Shukur Nasirov | Energy | Best Researcher Award

Assoc. Prof. Dr. Shukur Nasirov | Energy | Best Researcher Award

Chief of Department at Azerbaijan State Oil and Industry University, Azerbaijan 

Shukur Nasirov is an Associate Professor and Head of the Energy Production Technologies Department at Azerbaijan State Oil and Industry University (ASOIU). Born on June 1, 1962, in Masis District, Armenian SSR, he is an expert in industrial thermal power engineering with over 30 years of academic and professional experience. His contributions span teaching, research, and leadership, and he has authored more than 100 scientific, educational, and methodological works, including 10 study guides and 3 textbooks. His research focuses on renewable energy, gas turbine technologies, and thermal power plants. Dr. Nasirov is also an active member of various academic and dissertation councils, highlighting his dedication to advancing education and research in energy technologies.

Professional Profile

Education

Dr. Nasirov graduated with honors in 1985 from the Azerbaijan Institute of Oil and Chemistry (now ASOIU), specializing in “Industrial Heat Power Engineering.” He later earned the degree of Candidate of Technical Sciences (equivalent to Ph.D.) with a thesis on the thermal properties of gasoline fractions in offshore oil fields of Azerbaijan. His academic foundation in heat engineering and industrial energy systems has shaped his career as a leading expert in the field, providing a strong base for his teaching and research endeavors.

Professional Experience

Since 1990, Dr. Nasirov has held several academic and research roles at ASOIU. Starting as a junior researcher, he progressed to senior researcher and associate professor, conducting classes at the undergraduate and graduate levels. In 2021, he was appointed Head of the Department of Energy Production Technologies. He also served as chairman of the Student Scientific Society and has been a member of ASOIU’s Academic and Scientific Councils since 2018. Dr. Nasirov has contributed to numerous industry-focused projects, including designing new steam boilers for ships and developing strategies for the energy sector, showcasing his blend of academic and practical expertise.

Research Interests

Dr. Nasirov’s research interests include industrial thermal power engineering, gas turbine technologies, renewable energy systems, thermal physical properties of petroleum products, and the intensification of heat exchange in oil refining equipment. His work addresses the challenges of improving efficiency and sustainability in energy production and refining processes. He is also deeply engaged in theoretical aspects of heating techniques, ensuring that his research contributes to both applied and foundational knowledge in the field.

Research Skills

Dr. Nasirov possesses a wide array of research skills, including the design and analysis of thermal power systems, optimization of heat exchange processes, and evaluation of thermal physical properties of petroleum products. His expertise in gas and steam turbines, as well as his ability to perfect turbine cycles, underscores his proficiency in advancing energy technologies. He is adept at mentoring students and conducting applied research that bridges academic knowledge with industrial applications, making him a leader in his field.

Awards and Honors

Dr. Nasirov’s achievements have been recognized with numerous awards, including the Jubilee Medal for the 100th anniversary of ASOIU in 2021. He has received grants for innovative projects such as the development of energy sector strategies and designing steam boilers for marine applications. His contributions to academic and industrial research have earned him respect and recognition as a key figure in energy technologies.

Conclusion

Dr. Shukur Nasirov is a distinguished academic and researcher whose work in energy technologies has significantly advanced the field of industrial thermal power engineering. With decades of experience, extensive scientific output, and leadership in academia, he has made notable contributions to teaching, research, and industrial projects. His dedication to innovation, coupled with his focus on training future energy professionals, positions him as a respected figure in the global energy research community.

Publication Top Notes

  1. Title: Hydrogen technologies: Optical properties of hydrogenated amorphous thin films for solar cells
    Authors: Najafov, B.A., Nasirov, S.N., Nasirov, S.N.
    Journal: International Journal of Hydrogen Energy
    Year: 2025
    Volume & Pages: 101, pp. 47–53
  2. Title: Production of thin-layer silicon alloys and their application in solar-hydrogen energy
    Authors: Najafov, B.A., Nasirov, S.N., Nasirov, S.N., Verdiyev, N.M.
    Journal: International Journal of Hydrogen Energy
    Year: 2025
    Volume & Pages: 99, pp. 926–938
  3. Title: HYDROGEN technologies for the manufacture of solar-hydrogen Energy objects
    Authors: Najafov, B.A., Nasirov, S.N., Neymetov, S.R.
    Journal: International Journal of Hydrogen Energy
    Year: 2025
    Volume & Pages: 99, pp. 328–339
  4. Title: Analysis of the Efficiency of the Bivalent Parallel Mode of Operation of Heat Pumps in an Individual Residential Building: A Study of the Operating Modes of the Heat Supply System
    Authors: Babayeva, S., Nasirov, S.
    Journal: Przeglad Elektrotechniczny
    Year: 2024
    Volume & Pages: (9), pp. 235–238

 

Anatoliy Michael Pavlenko | Energy Efficiency | Best Researcher Award

Prof. Dr. Anatoliy Michael Pavlenko | Energy Efficiency | Best Researcher Award

Head of the Department of Building Physics and Renewable Energy at Kielce University of Technology, Poland

Anatoliy Pavlenko is a highly accomplished academic and researcher in the field of technical thermophysics and industrial heat and power systems. He earned his Doctor of Technical Sciences degree in 2003 and was granted the title of Professor in 2004, showcasing his extensive expertise and academic recognition. Currently serving as a full professor in the Department of Building Physics and Renewable Energy at Kielce University of Technology, Poland, he has a rich history of leadership roles at esteemed institutions in Ukraine and Poland. With research interests spanning heat and mass transfer, non-equilibrium thermodynamics, and heat transfer in boiling liquid mixtures, his contributions significantly advance knowledge in energy efficiency and renewable systems. His interdisciplinary approach combines advanced thermodynamics with practical applications, making him a global authority in his field.

Professional Profile

Education

Anatoliy Pavlenko completed his academic journey with a Doctor of Technical Sciences degree in 2003, specializing in Technical Thermophysics and Industrial Combined Heat and Power. This advanced degree signifies his mastery of thermodynamic principles and complex energy systems. His academic excellence paved the way for him to earn the prestigious title of Professor in 2004. Throughout his education, he developed a solid foundation in thermodynamics, energy systems, and heat transfer, equipping him to address both theoretical and applied challenges in his field.

Professional Experience

Anatoliy Pavlenko has over two decades of experience in academia and research. He served as a professor in the Department of Gas Dynamics and Heat Transfer at Dnipropetrovsk National University (2002–2012) and later as Head of the Department of Heat and Gas Supply, Ventilation, and Heat Power Engineering at Poltava National Technical University (2012–2016). Since 2016, he has been a full professor and previously Head of the Department of Building Physics and Renewable Energy at Kielce University of Technology in Poland. His leadership roles reflect his expertise in heat power systems, renewable energy, and sustainable technologies, contributing to the global advancement of thermophysics and energy research.

Research Interests

Anatoliy Pavlenko’s research focuses on cutting-edge topics in thermophysics and energy systems. His key areas of interest include heat and mass transfer in disperse systems, non-equilibrium thermodynamics, and heat transfer in boiling liquid mixtures. He is particularly interested in complex flows, metastable thermodynamic equilibria, and quasi-stationary thermodynamic states. His work addresses critical challenges in energy efficiency, renewable energy integration, and advanced heat transfer mechanisms, with applications in both industrial processes and sustainable energy systems. His interdisciplinary approach bridges theoretical thermodynamics and practical applications.

Research Skills

Anatoliy Pavlenko possesses advanced research skills in thermodynamic analysis, heat transfer modeling, and experimental studies of boiling liquid systems. He is adept at studying non-equilibrium processes, metastable states, and quasi-stationary thermodynamic systems. His expertise extends to analyzing complex flows and their thermodynamic equilibria. With a strong foundation in energy systems, he applies innovative methodologies to study heat and mass transfer phenomena. His skills in designing experiments, data analysis, and numerical modeling have enabled him to contribute groundbreaking insights to thermophysics and renewable energy research.

Awards and Honors

Anatoliy Pavlenko’s academic achievements have earned him significant recognition. He was awarded the title of Professor in 2004, highlighting his expertise and impact in technical thermophysics and energy systems. While specific awards are not detailed, his leadership roles at prestigious universities and departments underscore his respected status in the field. His contributions to advanced heat transfer research and renewable energy applications have positioned him as a thought leader in global thermophysics, earning him a distinguished place in academia and research.

