Science | Best Researcher Award

Professor at Institute of Chemistry, Chinese Academy of Sciences, China

Jin Chen is an Assistant Researcher at the Shanghai Institute of Technical Physics, Chinese Academy of Sciences (SITP-CAS). He earned his Ph.D. in Microelectronics and Solid-State Electronics from the University of Chinese Academy of Sciences (UCAS) in 2022, after completing his Bachelor’s degree in Information Display and Optoelectronic Technology at University of Electronic Science and Technology of China (UESTC). His research focuses on infrared photodetectors, metasurface-based optical field modulation, and advanced optoelectronic devices, contributing to groundbreaking work in mid-wave infrared single-photon detection and metasurface polarization control. Throughout his career, Jin has received substantial funding for his projects, including support from the National Natural Science Foundation of China (NSFC), Ministry of Science and Technology (MOST), and Chinese Academy of Sciences (CAS). He has authored multiple high-impact publications in leading journals such as Light: Science & Applications and npj Quantum Materials. With his innovative research and leadership, Jin Chen is playing a pivotal role in advancing infrared optoelectronics and photonic materials.

Professional Profile

Education and Academic Background

Jin Chen holds a strong academic foundation in microelectronics and optoelectronics, with a focus on infrared photonics and semiconductor devices. He earned his Ph.D. in Microelectronics and Solid-State Electronics from the University of Chinese Academy of Sciences (UCAS) in 2022, where he conducted cutting-edge research on infrared detection technologies and metasurface photonics. Prior to his doctoral studies, he completed his Bachelor’s degree in Information Display and Optoelectronic Technology at the University of Electronic Science and Technology of China (UESTC) in 2016. His academic journey provided him with expertise in semiconductor physics, photonic materials, and infrared imaging technologies. Jin Chen further expanded his research capabilities through a postdoctoral fellowship at the Shanghai Institute of Technical Physics, Chinese Academy of Sciences (SITP-CAS), from 2022 to 2024, focusing on infrared optoelectronic device innovations. His strong educational background has laid the foundation for his impactful contributions to the field of infrared photonics and advanced optoelectronic materials.

Professional Experience and Research Contributions

Jin Chen is an Assistant Researcher at SITP-CAS, where he works on infrared detection technologies, metasurface photonics, and advanced optoelectronic devices. His research spans across infrared photodetectors, metasurface-based optical field modulation, and high-gain mid-wave photonic devices. Over the years, he has played a key role in various national and international research projects, contributing as both a Principal Investigator (PI) and a leading researcher. His work has received support from prestigious institutions such as the National Natural Science Foundation of China (NSFC), the Ministry of Science and Technology (MOST), and the Chinese Academy of Sciences (CAS). Notable among these are his contributions to high-performance HgCdTe avalanche photodetectors and metasurface-based mid-infrared single-photon detection technologies. His ability to secure significant research funding and collaborate on multidisciplinary projects highlights his expertise and leadership in infrared optoelectronics.

Research Achievements and Publications

Jin Chen has made significant contributions to the field of infrared optoelectronics, with high-impact publications in leading scientific journals. His research on polychromatic full-polarization control in mid-infrared light was published in Light: Science & Applications, while his work on high-performance HgCdTe avalanche photodetectors appeared in npj Quantum Materials. His pioneering studies on holographic information capacity through nonorthogonal polarization multiplexing were featured in Nature Communications. With multiple publications in top-tier journals, Jin Chen has established himself as a prominent researcher in infrared photonics, metasurface optics, and optoelectronic device engineering. His work has been cited extensively, demonstrating its impact on the scientific community and technological advancements in the field. His research findings contribute to next-generation infrared imaging, optical encryption, and high-sensitivity detection systems.

