Xuanhua Li | Materials Science | Best Researcher Award

Prof. Xuanhua Li | Materials Science | Best Researcher Award

Group Leader at Northwestern Polytechnical University, China

Xuanhua Li is a distinguished professor and project leader at Northwestern Polytechnical University (NPU), China. His research focuses on advanced materials, particularly 2D materials, photocatalytic water splitting, and perovskite solar cells. With a prolific publication record in prestigious journals such as Science, Nature Energy, Nature Communications, and Science Advances, he has established himself as a leading researcher in materials science and renewable energy. His innovative contributions to high-efficiency solar cells, photocatalysis, and energy conversion systems have gained national and international recognition. As a fellow of the International Union of Materials Research Societies and a recipient of multiple youth talent support programs, he has demonstrated strong leadership in his field. His work is characterized by groundbreaking advancements in optoelectronics, energy materials, and nanotechnology.

Professional Profile

Education

Xuanhua Li holds a Bachelor’s degree in Materials Science from Wuhan University of Technology (2003–2007). He earned his Master’s degree in ChemistryfromPh.D. in Optoelectronics at the University of Hong Kong (2010–2014), where he specialized in advanced materials and energy conversion technologies. His academic journey reflects a strong foundation in multidisciplinary research, integrating materials science, chemistry, and optoelectronics to address challenges in sustainable energy solutions.

Professional Experience

Since 2014, Xuanhua Li has been a Professor at Northwestern Polytechnical University (NPU), Xi’an, China, where he leads innovative research in materials science. In 2019, he took on the role of Project Leader and Group Leader at the Center of Nano Energy and Materials at NPU, where he directs cutting-edge research on energy materials and nanotechnology. His leadership has contributed significantly to the advancement of photocatalysis, perovskite solar cells, and nanomaterials for energy applications. His professional experience includes mentoring young researchers, securing competitive research funding, and collaborating with international scientists to push the boundaries of renewable energy research.

Research Interests

Xuanhua Li’s research interests center on the design and fabrication of 2D materials, photocatalytic water splitting, and perovskite solar cells. His work focuses on developing highly efficient and stable materials for solar energy conversion and hydrogen production. He explores innovative techniques to enhance the performance of perovskite solar cells, quantum efficiency in photocatalysis, and hydrovoltaic energy systems. His interdisciplinary research integrates nanotechnology, chemistry, and materials engineering to solve challenges in sustainable energy generation and storage. His work contributes to the development of next-generation renewable energy solutions with potential applications in clean energy and environmental sustainability.

Research Skills

Xuanhua Li possesses expertise in materials synthesis, nanofabrication, and advanced characterization techniques. His skills include photocatalysis, thin-film deposition, optoelectronic device fabrication, and energy conversion efficiency analysis. He is proficient in spectroscopy, electron microscopy, and electrochemical testing, which are crucial for evaluating the properties and performance of nanomaterials. His ability to integrate experimental and computational approaches allows him to develop novel materials with enhanced functionalities. His strong analytical skills and deep understanding of optoelectronic materials and energy harvesting systems enable him to design high-performance solar cells and hydrogen production technologies.

Awards and Honors

Xuanhua Li has received several prestigious recognitions for his contributions to materials science. He is a Fellow of the International Union of Materials Research Societies, an honor that highlights his leadership in the field. He has been selected for the National Youth Talent Support Program and the Youth Talent Support Program in Shaanxi, China, acknowledging his exceptional research achievements. Additionally, he is a recipient of the National Science Fund for Distinguished Young Scholars in Shaanxi, China, which supports outstanding young scientists conducting groundbreaking research. These accolades reflect his scientific excellence, research impact, and leadership in the field of advanced energy materials.

Conclusion

Xuanhua Li is a highly accomplished researcher in the field of materials science, with a strong emphasis on renewable energy applications. His prolific publication record, leadership in high-impact research, and recognition through national and international awards establish him as a leading scientist. His expertise in 2D materials, photocatalysis, and perovskite solar cells contributes to the development of sustainable energy technologies. While his research output is exceptional, expanding his industrial collaborations and mentorship initiatives could further enhance his profile. Overall, his contributions make him a strong candidate for prestigious research awards in the field of materials science and energy research.