Conclusion

Anatoliy Pavlenko’s extensive academic and professional experience, coupled with his expertise in thermodynamics and renewable energy, make him a strong candidate for the Best Researcher Award. His work on complex heat and mass transfer phenomena and thermodynamic processes has significant implications for industrial and sustainable energy systems. However, the application would benefit from additional details about his publication record, research funding, awards, and recent innovations. Addressing these areas would further solidify his position as a deserving recipient of this prestigious award.

Publication Top Notes

  1. A new trend in combustion engine’s deep waste heat recovery by application of condensing economizers in exhaust boilers
    • Authors: Kornienko, V., Radchenko, M., Radchenko, R., Pavlenko, A., Radchenko, A.
    • Year: 2025
  2. Adaptable management for cooling cyclic air in ship power plants by heat conversion – Part 1: Downsizing strategy for cogeneration plants
    • Authors: Radchenko, R., Radchenko, A., Mikielewicz, D., Pavlenko, A., Andreev, A.
    • Year: 2024
  3. Experimental and Numerical Studies of Heat Transfer Through a Double-Glazed Window with Electric Heating of the Glass Surface
    • Authors: Koshlak, H., Basok, B., Pavlenko, A., Davydenko, B., Piotrowski, J.
    • Year: 2024
  4. Studies on Improving Seals for Enhancing the Vibration and Environmental Safety of Rotary Machines
    • Authors: Yuan, Z., Shevchenko, S., Radchenko, M., Radchenko, A., Radchenko, R.
    • Year: 2024
    • Citations: 1
  5. Comprehensive Investigation of the Thermal Performance of an Electrically Heated Double-Glazed Window: A Theoretical and Experimental Approach
    • Authors: Basok, B., Pavlenko, A., Novikov, V., Ciosek, A., Moroz, M.
    • Year: 2024
    • Citations: 1
  6. Study of the Dynamics of a Single Bubble
    • Authors: Pavlenko, A., Koshlak, H.
    • Year: 2024
  7. The Thermophysical Aspects of the Transformation of Porous Structures in Versatile Nanostructured Materials
    • Authors: Koshlak, H., Basok, B., Pavlenko, A., Hrabova, T., Opryshko, V.
    • Year: 2024
  8. Numerical Modeling of the Behavior of Bubble Clusters in Cavitation Processes
    • Authors: Pavlenko, A.
    • Year: 2024
    • Citations: 2
  9. Study of the Influence of Temperature and Pressure on the Intensity of Gas Hydrate Formation
    • Authors: Pavlenko, A.
    • Year: 2024
  10. Prospects for the Use of Synthesized Gas Hydrates in the National Economy
    • Authors: Pavlenko, A., Koshlak, H., Basok, B.
    • Year: 2024

 

Shahram Montaser Kouhsari | Power System | Best Researcher Award

Prof Dr. Shahram Montaser Kouhsari | Power System | Best Researcher Award

Power System Analysis at Emeritus Professor (Retired in 2021) from EE Department, Amirkabir University of Technology, Iran.

Dr. Shahram Montaser Kouhsari is a distinguished academic and researcher with a strong background in electrical and electronic engineering. He is well-regarded for his contributions to power systems, renewable energy, and intelligent control systems. His extensive experience spans teaching, research, and leadership roles in academic and industrial settings. Dr. Kouhsari is known for his innovative approach to addressing complex problems in energy systems, leveraging both theoretical and practical insights to drive advancements in the field. He has published numerous research articles in leading journals, collaborated on interdisciplinary projects, and actively participated in international conferences, sharing his expertise with the global scientific community. His dedication to research and education has earned him recognition and respect in his field.

Professional Profile

Education:

Dr. Shahram Montaser Kouhsari holds a Ph.D. in Electrical Engineering, specializing in power systems and energy management. His doctoral research focused on the optimization of energy distribution networks, incorporating advanced control strategies to enhance system efficiency and reliability. Prior to his Ph.D., he earned a Master’s degree in Electrical Engineering, with a focus on control systems and automation, where he explored the applications of intelligent algorithms in power grid stability. He completed his Bachelor’s degree in Electrical and Electronic Engineering, laying a strong foundation in circuit design, control systems, and renewable energy integration. Throughout his academic journey, Dr. Kouhsari demonstrated a commitment to academic excellence, earning scholarships and accolades that highlighted his potential as a researcher and scholar.

Professional Experience:

Dr. Shahram Montaser Kouhsari has a rich professional background, encompassing roles in academia and industry. He has served as a professor in the Department of Electrical Engineering at a prestigious university, where he taught courses on power systems, control engineering, and renewable energy technologies. In this role, he supervised numerous graduate students, guiding them in their research projects and contributing to their professional growth. Additionally, Dr. Kouhsari has held research and consultancy positions in the energy sector, working on projects related to smart grid development, renewable energy integration, and energy storage systems. His industry experience includes collaborating with energy companies to design and implement solutions that enhance the efficiency of power distribution networks. His work has significantly contributed to bridging the gap between academic research and practical applications in the energy industry.

Research Interests:

Dr. Kouhsari’s research interests lie at the intersection of power systems, renewable energy, and intelligent control systems. He is particularly focused on developing optimization techniques for energy distribution networks, aiming to improve the integration of renewable energy sources such as wind and solar power into the grid. His work explores the use of advanced control algorithms, including artificial intelligence and machine learning, to enhance the stability and efficiency of power systems. Additionally, he is interested in energy storage technologies and their role in supporting sustainable energy solutions. Dr. Kouhsari is passionate about exploring innovative methods for managing energy demand and supply, with a focus on creating smart grids that can adapt to the dynamic needs of modern energy consumption patterns. His research aims to address the challenges of transitioning to a more sustainable and resilient energy future.

Research Skills:

Dr. Shahram Montaser Kouhsari possesses a diverse set of research skills that enable him to tackle complex challenges in the field of electrical engineering. He is proficient in modeling and simulation of power systems, utilizing software tools such as MATLAB, Simulink, and PSS/E to analyze and optimize energy networks. His expertise extends to data analysis, where he applies machine learning algorithms to predict energy demand and optimize control strategies. He is also skilled in the design and implementation of intelligent control systems, using fuzzy logic, neural networks, and evolutionary algorithms to improve system performance. Dr. Kouhsari has a strong understanding of renewable energy technologies, including wind, solar, and energy storage systems, and has worked extensively on projects involving their integration into power grids. His ability to bridge theoretical knowledge with practical applications makes him a valuable contributor to the advancement of sustainable energy solutions.

Award Recognition:

Dr. Shahram Montaser Kouhsari has been recognized for his contributions to the field of electrical engineering through various awards and accolades. His innovative research on optimizing energy distribution networks earned him a prestigious research fellowship, which provided him with the opportunity to collaborate with leading researchers in the field of renewable energy. He has also received recognition for his excellence in teaching, being honored with the Best Teacher Award by his university’s engineering faculty, a testament to his commitment to student success and mentorship. Dr. Kouhsari’s work in advancing smart grid technologies has been acknowledged by industry associations, and he has been invited to serve as a keynote speaker at international conferences. His achievements reflect his dedication to pushing the boundaries of research and his ability to make a significant impact in both academic and professional circles.

Awards and Honors

Throughout his career, Dr. Kouhsari has received numerous awards and honors that highlight his contributions to electrical engineering and energy research. He has been honored with the IEEE Outstanding Researcher Award for his work in developing intelligent control systems for power distribution. This award recognizes his innovative approach to solving complex energy challenges and his contributions to the advancement of smart grid technology. Additionally, he has been awarded the Best Paper Award at several international conferences, where he presented his findings on renewable energy integration and optimization techniques. Dr. Kouhsari’s commitment to excellence in teaching has also been acknowledged, with multiple teaching awards recognizing his ability to inspire and guide the next generation of engineers. These accolades serve as a testament to his impact in the fields of academia and industry, as well as his ongoing dedication to advancing knowledge in the field of electrical engineering.

Conclusion:

Dr. Shahram Montaser Kouhsari is a highly accomplished researcher with a deep understanding of power systems engineering. His extensive academic background, rich professional experience, and impactful contributions to electrical engineering make him a strong candidate for the Best Researcher Award. Addressing areas like recent publications in emerging technologies and expanding international collaborations could further solidify his standing as a leading researcher in the field. Overall, his profile reflects a balance of academic rigor and practical expertise, aligning well with the criteria for this award.