Research Funding and Collaborative Projects

Jin Chen has successfully secured and participated in numerous high-profile research projects, with funding from NSFC, MOST, CAS, and other leading organizations. He has played a crucial role in projects such as the NSFC Joint Fund Project on Intrinsic Polarization Modulation Mechanism of Metasurfaces, the MOST National Key Research and Development Program on Spatiotemporal Vector Field Modulation, and the CAS Strategic Priority Research Program on Non-Equilibrium Infrared Optoelectronic Phase Modulation. Additionally, he has led independent research projects focusing on AI-enabled infrared radiation detection and high-gain mid-wave avalanche photodetectors. His ability to secure research grants, lead innovative projects, and collaborate with top institutions underscores his standing as a key researcher in infrared photonics and metasurface engineering.

Conclusion

Jin Chen’s contributions to infrared optoelectronics, metasurface photonics, and high-sensitivity detection systems have positioned him as a rising leader in the field. His strong academic background, extensive research experience, high-impact publications, and successful research funding efforts highlight his dedication to advancing infrared detection and photonic device technologies. As he continues to expand his research portfolio, his focus on innovative metasurface applications, quantum optics, and AI-driven infrared sensing will play a crucial role in shaping the future of infrared imaging and photonic engineering. With a proven track record of scientific excellence and technological innovation, Jin Chen is set to make lasting contributions to the global field of infrared optoelectronics and advanced photonic materials. 🚀

Publication Top Notes

  1. Title: Switchable Topologically Chiral [2]Catenane as Multiple Resonance Thermally Activated Delayed Fluorescence Emitter for Efficient Circularly Polarized Electroluminescence
    • Authors: Y. Wang, W. Zhao, Z. Gao, C. Chen, H. Yang
    • Journal: Angewandte Chemie – International Edition
    • Year: 2025
  2. Title: One-step Macrocycle-to-Macrocycle Conversion Towards Two New Macrocyclic Arenes with Different Structures and Properties
    • Authors: X. Han, Y. Long, W. Guo, Y. Han, C. Chen
    • Journal: Chemistry – A European Journal
    • Year: 2025
  3. Title: Chiral Co-assembly Based on a Stimuli-Responsive Polymer towards Amplified Full-Color Circularly Polarized Luminescence
    • Authors: W. Zhao, W. Guo, K. Tan, M. Li, C. Chen
    • Journal: Angewandte Chemie – International Edition
    • Year: 2025
    • Citations: 1
  4. Title: Axially Chiral TADF Imidazolium Salts for Circularly Polarized Light-Emitting Electrochemical Cells
    • Authors: C. Feng, K. Zhang, B. Zhang, C. Chen, M. Li
    • Journal: Angewandte Chemie – International Edition
    • Year: 2025
  5. Title: Fluorescent Macrocyclic Arenes: Synthesis and Applications
    • Authors: X. Han, Y. Han, C. Chen
    • Journal: Angewandte Chemie – International Edition
    • Year: 2025
  6. Title: A General Supramolecular Strategy for Fabricating Full-Color-Tunable Thermally Activated Delayed Fluorescence Materials
    • Authors: N. Xue, H. Zhou, Y. Han, H. Lü, C. Chen
    • Journal: Nature Communications
    • Year: 2024
    • Citations: 27
  7. Title: Self-Similar Chiral Organic Molecular Cages
    • Authors: Z. Wang, Q. Zhang, F. Guo, C. Zhang, C. Chen
    • Journal: Nature Communications
    • Year: 2024
    • Citations: 9
  8. Title: Recent Advances in Novel Chiral Macrocyclic Arenes
    • Authors: C. B. Du, Y. Long, X. Han, Y. Han, C. Chen
    • Journal: Chemical Communications
    • Year: 2024
    • Citations: 2
  9. Title: Self-Assembled Chiral Polymers Exhibiting Amplified Circularly Polarized Electroluminescence
    • Authors: K. Tan, W. Guo, W. Zhao, M. Li, C. Chen
    • Journal: Angewandte Chemie – International Edition
    • Year: 2024
    • Citations: 8
  10. Title: Chiral Co-Assembly with Narrowband Multi-Resonance Characteristics for High-Performance Circularly Polarized Organic Light-Emitting Diodes
  • Authors: C. Guo, Y. Zhang, W. Zhao, C. Chen, M. Li
  • Journal: Advanced Materials
  • Year: 2024
  • Citations: 8