Publication To Notes

  1. Title: “Tailoring the Configuration of Polymer Passivators in Perovskite Solar Cells”

      • Authors: Yaohua Li, Qi Cao, Xuanhua Li
      • Year: 2024
      • Journal: Chinese Journal of Structural Chemistry
      • DOI: 10.1016/j.cjsc.2024.100413
  2. Title: “Enhanced Corrosion Resistance of Ag Electrode Through Ionized 2‐Mercaptobenzothiazole in Inverted Perovskite Solar Cells”

    • Authors: Yaohua Li, Xilai He, Ruiqi Zhu, Xingyuan Chen, Tong Wang, Xingyu Pu, Hui Chen, Qi Cao, Xuanhua Li
    • Year: 2024
    • Journal: Advanced Functional Materials
    • DOI: 10.1002/adfm.202413245
  3. Title: “Locking Organic Solvents by Crystallization-Induced Polymer Network”

    • Authors: Jinmeng Zhu, Jinghan Ding, Yuke Li, Zhang He, Zhenzhen Ma, Wenqiang Dong, Xichen Zhao, Xuanhua Li
    • Year: 2024
    • Journal: Construction and Building Materials
    • DOI: 10.1016/j.conbuildmat.2024.138844
  4. Title: “π-Interactions Suppression of Buried Interface Defects for Efficient and Stable Inverted Perovskite Solar Cells”

    • Authors: Hui Chen, Jiabao Yang, Qi Cao, Tong Wang, Xingyu Pu, Xilai He, Xingyuan Chen, Xuanhua Li
    • Year: 2023
    • Journal: Nano Energy
    • DOI: 10.1016/j.nanoen.2023.108883
  5. Title: “One‐Step Construction of a Perovskite/TiO₂ Heterojunction Toward Highly Stable Inverted All‐Layer‐Inorganic CsPbI₂Br Perovskite Solar Cells with 17.1% Efficiency”

    • Authors: Xingyu Pu, Qi Cao, Jie Su, Jiabao Yang, Tong Wang, Yixin Zhang, Hui Chen, Xilai He, Xingyuan Chen, Xuanhua Li
    • Year: 2023
    • Journal: Advanced Energy Materials
    • DOI: 10.1002/aenm.202301607
  6. Title: “Internal Quantum Efficiency Higher Than 100% Achieved by Combining Doping and Quantum Effects for Photocatalytic Overall Water Splitting”

    • Authors: Youzi Zhang, Yuke Li, Xu Xin, Yijin Wang, Peng Guo, Ruiling Wang, Bilin Wang, Wenjing Huang, Ana Jorge Sobrido, Xuanhua Li
    • Year: 2023
    • Journal: Nature Energy
    • DOI: 10.1038/s41560-023-01242-7
  7. Title: “Hydrovoltaic Effect-Enhanced Photocatalysis by Polyacrylic Acid/Cobaltous Oxide–Nitrogen Doped Carbon System for Efficient Photocatalytic Water Splitting”

    • Authors: Xu Xin, Youzi Zhang, Ruiling Wang, Yijin Wang, Peng Guo, Xuanhua Li
    • Year: 2023
    • Journal: Nature Communications
    • DOI: 10.1038/s41467-023-37366-3
  8. Title: “Room Temperature Nondestructive Encapsulation via Self-Crosslinked Fluorosilicone Polymer Enables Damp Heat-Stable Sustainable Perovskite Solar Cells”

    • Authors: Tong Wang, Jiabao Yang, Qi Cao, Xingyu Pu, Yuke Li, Hui Chen, Junsong Zhao, Yixin Zhang, Xingyuan Chen, Xuanhua Li
    • Year: 2023
    • Journal: Nature Communications
    • DOI: 10.1038/s41467-023-36918-x
  9. Title: “Single-Atom Iridium on Hematite Photoanodes for Solar Water Splitting: Catalyst or Spectator?”

    • Authors: Qian Guo, Qi Zhao, Rachel Crespo-Otero, Devis Di Tommaso, Junwang Tang, Stoichko D. Dimitrov, Maria-Magdalena Titirici, Xuanhua Li, Ana Belén Jorge Sobrido
    • Year: 2023
    • Journal: Journal of the American Chemical Society
    • DOI: 10.1021/jacs.