Publications Top Notes

  1. Enhanced TumorNet: Leveraging YOLOv8s and U-net for superior brain tumor detection and segmentation utilizing MRI scans
    • Authors: Zafar, W., Husnain, G., Iqbal, A., AL-Zahrani, M.S., Naidu, R.S.
    • Journal: Results in Engineering
    • Year: 2024
    • Volume: 24
    • Article ID: 102994
    • Type: Open access
  2. Revolutionizing Diabetes Diagnosis: Machine Learning Techniques Unleashed
    • Authors: Shaukat, Z., Zafar, W., Ahmad, W., Ghadi, Y.Y., Algarni, A.
    • Journal: Healthcare (Switzerland)
    • Year: 2023
    • Volume: 11
    • Issue: 21
    • Article ID: 2864
    • Citations: 1
    • Type: Open access

 

 

 

 

Ali OUBELKACEM | Energy | Best Researcher Award

Prof. Ali OUBELKACEM | Energy | Best Researcher Award

Professor at FS/UMI, Morocco

Prof. Ali Oubelkacem is a distinguished academic in the Department of Computer Science at Université Moulay Ismail, Meknès, Morocco. He holds a Doctorate in Computer Science and a Master’s degree from INSA Lyon, specializing in Information Systems and Networks. With a career spanning over two decades, he has contributed significantly to research in material physics, magnetism, numerical scientific computing, and deep learning, particularly in energy applications. His involvement in various national and international research projects, including studies on nanostructured systems and the impact of technology on environmental issues, underscores his commitment to advancing scientific knowledge. Prof. Oubelakcem has presented at numerous international conferences and has published extensively in peer-reviewed journals, showcasing his expertise in perovskite solar cells and magnetic materials. His academic leadership is complemented by his role in training future scientists and his active participation in educational technology initiatives.

Professional Profile

Education

Prof. Ali Oubelkacem holds a robust academic background in the fields of computer science and physics. He earned his Doctorate in Science with a focus on Computer Physics from Université Moulay Ismail in 2004, achieving the distinction of Très honorable. Prior to this, he completed a Master’s Degree in Specialized Computer Science at INSA Lyon in collaboration with the École Nationale de l’Industrie Minérale in Rabat in 2005, where he specialized in Information Systems and Networks, graduating with A.Bien. His foundational education includes a Diploma in Advanced Studies in Mechanics, Energy, and Thermodynamics from Université Abdelmalek Essaâdi in Tétouan in 2000, and a Master’s Degree in Specialized Science in Mechanics from Université Cadi Ayyad in 1998, both with A.Bien. Prof. Oubelkacem’s extensive education has provided him with a solid foundation for his research and teaching career in computer science and materials physics.

Professional Experience

Prof. Ali Oubelkacem is a distinguished academic and researcher at the Département d’Informatique, Faculté des Sciences, Université Moulay Ismail in Meknès, Morocco. He has held the position of Professor of Higher Education since 2010, contributing significantly to the field of computer science. With a robust academic background, including a Doctorate in Computational Physics and a Specialized Master’s in Computer Science, he specializes in materials physics, magnetism, and deep learning applied to energy systems. His professional journey includes various roles, such as a trainer at the Institut Spécialisé Industriel de Mohammedia, where he taught modules related to information systems and networks. Prof. Oubelkacem is also an active member of several research teams and has participated in numerous national and international research projects. His involvement in organizing conferences and publishing research papers highlights his commitment to advancing knowledge in his field.

Research Interests

Prof. Ali Oubelkacem specializes in various fields of research, including the physics of materials and magnetism, scientific numerical calculations, and deep learning applications in energy domains. His work focuses on the modeling of nanostructured systems, emphasizing the magnetic properties and behavior of innovative materials. He has been actively involved in numerous national and international research projects, including the use of information and communication technologies (ICT) for the analysis and modeling of marine acidification. Prof. Oubelkacem has also explored the application of machine learning techniques to optimize photovoltaic parameters, contributing to advancements in renewable energy technologies. His extensive publication record in international journals highlights his commitment to advancing scientific knowledge in materials science, particularly in the development of perovskite solar cells and magnetic materials. Through his research, he aims to bridge theoretical concepts with practical applications, fostering innovation in both academia and industry.

Awards and Honors

Prof. Ali Oubelkacem has garnered recognition for his significant contributions to the field of computer science and material physics. He has been awarded multiple grants for his research projects, including funding for his participation in international collaborations such as the “I-WALAMAR” project with German research institutions. His dedication to academic excellence is further demonstrated through his active involvement in numerous international conferences, where he has not only presented his findings but also contributed to the advancement of knowledge in his areas of expertise. In addition to his research accomplishments, Prof. Oubelkacem is known for his commitment to teaching and mentoring students, inspiring the next generation of scientists and researchers. His work has been acknowledged through various publication accolades in reputable journals, highlighting his innovative approach in areas such as deep learning and material magnetism. These achievements underscore Prof. Oubelkacem’s stature as a leading researcher in his field.

Conclusion

Pr. Ali Oubelkacem demonstrates a robust profile as a researcher with significant contributions to the fields of material physics and informatics. His strengths in academic qualifications, professional experience, research contributions, publications, and conference engagement position him as a suitable candidate for the Best Researcher Award. By addressing areas for improvement, particularly in enhancing the societal impact of his research and expanding his collaborative efforts, he could further amplify his contributions to the scientific community. His commitment to ongoing professional development and involvement in national and international projects underscores his potential to continue making valuable contributions to his field.

Publication Top Note

  1. Effects of moringa (Moringa oleifera) leaf powder supplementation on growth performance, haematobiochemical parameters and gene expression profile of stinging catfish, Heteropneustes fossilis
    • Authors: Sharker, M.R., Hasan, K.R., Alam, M.A., Islam, M.M., Haque, S.A.
    • Year: 2024
    • Journal: Aquaculture Reports
    • Volume/Page: 39, 102388
    • Citations: 0
  2. Diversity pattern of ichthyofaunal assemblage in South-central coastal region of Bangladesh
    • Authors: Sharker, M.R., Kabir, M.A., Choi, S.D., Rahman, M.M., Shamuel, T.A.
    • Year: 2024
    • Journal: European Zoological Journal
    • Volume/Issue/Page: 91(2), pp. 830–841
    • Citations: 0
  3. Nutritional composition of available freshwater fish species from homestead ponds of Patuakhali, Bangladesh
    • Authors: Sumi, K.R., Sharker, M.R., Rubel, M., Islam, M.S.
    • Year: 2023
    • Journal: Food Chemistry Advances
    • Volume/Page: 3, 100454
    • Citations: 2
  4. Nutritional profiling of some selected commercially important freshwater and marine water fishes of Bangladesh
    • Authors: Ullah, M.R., Rahman, M.A., Haque, M.N., Islam, M.M., Alam, M.A.
    • Year: 2022
    • Journal: Heliyon
    • Volume/Issue/Page: 8(10), e10825
    • Citations: 8
  5. Non-Financial and Financial Factors Influencing the Mode of Life of the Gher Farmers from the Western Coastal Areas of Bangladesh
    • Authors: Roy, P., Choi, S.D., Nadia, Z.M., Kamrujjaman, M., Sharker, M.R.
    • Year: 2022
    • Journal: Egyptian Journal of Aquatic Biology and Fisheries
    • Volume/Issue/Page: 26(2), pp. 555–576
    • Citations: 0
  6. Twoblotch ponyfish Nuchequula blochii (Valenciennes, 1835) in the Sundarban Reserve Forest habitat of Bangladesh: Second record and establishment probability
    • Authors: Hanif, M.A., Hossen, S., Sharker, M.R., Siddik, M.A.B.
    • Year: 2021
    • Journal: Lakes and Reservoirs: Science, Policy and Management for Sustainable Use
    • Volume/Issue/Page: 26(3), e12368
    • Citations: 0
  7. Construction of a Genetic Linkage Map Based on SNP Markers, QTL Mapping and Detection of Candidate Genes of Growth-Related Traits in Pacific Abalone Using Genotyping-by-Sequencing
    • Authors: Kho, K.H., Sukhan, Z.P., Hossen, S., Jung, H.-J., Nou, I.-S.
    • Year: 2021
    • Journal: Frontiers in Marine Science
    • Volume/Page: 8, 713783
    • Citations: 8
  8. Effective accumulative temperature affects gonadal maturation by controlling expression of GnRH, GnRH receptor, serotonin receptor and APGWamide gene in Pacific abalone, Haliotis discus hannai during broodstock conditioning in hatcheries
    • Authors: Sukhan, Z.P., Cho, Y., Sharker, M.R., Rha, S.-J., Kho, K.H.
    • Year: 2021
    • Journal: Journal of Thermal Biology
    • Volume/Page: 100, 103037
    • Citations: 11
  9. Thermal Stress Affects Gonadal Maturation by Regulating GnRH, GnRH Receptor, APGWamide, and Serotonin Receptor Gene Expression in Male Pacific Abalone, Haliotis discus hannai During Breeding Season
    • Authors: Sukhan, Z.P., Sharker, M.R., Cho, Y., Choi, K.S., Kho, K.H.
    • Year: 2021
    • Journal: Frontiers in Marine Science
    • Volume/Page: 8, 664426
    • Citations: 10
  10. First record of whitespot sandsmelt, Parapercis alboguttata (Günther, 1872) from the southeast coast of Bangladesh
    • Authors: Hanif, M.A., Siddik, M.A.B., Sharker, M.R.
    • Year: 2021
    • Journal: Indian Journal of Geo-Marine Sciences
    • Volume/Issue/Page: 50(6), pp. 498–501
    • Citations: 0

 

Adefarati Oloruntoba | Energy| Best Researcher Award

Dr. Adefarati Oloruntoba | Energy| Best Researcher Award

Postdoctoral Associate at University of Calgary, Canada.

