Ashish Reddy Kumbham | Engineering | Best Innovator Award

Mr. Ashish Reddy Kumbham | Engineering | Best Innovator Award

Sr. Engineer, Cybersecurity and Application Development from Cardinal Health, United States 

Ashish Reddy Kumbham is a distinguished professional with over 11 years of experience in the IT industry, specializing in cybersecurity, artificial intelligence, neural networks, and risk compliance. Throughout his career, he has held diverse roles such as Software Engineer, Programmer Analyst, Software Engineer Specialist, and currently serves as a Senior Engineer in Cybersecurity and Application Development. His expertise has been instrumental in addressing emerging challenges in the digital security landscape. Ashish has contributed significantly to the field through published research articles in renowned journals, multiple patents, and a well-received book on cybersecurity and risk compliance. His leadership extends beyond his research, as he serves on the editorial boards of multiple journals, influencing the direction of research and innovation. Recognized with numerous awards for his technical expertise and thought leadership, he continues to push the boundaries of technology and cybersecurity practices. His dedication to advancing the field has earned him a reputable position in the global tech community, where he is committed to making a lasting impact. Through his research and innovation, Ashish has contributed to strengthening digital infrastructure, helping organizations and nations enhance security, compliance, and risk management strategies in an increasingly complex cyber environment.

Professional Profile

Education

Ashish Reddy Kumbham has a strong academic foundation that has shaped his expertise in cybersecurity, artificial intelligence, and software development. He holds a Bachelor’s degree in Computer Science, which provided him with the technical knowledge and programming skills necessary for his early career roles. To further enhance his expertise, he pursued a Master’s degree specializing in Cybersecurity and Artificial Intelligence, focusing on cutting-edge research in digital security and risk compliance. His academic journey has been marked by a keen interest in emerging technologies, leading him to undertake advanced coursework in machine learning, neural networks, cryptography, and risk assessment methodologies. In addition to formal degrees, he has acquired multiple industry-recognized certifications in cybersecurity, ethical hacking, and AI, further solidifying his credibility as an expert in these fields. His continuous learning approach has allowed him to stay ahead of technological advancements and contribute significantly to research and development. His education not only laid the foundation for his successful career but also fostered a strong passion for innovation, research, and problem-solving in complex technological domains. This academic background, combined with real-world experience, has enabled him to become a thought leader in cybersecurity and AI.

Professional Experience

Ashish Reddy Kumbham has built an impressive career spanning over a decade in the IT industry, demonstrating expertise across multiple domains, including cybersecurity, artificial intelligence, and software development. He began his career as a Software Engineer, where he gained hands-on experience in programming, system architecture, and software security. Over the years, he progressed to roles such as Programmer Analyst and Software Engineer Specialist, where he worked on developing secure applications and implementing AI-driven risk compliance solutions. Currently, he serves as a Senior Engineer in Cybersecurity and Application Development, focusing on developing innovative security frameworks and AI-powered solutions to address complex cybersecurity threats. His work involves risk assessment, vulnerability management, and ensuring compliance with global cybersecurity standards. In addition to his technical responsibilities, Ashish is actively involved in mentoring young professionals and collaborating with industry experts to drive innovation. His leadership extends to publishing research articles, securing patents, and contributing to cybersecurity policies that enhance digital infrastructure security. Through his experience, he has developed a deep understanding of the evolving cybersecurity landscape and continues to create solutions that benefit both businesses and government entities in mitigating cyber risks effectively.

Research Interest

Ashish Reddy Kumbham’s research interests lie at the intersection of cybersecurity, artificial intelligence, neural networks, and risk compliance. He is particularly focused on developing AI-driven solutions for threat detection, risk assessment, and automated security protocols to enhance digital resilience. His work explores innovative methods for detecting vulnerabilities in digital infrastructures, using machine learning algorithms to predict and prevent cyber threats proactively. Additionally, he has a strong interest in neural networks and their application in cybersecurity, including anomaly detection and real-time threat intelligence. Another key area of interest is regulatory compliance and risk management, where he aims to create frameworks that help organizations adhere to cybersecurity regulations while minimizing operational risks. His research also delves into ethical hacking, blockchain security, and the development of privacy-preserving AI models. Through his research, Ashish seeks to bridge the gap between theoretical advancements and practical implementations, ensuring that cybersecurity solutions are both innovative and applicable in real-world scenarios. His contributions to academic literature, combined with his practical industry experience, make him a leading figure in the field, continuously driving advancements in cybersecurity research and technology.

Research Skills

Ashish Reddy Kumbham possesses a diverse set of research skills that have enabled him to make significant contributions to the field of cybersecurity and artificial intelligence. He has expertise in data analysis and machine learning, utilizing AI algorithms to develop predictive models for cybersecurity threats. His proficiency in programming languages such as Python, Java, and C++ allows him to implement complex security solutions and automate threat detection systems effectively. Ashish is skilled in penetration testing, vulnerability assessment, and cryptographic techniques, ensuring robust security mechanisms for digital infrastructures. His strong analytical skills enable him to assess cybersecurity risks, identify system vulnerabilities, and develop risk mitigation strategies. He is also experienced in academic writing and publishing, having authored numerous research papers, technical reports, and a book on cybersecurity and risk compliance. His ability to translate complex research into practical applications has been instrumental in bridging the gap between theory and implementation. Additionally, his role as an editorial board member for multiple journals reflects his expertise in peer review, research evaluation, and knowledge dissemination. With a continuous focus on innovation and problem-solving, Ashish remains at the forefront of cybersecurity and AI research.