Yutaka Matsuura | Materials Science | Best Researcher Award

Dr. Yutaka Matsuura | Materials Science | Best Researcher Award

Senior Fellow at Research Institute for Applied Sciences, Japan

Yutaka Matsuura is a distinguished researcher and engineer known for his pioneering work in the development of NdFeB sintered magnets, which are essential for a wide range of applications, from electronics to renewable energy. As an inventor, Matsuura played a crucial role in establishing the NdFeB ternary phase diagram, a fundamental breakthrough that has significantly advanced the magnetic material industry. His research also led to innovations in magnet production processes, including hydrogen decrepitation and dehydrogenation methods, which greatly improved the efficiency and quality of NdFeB magnets. Throughout his career, Matsuura has been instrumental in developing high-performance magnets by introducing Dy-substituted magnets to enhance coercive force. His expertise spans both the scientific and industrial sectors, having worked in research and development, production, and marketing. His contributions have shaped the global magnet industry, making him a leading figure in material science. Matsuura’s extensive patent portfolio and leadership in key industrial roles have solidified his reputation as a trailblazer in the field of permanent magnets.

Professional Profile

Education:

Yutaka Matsuura’s academic journey has been rooted in engineering and material science. He earned his Doctor of Engineering from Kyoto University in 1987, where his doctoral thesis focused on the study of NdFeB sintered magnets. This pivotal work set the foundation for his lifelong dedication to magnet research. Prior to this, Matsuura completed his Master’s degree in Science at Okayama University in 1977, following his undergraduate studies at the same institution. His education provided him with the deep scientific understanding and technical expertise that would later define his career in magnet technology. Matsuura’s academic training has played a vital role in his ability to innovate and lead groundbreaking research in material science, particularly in the domain of magnetic materials.

Professional Experience:

Yutaka Matsuura’s professional experience spans over several decades and encompasses both academic and industrial roles. Currently, he serves as a Research Fellow at the Research Institute for Applied Sciences, where he continues to advance his work in material science. His career trajectory includes leadership positions at renowned companies such as Hitachi Metals Ltd., where he served as Chief Engineer and Division President, and NEOMAX Co., Ltd., where he led the Magnetic Material Laboratories. Matsuura’s industrial experience has allowed him to bridge the gap between research and practical application, particularly in the development of advanced NdFeB sintered magnets. His roles in marketing, technical support, and R&D have contributed significantly to the global spread of NdFeB magnets, especially in industries like automotive and energy. Matsuura’s work with Sumitomo Special Metals, Kinki-Sumitoku Electronics, and other organizations has solidified his status as a key figure in the permanent magnet industry.

Research Interests:

Yutaka Matsuura’s primary research interests lie in the field of material science, with a specific focus on permanent magnets, particularly NdFeB sintered magnets. His work explores the development of high-performance magnets with enhanced coercive force, critical for a wide range of applications, including electric vehicles and renewable energy technologies. Matsuura’s research has contributed to understanding the coercive force mechanism of NdFeB magnets and the effects of rare-earth substitutions, such as Dy, on their magnetic properties. His studies have also led to the establishment of the NdFeB ternary phase diagram, a cornerstone in the synthesis and optimization of these magnets. Beyond material development, Matsuura is interested in refining the production processes of NdFeB magnets, including methods such as hydrogen decrepitation, to improve efficiency and sustainability. His work also addresses challenges such as reducing the reliance on rare-earth elements like Dy, thereby advancing both the scientific and environmental aspects of magnet technology.

Research Skills:

Yutaka Matsuura possesses a broad set of research skills, underpinned by decades of experience in material science, engineering, and industrial R&D. He is highly skilled in developing and optimizing production processes for NdFeB sintered magnets, including hydrogen decrepitation and dehydrogenation techniques. His ability to conduct fundamental research on the coercive force mechanism of magnets has been central to his work. Matsuura’s expertise extends to the creation of phase diagrams, specifically the NdFeB ternary system, which has been integral to understanding the properties of rare-earth magnets. His proficiency in experimental research, coupled with his deep knowledge of magnetic materials, allows him to innovate in the development of high-performance permanent magnets. Furthermore, Matsuura’s extensive patent portfolio reflects his ability to translate research findings into practical, industrial applications. His technical skills are complemented by a strong understanding of market dynamics, enabling him to effectively lead product development and global marketing efforts in the magnet industry.

Awards and Honors:

Throughout his career, Yutaka Matsuura has received numerous accolades that recognize his contributions to material science and magnet technology. Notably, he holds several patents in the field of permanent magnets, including groundbreaking patents on the production of NdFeB sintered magnets and methods for enhancing coercive force. His work on NdFeB magnets, particularly the development of Dy-substituted magnets, has earned him recognition as a leading figure in the industry. Matsuura’s achievements have not only advanced scientific knowledge but have also had a significant impact on the industrial applications of magnetic materials. His patents have contributed to the commercialization of high-performance permanent magnets used in a wide array of technologies, cementing his position as an innovator. Matsuura’s extensive career in both research and industry has been marked by numerous professional milestones, showcasing his leadership and dedication to advancing the field of material science.