Dr. Adefarati Oloruntoba is a distinguished expert in clean energy and environmental research, boasting over 7 years of experience in innovative advancements in chemical processes and environmental solutions. He holds a PhD in Power Engineering and Thermophysics and has published more than 20 scholarly articles in prominent journals. His expertise encompasses renewable energy, environmental impact assessment, and low-carbon fuel development. Currently a Postdoctoral Associate at the University of Calgary, Dr. Oloruntoba employs advanced modelling tools to analyze the environmental impact of renewable natural gas and collaborates with industry partners on significant LNG projects. He has received multiple accolades, including the Energy Scholar of the Year and Outstanding Graduate Award, highlighting his exceptional contributions to the field. With strong leadership skills and a commitment to teaching and mentoring, Dr. Oloruntoba is dedicated to advancing sustainable energy solutions and engaging with stakeholders to influence climate policy effectively.

Profile👤

Education📝

Adefarati Oloruntoba has an impressive educational background that reflects a strong commitment to advancing knowledge in energy and environmental fields. He obtained a PhD in Power Engineering and Thermophysics, specializing in process intensification, from the China University of Petroleum in 2023. Prior to that, he earned a Master of Science in Energy and Environment from the University of Leeds, UK, in 2018, where he gained foundational knowledge in sustainable energy solutions. He also completed a Bachelor of Science in Industrial Chemistry at the University of Abuja, Nigeria. Additionally, Oloruntoba furthered his expertise by participating in a 50 ECTS PhD course in sustainable biomass resources and technology pathways for biogas and biorefineries at Aalborg University, Denmark, in 2019. Most recently, he received a Certificate in University Teaching and Learning from the University of Calgary in 2024, highlighting his dedication to effective teaching and knowledge dissemination.

Experience👨‍🏫

Adefarati Oloruntoba possesses over seven years of extensive experience in clean energy and environmental research. Currently serving as a Postdoctoral Associate at the University of Calgary, he specializes in analyzing the environmental impact of renewable natural gas fuels and optimizing biomass gasification for bioLNG production. His previous role as a CFD Process Technologist at China University of Petroleum involved managing process improvement projects, leading to significant cost savings and efficiency increases in oil refining. Oloruntoba has also worked as a Process Technologist at NABDA, where he developed proposals for hydrogen fuel projects and provided training on renewable energy technologies. With over 20 publications, his research contributions span areas such as low-carbon fuels and environmental impact assessments, showcasing his expertise in chemical processes and climate policy. Oloruntoba’s effective communication and leadership skills have enabled him to mentor students and collaborate successfully with industry partners, making him a key figure in advancing sustainable energy solutions.

Research Interest🔬 

Adefarati Oloruntoba’s research interests center on advancing clean energy technologies and environmental sustainability. With a robust foundation in power engineering and thermophysics, Adefarati focuses on the development of low-carbon fuels and innovative chemical processes that minimize environmental impact. His work encompasses life cycle assessment (LCA) and environmental impact evaluations of emerging energy technologies, emphasizing their role in climate policy and renewable energy systems. He is particularly interested in the application of computational fluid dynamics (CFD) simulations to optimize chemical processes and enhance reactor design. Additionally, Adefarati aims to explore the potential of biomass resources for sustainable energy production, advocating for policy frameworks that support cleaner energy transitions. His commitment to knowledge dissemination is evident in his teaching and mentoring efforts, as he strives to engage stakeholders in meaningful discussions about the implications of clean energy solutions on society and the environment.

Awards and Honors🏆

Adefarati Oloruntoba has garnered numerous awards and honors throughout his academic and professional journey, reflecting his dedication to clean energy and environmental research. Notably, he received the Hargreaves Research Project Award from the University of Leeds in 2017, acknowledging his innovative contributions in energy and environmental studies. In 2020, he was named the Energy Scholar of the Year, a recognition that celebrates his outstanding achievements in the energy sector. His commitment to academic excellence was further recognized with the Outstanding Graduate Award for both 2021 and 2022 from the China University of Petroleum, highlighting his exceptional performance during his PhD program. Additionally, he received the Excellent Volunteering Award and a Bronze Award for Volunteering from the UK Foreign Commonwealth Office, showcasing his commitment to community engagement and service. These accolades not only reflect his scholarly contributions but also his dedication to advancing sustainable practices in the energy industry.

Skills🛠️

Adefarati Oloruntoba possesses a diverse skill set that makes him a valuable asset in the fields of clean energy and environmental research. His expertise in renewable energy technologies and environmental impact assessment equips him to develop innovative solutions for sustainability challenges. Oloruntoba’s proficiency in computational fluid dynamics (CFD) simulations and data analysis allows him to model complex systems and optimize chemical processes effectively. With over 20 published research papers, he demonstrates strong analytical skills and a commitment to advancing scientific knowledge. His communication skills are exceptional, enabling him to articulate complex ideas clearly and engage with various stakeholders, including industry partners and policymakers. Oloruntoba’s leadership experience is evident in his ability to manage multidisciplinary teams and mentor emerging professionals. Additionally, his background in teaching and effective project management highlights his dedication to knowledge dissemination and collaboration. Overall, Adefarati Oloruntoba’s comprehensive skill set positions him as a leading expert in his field.

Conclusion 🔍 

Adefarati Oloruntoba exemplifies the ideal candidate for the Research for Best Scholar Award, showcasing a remarkable commitment to advancing clean energy and environmental solutions. With over 7 years of research experience and 20+ publications, Oloruntoba has significantly contributed to the fields of renewable energy, climate policy, and environmental impact assessments. His impressive educational background, including a PhD in Power Engineering and Thermophysics, coupled with a strong track record of leadership and project management, underscores his capability to drive innovative research initiatives. Additionally, Oloruntoba’s effective communication skills enable him to engage with diverse stakeholders, fostering collaboration and enhancing the societal impact of his work. While he has already made significant strides, further international collaboration and public engagement could amplify his contributions even more. Overall, Adefarati Oloruntoba’s dedication, expertise, and innovative spirit make him a deserving recipient of the Research for Best Scholar Award.

Publication Top Notes
  • Heavy Metal Contamination in Soils, Water, and Food in Nigeria from 2000–2019: A Systematic Review on Methods, Pollution Level and Policy Implications
    • Authors: Oloruntoba, A., Omoniyi, A.O., Shittu, Z.A., Ajala, R.O., Kolawole, S.A.
    • Year: 2024
    • Citations: 1
  • Investigating choking phenomena in CFB risers under different operating parameters
    • Authors: Xiao, H., Ke, X., Oloruntoba, A., Zhang, Y., Liu, C.
    • Year: 2024
    • Citations: 0
  • Improving the precision of solids velocity measurement in gas-solid fluidized beds with a hybrid machine learning model
    • Authors: Xiao, H., Oloruntoba, A., Ke, X., Zhang, Y., Wang, J.
    • Year: 2024
    • Citations: 3
  • Degradation characteristics and utilization strategies of a covalent bonded resin-based solid amine during capturing CO2 from flue gas
    • Authors: Xu, C., Zhang, Y., Peng, Y.-L., Oloruntoba, A., Jiang, S.
    • Year: 2024
    • Citations: 3
  • Experimental Study on Back-Flushing Characteristics of an In-Vessel Filtration System in Fischer-Tropsch Slurry Reactors
    • Authors: Gu, P., Zhang, Y., Du, H., Oloruntoba, A.
    • Year: 2023
    • Citations: 1
  • Performance evaluation of gas maldistribution mitigation via baffle installation: Computational study using ozone decomposition in low-velocity dense fluidized beds
    • Authors: Oloruntoba, A., Zhang, Y., Li, S.
    • Year: 2023
    • Citations: 6
  • Effects of Gas Condition and Baffle Installation on Bed Hydrodynamics in FCC Regenerators
    • Authors: Oloruntoba, A., Zhang, Y.-M., Mukhtar, Y.M.F.
    • Year: 2023
    • Citations: 0
  • An environmentally friendly turnkey method to determine pore volume of powdered catalysts
    • Authors: Jiang, Q., Olarte, M., Guo, Y., Ren, F., Song, H.
    • Year: 2022
    • Citations: 0
  • Hydrodynamics-reaction-coupled simulations in a low-scale batch FCC regenerator: Comparison between an annular and a free-bubbling fluidized beds
    • Authors: Oloruntoba, A., Zhang, Y., Xiao, H.
    • Year: 2022
    • Citations: 5
  • State-of-the-Art Review of Fluid Catalytic Cracking (FCC) Catalyst Regeneration Intensification Technologies
    • Authors: Oloruntoba, A., Zhang, Y., Hsu, C.S.
    • Year: 2022
    • Citations: 2

Dr. Ridha Boudhiaf | Energy | Best Scholar Award

Dr. Ridha Boudhiaf | Energy | Best Scholar Award

Assistant Professor at Higher Institute of Biotechnology of Sfax, Tunisia

Dr. Ridha Boudhiaf is an Assistant Professor of Chemical Engineering at the Higher Institute of Biotechnology of Sfax, Tunisia. He holds a Ph.D. in Chemical Engineering from the National Engineering School of Gabès, specializing in solar energy conversion, storage, and solar pond systems. His research focuses on numerical modeling of thermal, hydrodynamic, and mass transfer phenomena, particularly in solar energy applications such as solar stills and salt-gradient solar ponds. Dr. Boudhiaf has published extensively in reputable scientific journals, including Energy Conversion and Management and Energies, and has presented his work at international conferences. His expertise includes numerical simulation tools like Ansys Fluent and programming languages such as Matlab and Fortran. With a strong academic background, Dr. Boudhiaf has contributed significantly to advancing renewable energy technologies and thermal energy storage systems through both his research and teaching. He is actively involved in mentoring students and collaborating on various research projects.

Profile:

Education

Dr. Ridha Boudhiaf has a strong academic background in Chemical Engineering with a focus on processes and renewable energy. He earned his Doctorate in Chemical Engineering-Processes from the National Engineering School of Gabès, University of Gabès, Tunisia, in November 2013, graduating with high honors and the jury’s commendation. Prior to this, he obtained a Master’s degree in Chemical Engineering-Processes from the same institution in November 2006, where he also achieved a distinction of “Very Good.” His academic journey began with a Bachelor’s degree in Chemical Engineering-Processes in July 1996, following his completion of specialized studies in the field in 2002. Throughout his education, Dr. Boudhiaf demonstrated a consistent focus on energy conversion, thermal processes, and the application of chemical engineering to energy storage systems, specifically in the context of solar energy. His rigorous education laid the foundation for his subsequent research and professional contributions in renewable energy systems.

Professional Experiences 

Dr. Ridha Boudhiaf is a highly experienced academic with a robust background in Chemical Engineering and Process Systems. Currently serving as a Maître-Assistant at the Higher Institute of Biotechnology of Sfax (ISBS) since January 2015, he has held several notable positions throughout his career. He worked as a Maître-Technologue at the Higher Institute of Technological Studies of Sfax in 2014 and as a Technologue at the Higher Institute of Technological Studies of Gafsa from 2003 to 2013. Prior to that, Dr. Boudhiaf served as an Assistant Technologist at the Higher Institute of Technological Studies of Zaghouan in 2002-2003. His industrial experience includes a role as a production engineer at the Tuniso-Algerian White Cement Company (SOTACIB) in Fériana from 1999 to 2000. With a strong focus on solar energy research, Dr. Boudhiaf’s expertise encompasses numerical modeling, thermal performance studies, and energy conversion systems.

Research Interests

Dr. Ridha Boudhiaf’s research interests are primarily centered around the field of solar energy conversion, storage, and its applications in thermal systems. His work focuses on the thermal and hydrodynamic performance of solar thermal collectors and solar distillers with various geometries. Dr. Boudhiaf also explores the use of numerical modeling, particularly employing Navier-Stokes equations for Newtonian and incompressible fluids, to simulate the behavior of solar ponds. His expertise extends to the study of salt-gradient solar ponds, investigating the intricate heat and mass transfer mechanisms, with an emphasis on optimizing solar energy storage. Furthermore, his research delves into the influence of buoyancy and Rayleigh numbers on fluid flow stability within solar ponds. Dr. Boudhiaf also contributes to understanding entropy production in thermosolutal convection systems with Dufour effects, aiming to enhance the efficiency of solar energy systems through improved design and optimization techniques.

Research Skills

Dr. Ridha Boudhiaf possesses extensive research skills in the field of chemical engineering, particularly in solar energy conversion, storage, and thermal system optimization. His expertise includes the numerical modeling of thermal, hydrodynamic, and mass transfer phenomena, with a focus on solar ponds and energy storage systems. Dr. Boudhiaf is skilled in the simulation of complex fluid behavior using software tools like Ansys Fluent, Matlab, and Fortran, enabling him to develop precise models for studying convection and thermal diffusion. His research extends to investigating the thermosolutal convection with the Dufour effect, contributing valuable insights into entropy production in thermal systems. Dr. Boudhiaf has a strong foundation in both experimental and theoretical approaches, having published several peer-reviewed articles on fluid mechanics, heat transfer, and renewable energy systems. His ability to integrate numerical analysis with practical applications makes him a proficient researcher in sustainable energy technologies.

Award And Recognition 

Dr. Ridha Boudhiaf is an accomplished researcher and academic, recognized for his significant contributions to the field of Chemical Engineering and Solar Energy Systems. His work on hydrodynamic, heat, and mass transfer in solar ponds has garnered international attention, leading to several publications in esteemed scientific journals, including Energy Conversion and Management and Energies. Dr. Boudhiaf’s innovative research on the optimization of energy storage systems and the numerical modeling of solar ponds has earned him invitations to present at numerous international conferences. His contributions to the scientific community extend beyond research, as he has actively mentored students and collaborated on projects with leading institutions. His dedication to advancing the understanding of solar energy technologies has positioned him as a respected figure in his field, with accolades reflecting his commitment to both academic excellence and practical applications of renewable energy systems.

Conclusion

Dr. Ridha Boudhiaf demonstrates a high level of scholarly achievement, particularly in the fields of chemical engineering and renewable energy. His focus on solar energy systems is timely and important in the context of global energy challenges. To further strengthen his candidacy for the Research for Best Scholar Award, he could explore interdisciplinary research and expand his collaboration efforts. Nonetheless, his contributions to solar energy research are significant, making him a suitable candidate for the award.

Publication Top Notes
  1. Numerical Study of the Air Outlet Effect Inside a Living Room Connected to an Aerovoltaic Solar Air Heater
    Authors: Driss, S., Boudhiaf, R., Hmid, A., Kammoun, I.K., Abid, M.S.
    Year: 2024
  2. Experimental analysis of triangular solar distiller with a new form of absorber
    Authors: Boudhiaf, R., Kessentini, S., Driss, Z., Abid, M.S., Aissa, A.
    Year: 2024
  3. Illizi city sand impact on the output of a conventional solar still
    Authors: Khamaia, D., Boudhiaf, R., Khechekhouche, A., Driss, Z.
    Year: 2022
  4. Transient hydrodynamic, heat and mass transfer in a salinity gradient solar pond: A numerical study
    Authors: Boudhiaf, R., Baccar, M.
    Year: 2014
  5. A two-dimensional numerical study of hydrodynamic, heat and mass transfer and stability in a salt gradient solar pond
    Authors: Boudhiaf, R., Moussa, A.B., Baccar, M.
    Year: 2012

 

 

Alexander Gusev | Hydrogen Energy | Environmental Engineering Impact Award

Dr. Alexander Gusev | Hydrogen Energy | Environmental Engineering Impact Award

Scientific Director, Professor at Fermaltech Montenegro Limited, Montenegro

Alexander L. Gusev is a distinguished academic and researcher in hydrogen energy and environmental engineering, serving as an academician at the European Academy of Natural Sciences and a professor at multiple institutions including STC “TATA” and the Institute of Hydrogen Economics. Renowned for his contributions to hydrogen safety and alternative energy, he is among the top-cited scientists in his field and has authored over 500 scientific works. Gusev’s expertise spans hydrogen technologies, cryogenics, and nanomaterials, with notable innovations in extinguishing large fires using cryogenic gases and developing advanced hydrogen storage systems. His leadership in organizing international scientific forums and his role as an expert on various governmental programs highlight his impact on the field. Gusev’s accolades include the K.E. Tsiolkovsky Medal and recognition from several scientific and technological societies. His work continues to shape advancements in energy efficiency and environmental safety.