Conclusion:

Yutaka Matsuura’s career is a testament to his exceptional contributions to the field of material science, particularly in the development of high-performance NdFeB sintered magnets. His groundbreaking research on the coercive force mechanism and the creation of the NdFeB ternary phase diagram has had a lasting impact on the magnet industry. Matsuura’s innovative production techniques, including hydrogen decrepitation, have revolutionized the manufacturing process for these magnets, making them more efficient and sustainable. His extensive patent portfolio and leadership roles in major companies highlight his ability to bridge the gap between scientific research and industrial application. While his contributions have already had a profound impact on technology, there is potential for further growth in exploring sustainable methods and interdisciplinary collaborations. Matsuura’s career exemplifies the qualities of a leading researcher, making him a deserving candidate for recognition in the field of material science and engineering.

Publication Top Notes

  1. Title: Demagnetization processes of Nd-Fe-B sintered magnets and ferrite magnets as demonstrated by soft X-ray magnetic circular dichroism microscopy
    • Authors: Matsuura, Y., Ishigami, K., Tamura, R., Nakamura, T.
    • Journal: Journal of Magnetism and Magnetic Materials
    • Citations: 2
    • Year: 2023
  2. Title: Demagnetization of Nd-Fe-B Sintered and Ferrite Magnets Derived from Magnetic Measurements
    • Authors: Matsuura, Y.
    • Conference: 2023 IEEE International Magnetic Conference – Short Papers, INTERMAG Short Papers 2023 – Proceedings
    • Year: 2023
  3. Title: Alignment and angular dependences of coercivity for (Sm,Ce)2(Co,Fe,Cu,Zr)17 magnets
    • Authors: Matsuura, Y., Tamura, R., Ishigami, K., Kajiwara, K., Nakamura, T.
    • Journal: Materials Transactions
    • Year: 2021
  4. Title: Magnetization reversal of (Sm, Ce)2(Co, Fe, Cu, Zr)17 magnets as per soft x-ray magnetic circular dichroism microscopy
    • Authors: Matsuura, Y., Maruyama, R., Kato, R., Kajiwara, K., Nakamura, T.
    • Journal: Applied Physics Letters
    • Citations: 2
    • Year: 2020
  5. Title: Coercivity Mechanism of Ga-Doped Nd-Fe-B Sintered Magnets
    • Authors: Matsuura, Y., Nakamura, T., Ishigami, K., Nagae, M., Osamura, K.
    • Journal: IEEE Transactions on Magnetics
    • Citations: 3
    • Year: 2019
  6. Title: Coercivity mechanism of SrOFe2O3 ferrite magnets
    • Authors: Matsuura, Y.
    • Journal: IEEE Transactions on Magnetics
    • Citations: 2
    • Year: 2018
  7. Title: Angular dependence of coercivity in isotropically aligned Nd-Fe-B sintered magnets
    • Authors: Matsuura, Y., Nakamura, T., Sumitani, K., Tamura, R., Osamura, K.
    • Journal: AIP Advances
    • Citations: 4
    • Year: 2018
  8. Title: Angular dependence of coercivity derived from alignment dependence of coercivity in Nd-Fe-B sintered magnets
    • Authors: Matsuura, Y., Nakamura, T., Sumitani, K., Tamura, R., Osamura, K.
    • Journal: AIP Advances
    • Citations: 8
    • Year: 2018
  9. Title: Relation between the alignment dependence of coercive force decrease ratio and the angular dependence of coercive force of ferrite magnets
    • Authors: Matsuura, Y., Kitai, N., Hosokawa, S., Hoshijima, J.
    • Journal: Journal of Magnetism and Magnetic Materials
    • Citations: 13
    • Year: 2016
  10. Title: Temperature properties of the alignment dependence of coercive force decrease ratio and the angular dependence of coercive force in Nd-Fe-B sintered magnets
    • Authors: Matsuura, Y., Kitai, N., Ishii, R., Hoshijima, J., Kuniyoshi, F.
    • Journal: Journal of Magnetism and Magnetic Materials
    • Citations: 23
    • Year: 2016