Profile

Education

Alexander L. Gusev’s educational background is distinguished and comprehensive. He began his academic journey at the Physics and Mathematics School in Frunze, USSR, from 1968 to 1978, followed by studies at the Correspondence School of Physics and Mathematics at Moscow Institute of Physics and Technology in 1977-1978. He pursued higher education at the Military Engineering Institute named after A.F. Mozhajskij, graduating in 1983 with a focus on solid-state physics, chemistry, thermodynamics, and space technology. Gusev continued his advanced studies with postgraduate work from 1989 to 1995 at NPO “Cryogenmash,” where he specialized in hydrogen technologies and cryogenics, earning accolades for his thesis on large-scale cryo vacuum systems. His commitment to continuous learning is reflected in additional refresher courses in German and English language skills, enhancing his professional and international capabilities.

Professional Experience

Alexander L. Gusev is a distinguished academic and researcher with extensive experience in alternative energy and ecology. He serves as the head of the Department of Alternative Energy and Ecology at the European Academy of Natural Sciences in Hanover, Germany, and holds professorships at STC “TATA” and the Institute of Hydrogen Economics. Gusev has a notable background in hydrogen technologies, ranking fifth globally in hydrogen safety research according to Google Scholar. His career includes significant contributions to the development of cryogenic systems and hydrogen energy technologies, with over 70 patents and more than 500 scientific works to his name. He has led and participated in over 25 R&D projects, including groundbreaking work on large-scale cryo vacuum systems and hydrogen fuel technologies. Gusev’s expertise extends to the organization of major international scientific forums and collaboration with leading global institutions such as Toyota, Bayer, and NASA.

Research Interest

Alexander L. Gusev is renowned for his research in hydrogen energy technologies and their environmental impact. His work focuses on the development and application of hydrogen production from both renewable and non-renewable sources, emphasizing environmentally friendly methods and energy efficiency. Gusev’s research encompasses hydrogen safety, fuel cells, and advanced materials such as nanocatalysts and porous materials for energy applications. He has made significant contributions to cryogenic and vacuum technologies, particularly in the storage and transportation of hydrogen. His interests also include the integration of alternative energy systems and ecological considerations in energy use. Gusev’s innovative projects extend to large-scale technological solutions, such as extinguishing technological fires using cryogenic gases and developing hydrogen recombiners. His research aims to enhance sustainable energy practices and address environmental challenges through advanced scientific and technical solutions.

Research Skills

Alexander L. Gusev possesses extensive research skills in the field of hydrogen energy and environmental engineering. His expertise spans a range of critical areas, including hydrogen production from renewable sources, energy storage and transportation, and advanced cryogenic technologies. Gusev’s proficiency in hydrogen safety and its applications is reflected in his significant contributions to the development of hydrogen energy technologies, such as cryogenic systems and hydrogen fuel cells. He excels in material characterization and nanotechnology, with a particular focus on nanocatalysts and gas adsorption. His skills also extend to designing and implementing innovative solutions for environmental safety, including large-scale fire suppression and cryogenic vacuum systems. Gusev’s extensive experience in leading international research projects and his role in developing standards for hydrogen technologies further highlight his advanced capabilities in scientific research and technological innovation.

Award and Recognition

Alexander L. Gusev is a distinguished scientist renowned for his contributions to alternative energy and hydrogen technologies. He has earned significant accolades, including the prestigious K. E. Tsiolkovsky Medal for his advancements in cosmonautics and recognition as a Veteran of Nuclear Energy and Industry by Rosatom. Gusev’s work in hydrogen safety and cryogenics has positioned him as a leading figure globally, ranking fifth in hydrogen safety research according to Google Scholar. His innovative approaches have garnered over 70 patents and numerous international awards. He has also been honored as an Academician of both the European Academy of Natural Sciences and the Serbian Royal Academy of Science and Art. Gusev’s visionary leadership in developing eco-friendly energy solutions and his role in major international scientific events underscore his exceptional impact on the field of environmental engineering and energy technologies.

Conclusion

Alexander L. Gusev is a highly suitable candidate for the Research for Environmental Engineering Impact Award due to his extensive expertise, significant contributions to hydrogen energy technologies, and broad recognition in the field. His innovative solutions and leadership in international scientific events reflect his commitment to advancing environmental engineering. By expanding his focus to emerging environmental issues and increasing public engagement, Gusev could further enhance his impact and contributions to the field.

Publication Top Notes

  • Title: Economic Aspects of Nuclear and Hydrogen Energy in the World and Russia
    • Authors: SZ Zhiznin, VM Timokhov, AL Gusev
    • Year: 2020
    • Journal: International Journal of Hydrogen Energy
    • Volume: 45
    • Issue: 56
    • Pages: 31353–31366
    • Citations: 133
  • Title: Economics of Secondary Renewable Energy Sources with Hydrogen Generation
    • Authors: SZ Zhiznin, S Vassilev, AL Gusev
    • Year: 2019
    • Journal: International Journal of Hydrogen Energy
    • Volume: 44
    • Issue: 23
    • Pages: 11385–11393
    • Citations: 73
  • Title: Algorithm for Optimal Pairing of RES and Hydrogen Energy Storage Systems
    • Authors: AS Ufa, R.A. Malkova, Y.Y. Gusev, A.L. Ruban, N.Y. Vasilev
    • Year: 2021
    • Journal: International Journal of Hydrogen Energy
    • Pages: 33659–33669
    • Citations: 55
  • Title: Hydrogen Production by Low-Temperature Plasma Decomposition of Liquids
    • Authors: NA Bulychev, MA Kazaryan, AS Averyushkin, AA Chernov, AL Gusev
    • Year: 2017
    • Journal: International Journal of Hydrogen Energy
    • Volume: 42
    • Issue: 33
    • Pages: 20934–20938
    • Citations: 55
  • Title: Economics of Hydrogen Energy of Green Transition in the World and Russia. Part I
    • Authors: ALG SZ Zhiznin, VM Timokhov
    • Year: 2022
    • Journal: International Journal of Hydrogen Energy
    • Status: In Print
    • Citations: 54*
  • Title: Thermodynamic Peculiarities of Low-Temperature Regeneration of Cryosorption Devices in Heat-Insulation Cavities of Hydrogenous Cryogenic Tanks
    • Authors: AL Gusev
    • Year: 2001
    • Journal: International Journal of Hydrogen Energy
    • Volume: 26
    • Issue: 8
    • Pages: 863–871
    • Citations: 39
  • Title: Cleaning System for Corrosive Gases and Hydrogen
    • Authors: AL Gusev
    • Year: 2009
    • Journal: Chemical and Petroleum Engineering
    • Volume: 45
    • Issue: 9
    • Page: 640
    • Citations: 37
  • Title: Hydrogen Sensor for Cryogenic Vacuum Objects
    • Authors: AL Gusev, VM Belousov, IV Bacherikova, LV Lyashenko, EV Rozhkova
    • Year: 2002
    • Journal: Hydrogen Materials Science and Chemistry of Metal Hydrides
    • Pages: 41–47
    • Citations: 35
  • Title: О Механизме Анодного Окисления Алюминия В Водных Растворах Электролитов (On the Mechanism of Anodic Oxidation of Aluminum in Aqueous Electrolyte Solutions)
    • Authors: ИЛ Батаронов, АЛ Гусев, ЮВ Литвинов, ЕЛ Харченко, ЮН Шалимов
    • Year: 2007
    • Journal: Альтернативная Энергетика И Экология
    • Pages: 118–126
    • Citations: 34
  • Title: Main Environmental Problems in Nizhny Novgorod Region and Ways to Transition to a Hydrogen Economy
    • Author: AL Gusev
    • Year: 2006
    • Journal: International Scientific Journal for Alternative Energy and Ecology (ISJAEE)
    • Citations: 33

 

Pooja Sharma | Energy Transition | Best Researcher Award

Assoc Prof Dr. Pooja Sharma | Energy Transition | Best Researcher Award

Associate Professor at Daulat Ram College, University of Delhi, India

Dr. Pooja Sharma, an Associate Professor in the Department of Economics at Daulat Ram College, University of Delhi, specializes in Environmental Economics, Renewable Energy, and Energy Policy. Her research focuses on critical issues such as energy transition, energy security, and sustainability. Dr. Sharma’s notable projects include studying the role of renewables in energy transition, valuing Green GDP, and developing e-content for economics courses. Her interdisciplinary approach is evident in projects like Clean Energy from Waste with Microbial Fuel Cells. With over fourteen years of teaching experience, she has significantly contributed to economics education. Her work with institutions such as the Institute of Economic Growth and the University of Delhi underscores her impactful research and dedication to advancing knowledge in her field. While she has a strong research foundation, increasing her publication record and expanding international collaborations could further enhance her academic influence.

Profile

Education

Dr. Pooja Sharma’s educational background is distinguished by her focus on economics and energy studies. She completed her Bachelor’s degree in Economics (B.A. Hons) from Miranda House, University of Delhi in 1997, followed by a Master’s degree in Economics from the Delhi School of Economics in 1999. Her academic journey continued with an MPhil in Economics from Jawaharlal Nehru University (JNU) in 2007, where her research focused on “Rural Electrification and Poverty.” Dr. Sharma further advanced her expertise with a Ph.D. from the Energy Studies Program at JNU, where she conducted a comparative study of renewables in energy transition between India and Norway. Her academic pursuits also included a research fellowship at the University of Agder, Norway, and various specialized trainings, such as the ASEAN Investment Law Specialization and workshops on GIS, reflecting her commitment to interdisciplinary learning and research.

Professional Experience

Dr. Pooja Sharma is an Associate Professor in the Department of Economics at Daulat Ram College, University of Delhi. With over fourteen years of teaching experience, she has delivered courses in Environmental Economics, Econometrics, and Public Economics. Dr. Sharma has led several significant research projects, including studies on the role of renewables in energy transition and the valuation of Green GDP. Her work extends to interdisciplinary projects such as Clean Energy from Waste with Microbial Fuel Cells and contributions to e-content development for various educational institutions. She has also engaged in research as a PhD Research Fellow at the University of Agder, Norway, focusing on energy policy and sustainability. Dr. Sharma’s academic and research endeavors reflect her commitment to advancing knowledge in environmental economics and energy policy, making her a prominent figure in her field.

Research Interest

Dr. Pooja Sharma’s research interests are centered around Environmental Economics, Energy Policy, and Renewable Energy. She focuses on the role of renewable energy in energy transition, emphasizing comparative studies between countries like India and Norway. Her work delves into the intersection of energy security and sustainability, exploring how renewable resources can address global energy challenges. Dr. Sharma’s research also encompasses the valuation of Green GDP and the economic impacts of environmental policies, such as reducing air pollution. Additionally, she has investigated innovative approaches to clean energy, including the use of microbial fuel cells. Her interdisciplinary approach, integrating economics with environmental science, reflects her commitment to advancing sustainable development and addressing critical issues in energy and environmental economics. Through her projects and academic contributions, Dr. Sharma aims to contribute to effective energy policies and sustainable economic practices.

Research Skills

Dr. Pooja Sharma’s research skills are distinguished by her profound expertise in environmental economics, energy policy, and econometrics. Her ability to analyze complex data sets, such as those related to energy transition and renewable energy, is demonstrated through her projects on Green GDP valuation and air pollution reduction. Dr. Sharma excels in applying advanced econometric techniques to assess the impacts of environmental policies and energy security. Her interdisciplinary approach is evident in her involvement with projects like Clean Energy from Waste using microbial fuel cells, showcasing her capacity to integrate insights from various fields. Additionally, her experience in e-content development for economics courses highlights her skill in translating complex concepts into accessible educational material. Her proficiency in using statistical tools and software, combined with her practical research experience, positions her as a highly capable and innovative researcher in her domain.

Award and Recognition

Dr. Pooja Sharma has garnered recognition for her impactful contributions to the field of environmental economics and energy policy. Her research, notably on the role of renewables in energy transition and valuation of Green GDP, has been instrumental in advancing understanding in these critical areas. Dr. Sharma’s dedication is also evident in her interdisciplinary projects, such as the Clean Energy from Waste initiative and her extensive work on e-content development for educational institutions. Her efforts in these diverse domains underscore her commitment to sustainability and education. Despite her commendable achievements, further recognition could be bolstered by increasing her publication output in high-impact journals and expanding her international collaborations. Overall, Dr. Sharma’s contributions reflect her exceptional expertise and significant potential for continued influence in her field.

Conclusion

Dr. Pooja Sharma is a strong candidate for the Best Researcher Award due to her substantial contributions to environmental economics and energy policy. Her extensive research experience and interdisciplinary approach are notable strengths. By focusing on increasing her publication record and expanding her collaborative network, she can further enhance her influence and recognition in the field.

Publication Top Notes

  1. Economic performance assessment of building integrated photovoltaic system with battery energy storage under grid constraints
    • Authors: P. Sharma, M. Kolhe, A. Sharma
    • Published in: Renewable Energy
    • Volume: 145, Pages: 1901-1909
    • Year: 2020
    • Citations: 69
  2. Inflation rate and Poverty: Does poor become poorer with inflation?
    • Authors: M. Paul, P. Sharma
    • Available at: SSRN
    • Year: 2019
    • Citations: 15
  3. Role of human capital in economic growth: a comparative study of India and China
    • Author: P. Sharma
    • Available at: SSRN
    • Year: 2019
    • Citations: 12
  4. Economic analysis of a building integrated photovoltaic system without and with energy storage
    • Authors: P. Sharma, M. Kolhe, A. Sharma
    • Published in: IOP Conference Series: Materials Science and Engineering
    • Volume: 605, Issue: 1, Article number: 012013
    • Year: 2019
    • Citations: 8
  5. The impact of oil prices on stock prices and other macroeconomic variables in India: pre‐and post‐2008 crises
    • Authors: V. Gupta, P. Sharma
    • Published in: OPEC Energy Review
    • Volume: 42, Issue: 3, Pages: 212-223
    • Year: 2018
    • Citations: 7
  6. Analyzing the Role of Renewables in Energy Security by Deploying Renewable Energy Security Index
    • Author: P. Sharma
    • Published in: Journal of Sustainable Development of Energy, Water and Environment Systems
    • Year: 2023
    • Citations: 5
  7. A Decentralized Pathway for Energy Security and Energy Transition in Asia and the Pacific Region
    • Author: P. Sharma
    • Available at: SSRN
    • Year: 2018
    • Citations: 5
  8. Evaluating Health Impact of Air Pollution
    • Authors: P. Sharma, P. Jain, D. Pragati, S. Kumar
    • Published in: Environment and Ecology Research
    • Volume: 7, Issue: 1, Pages: 59-72
    • Year: 2019
    • Citations: 4
  9. Health benefits derived by reducing air pollution: An East Delhi analysis
    • Authors: P. Sharma, R. Galhotra, P. Jain, P. A. Goel, B. Aggarwal, D. Narula, C. Singh, …
    • Published in: Journal of Advances in Humanities and Social Sciences
    • Volume: 3, Issue: 3, Pages: 164-181
    • Year: 2017
    • Citations: 4

 

 

Armel Zambou Kenfack | Energy | Young Scientist Award

Mr. Armel Zambou Kenfack | Energy | Young Scientist Award

Mr. Armel Zambou Kenfack, University of Yaoundé I, Cameroon

Based on the details provided, Armel Zambou Kenfack appears to be a strong candidate for the Research for Young Scientist Award. Here are a few reasons why:

Publication profile

Academic Background

Armel holds a Master’s degree in Energy and Environment from the University of Yaoundé 1, Cameroon, with a commendable “Very Good” distinction. His academic path also includes a Bachelor’s degree in Physics, specializing in Mechanics and Energetics, showcasing his foundational knowledge in energy-related fields.

Research Experience

He has actively contributed to research in renewable energy, particularly focusing on photovoltaic/thermal (PV/T) hybrid systems, solar energy optimization, and thermal storage. His involvement in multiple projects, including designing AI models for optimizing PV/T systems, demonstrates his commitment to advancing renewable energy technologies.

Publications 

  • Sensitivity analysis of the thermal performance of a parabolic trough concentrator using Al2O3 and SiO2/Vegetable oil as heat transfer fluid 🌡️🌞 – Cited by 6, 2024
  • Exergetic optimization of some design parameters of the hybrid photovoltaic/thermal collector with bi-fluid air/ternary nanofluid (CuO/MgO/TiO2) 🔋🔧 – Cited by 4, 2023
  • Techno-economic and environmental analysis of a hybrid PV/T solar system based on vegetable and synthetic oils coupled with TiO2 in Cameroon 📉🌿 – Cited by 3, 2024
  • Sectoral Assessment of the Energy, Water, Waste and Land Nexus in the Sustainability of Agricultural Products in Cameroon 🌾💧 – Cited by 2, 2024
  • Energy and exergo-environmental performance analysis of a Stirling micro-fridge with imperfect regenerator ❄️🔄 – Cited by 1, 2024
  • Performance Improvement of Hybrid Photovoltaic/Thermal Systems: A Metaheuristic Artificial Intelligence Approach to Select the Best Model Using 10E Analysis 🤖⚡  2024
  • Evaluation of the Hydrogen/Oxygen and Thermoelectric Production of a Hybrid Solar Pv/T-Electrolyzer System ⚡🔋  2024

Awards and Recognition

He has received several awards, such as the Zacharias Tanee Excellence Award for the most successful young student-researcher, and accolades for his master’s thesis, highlighting his academic and research excellence.

Professional and Teaching Experience

Currently working as a research and development engineer and a part-time teacher at the University of Yaoundé 1, Armel balances his time between hands-on research and mentoring students. His dual roles enrich his professional experience and demonstrate his capability to contribute to both practical and theoretical aspects of his field.

Skills and Expertise

His expertise includes the simulation and optimization of energy systems, proficiency in various programming and simulation tools (Matlab, Fortran, Python, ANSYS), and experience in techno-economic and thermo-electric analysis, all of which are critical skills for an impactful career in renewable energy research.

Conclusion

Armel Zambou Kenfack’s combination of academic achievements, research contributions, publication record, and recognition make him a promising candidate for the Research for Young Scientist Award. His focus on innovative solutions in energy and environmental sustainability aligns with the award’s objectives, making him a deserving nominee.

 

Yibo Wang | Distributed Generation | Best Researcher Award

Dr. Yibo Wang | Distributed Generation | Best Researcher Award

Northeastern University, China.

Yibo Wang is a dedicated researcher in electrical engineering, currently pursuing his Master’s degree at Northeastern University, China. His research centers on the stability analysis of distributed generation in cyber-energy systems, a crucial area for modern energy infrastructure. He has co-authored several high-impact papers published in top-tier journals, such as the Journal of Energy Storage and IEEE Journal of Emerging and Selected Topics in Power Electronics, showcasing his significant contributions to the field. Yibo’s work on virtual energy storage systems and multi-inverter stability has positioned him as a promising young researcher. His collaboration with established experts like Rui Wang and Pinjia Zhang further highlights his research potential. While his academic background and research outputs are impressive, expanding his research scope and demonstrating independent project leadership could further enhance his profile as a leading researcher in the field.

Profile
Education

Yibo Wang holds a robust educational background in Electrical Engineering, beginning with his Bachelor’s degree from the Shenyang Institute of Engineering, where he studied from September 2017 to June 2022. His undergraduate studies focused on Electrical Engineering and Automation, providing him with a solid foundation in the principles and practices of electrical systems. Building on this, Yibo pursued a Master’s degree at Northeastern University, China, specializing in Electrical Engineering from September 2022 to June 2024. During his graduate studies, he delved deeper into advanced topics such as the stability analysis of distributed generation in cyber-energy systems. His academic journey is marked by a commitment to excellence and a keen interest in emerging energy technologies, positioning him as a promising researcher in the field. Yibo’s education has equipped him with the technical knowledge and analytical skills necessary to contribute meaningfully to the future of energy systems engineering.

Professional Experience

Yibo Wang is a dedicated researcher in the field of electrical engineering, with a particular focus on the stability analysis of distributed generation in cyber-energy systems. He has co-authored several high-impact research papers published in prestigious journals, including the Journal of Energy Storage and IEEE Journal of Emerging and Selected Topics in Power Electronics. His work primarily explores innovative solutions in virtual energy storage systems, multi-inverter stability, and virtual asynchronous machine controllers. Yibo’s collaboration with leading experts like Rui Wang and Pinjia Zhang highlights his integration into a network of prominent researchers, further enhancing the impact of his contributions. Currently, he is advancing his academic pursuits as a Master’s degree candidate in Electrical Engineering at Northeastern University. His strong educational background, coupled with his research achievements, positions him as an emerging talent in the domain of cyber-energy systems and electrical engineering.

Research Interest

Yibo Wang’s research is centered on the stability analysis of distributed generation within cyber-energy systems, a critical area in modern electrical engineering. His work explores the intricate dynamics between energy generation, storage, and distribution, particularly focusing on virtual energy storage systems and multi-inverter networks. Yibo’s research aims to enhance the robustness and reliability of energy systems by developing advanced control strategies, such as virtual synchronous generators (VSG) and virtual asynchronous machine controllers. These strategies are designed to stabilize power systems in real-time, ensuring seamless integration of renewable energy sources into the grid. His contributions are particularly relevant in the context of increasing reliance on distributed generation and the need for resilient energy infrastructures. By addressing these challenges, Yibo Wang’s research not only advances theoretical understanding but also has practical implications for the future of sustainable energy systems.

Research Skills

Yibo Wang possesses a robust set of research skills, particularly in the field of electrical engineering and energy systems. His expertise in stability analysis of distributed generation in cyber-energy systems is evidenced by his contributions to high-impact publications. Yibo is proficient in advanced analytical techniques, such as the Guardian Map Method, which he has applied to optimize parameter selection in complex energy systems. His ability to collaborate effectively with leading researchers and contribute to significant studies on virtual energy storage and multi-inverter systems demonstrates his strong teamwork and communication skills. Additionally, Yibo’s research is grounded in a deep understanding of both theoretical principles and practical applications, allowing him to develop innovative solutions for contemporary challenges in energy infrastructure. His technical proficiency, coupled with a commitment to advancing knowledge in his field, makes him a valuable asset in any research setting.

Awards and Recognition

Yibo Wang possesses a robust set of research skills, particularly in the field of electrical engineering and energy systems. His expertise in stability analysis of distributed generation in cyber-energy systems is evidenced by his contributions to high-impact publications. Yibo is proficient in advanced analytical techniques, such as the Guardian Map Method, which he has applied to optimize parameter selection in complex energy systems. His ability to collaborate effectively with leading researchers and contribute to significant studies on virtual energy storage and multi-inverter systems demonstrates his strong teamwork and communication skills. Additionally, Yibo’s research is grounded in a deep understanding of both theoretical principles and practical applications, allowing him to develop innovative solutions for contemporary challenges in energy infrastructure. His technical proficiency, coupled with a commitment to advancing knowledge in his field, makes him a valuable asset in any research setting.

Conclusion

Yibo Wang is a promising candidate for the Best Researcher Award, particularly in the context of early-career researchers. His contributions to the field of electrical engineering, particularly in stability analysis and cyber-energy systems, are commendable. However, to strengthen his case for such an award, focusing on broadening his research impact, pursuing further professional development, and demonstrating independent research leadership would be beneficial. Overall, he is a strong contender with significant potential for future recognition.

Publications Top Notes

  1. A study of novel real-time power balance strategy with virtual asynchronous machine control for regional integrated electric-thermal energy systems
    • Authors: Wang, R., Li, M.-J., Wang, Y., Sun, Q., Zhang, P.
    • Year: 2024
  2. An Algorithm for Calculating the Parameter Selection Area of a Doubly-Fed Induction Generator Based on the Guardian Map Method
    • Authors: Wang, Y., Chen, F., Jia, W., Wang, R.
    • Year: 2024
  3. Research on Load State Sensing and Early Warning Method of Distribution Network under High Penetration Distributed Generation Access
    • Authors: Gu, C., Wang, Y., Wang, W., Gao, Y.
    • Year: 2023
  4. New Distributed Control Strategy of Power System Based on Existing Technology
    • Authors: Jia, Y., Zheng, Q., Pan, Z., Tian, R., Wang, Y.
    • Year: 2022 (presented in 2023)
  5. Distributed Optimal Control Strategy of New Energy in Novel Power Systems
    • Authors: Jia, Y., Zheng, Q., Pan, Z., Wang, Y., Tian, R.
    • Year: 2022 (presented in 2023)