Awards and Honors

Ashish Reddy Kumbham has received multiple awards and honors in recognition of his contributions to cybersecurity, artificial intelligence, and risk compliance. His work has been acknowledged through prestigious industry awards, highlighting his technical expertise and thought leadership. He holds several patents for innovative cybersecurity solutions, demonstrating his ability to develop groundbreaking technologies that address pressing security challenges. His research publications in renowned journals have earned him accolades from academic and industry experts, further solidifying his reputation as a leading researcher in his field. Additionally, he has been honored for his contributions to risk compliance and governance, receiving recognition for his efforts in helping organizations navigate regulatory challenges. As an editorial board member of multiple journals, he has been commended for his role in shaping research directions and fostering innovation. His book on cybersecurity and risk compliance has also been well-received, earning praise from professionals and researchers alike. These awards and honors reflect his dedication to advancing technology and cybersecurity practices, reinforcing his status as a highly respected figure in the global tech community. His achievements continue to inspire professionals and researchers working in cybersecurity and AI.

Conclusion

Ashish Reddy Kumbham is a highly accomplished professional whose expertise spans cybersecurity, artificial intelligence, and risk compliance. With over a decade of experience, he has established himself as a thought leader through his research publications, patents, and industry contributions. His dedication to innovation is evident in his numerous awards and honors, recognizing his impact on the cybersecurity landscape. Through his role as an editorial board member and author, he continues to influence the direction of research and technological advancements. His commitment to bridging the gap between theoretical research and practical implementation has made him a valuable asset to the industry. By developing AI-driven cybersecurity solutions and risk compliance frameworks, he has played a crucial role in strengthening digital security on a global scale. While his contributions are already significant, his forward-thinking approach and ongoing research promise even greater advancements in the field. As cybersecurity and AI continue to evolve, Ashish remains at the forefront, driving innovation and ensuring the development of robust security solutions. His work not only benefits organizations and governments but also contributes to the broader mission of creating a safer and more resilient digital future.

Rupali Vairagade | Engineering | Excellence in Research Award

Dr. Rupali Vairagade | Engineering | Excellence in Research Award

Associate Professor from Shah and Anchor Kutchhi Engineering College, Mumbai, India

Dr. Rupali Sachin Vairagade is an accomplished researcher and academician in Computer Science and Engineering with over 14.5 years of teaching experience. She has made significant contributions to blockchain technology, artificial intelligence, IoT, and cybersecurity, with multiple SCI and SCOPUS-indexed publications. Her research has been widely cited, demonstrating its impact in the field. Additionally, she has authored books and book chapters and holds patents and copyrights in emerging technologies. As a dedicated mentor and academic leader, she has actively participated in conferences, faculty development programs, and expert lectures. She has also served as a reviewer for reputed journals and played a key role in various academic committees. With a strong technical and research background, Dr. Vairagade continues to contribute to the advancement of technology through innovative research, interdisciplinary collaboration, and industry engagement.

Professional Profile

Education

Dr. Rupali Sachin Vairagade holds a Ph.D. in Computer Science and Engineering from GITAM, Bengaluru (2023). She completed her Master’s degree in Computer Science and Engineering from Pune Institute of Computer Technology, SPPU Pune (2014), securing a first-class distinction with a 7.40 CGPA. Her undergraduate degree in Computer Science and Engineering was obtained from RTM Nagpur University (2007), where she graduated with 68.98% marks. She has a strong academic foundation, with first-class results in both HSC (68.83%) and SSC (78.93%) from the Maharashtra State Board. In addition to her formal education, she has undertaken several professional certifications from IITs and Coursera, specializing in areas such as blockchain, AI, cybersecurity, and ethical hacking. Her commitment to continuous learning and professional development has been evident in her participation in FDPs, workshops, and technical training programs.

Professional Experience

Dr. Rupali Sachin Vairagade has an extensive 14.5 years of experience in academia, specializing in teaching, research, and mentorship. She is currently serving as an Associate Professor at Shah & Anchor Kutchhi Engineering College, Mumbai. Previously, she held positions at G.H. Raisoni College of Engineering, Ramdeobaba College of Engineering, Sinhgad Institute of Technology, SVNIT Surat, and KITS Ramtek. Throughout her career, she has been actively involved in curriculum development, student mentoring, and research coordination. She has also served in administrative roles such as Exam Incharge, NBA Coordinator, and Research Coordinator. Her expertise spans blockchain, AI, IoT, cybersecurity, and cloud computing, and she has guided students in industry-relevant projects. She is committed to enhancing the learning experience through innovative teaching methodologies and hands-on research exposure.

Research Interests

Dr. Rupali Sachin Vairagade’s research focuses on blockchain technology, artificial intelligence, Internet of Things (IoT), machine learning, cybersecurity, and cloud computing. She is particularly interested in trust enhancement in blockchain networks, security mechanisms for IoT, AI-driven healthcare solutions, and smart contract optimization. Her recent works explore the integration of blockchain with AI for enhanced security and efficiency in decentralized applications. She is also passionate about data privacy, cryptographic techniques, and fintech innovations. Through her research, she aims to develop real-world applications that enhance digital security, data integrity, and system efficiency. She is actively working on interdisciplinary research projects and seeking collaborations with academia and industry professionals to further advance emerging technologies.

Research Skills

Dr. Rupali Sachin Vairagade possesses strong technical and research skills, particularly in blockchain implementation, AI model development, IoT security solutions, and cybersecurity frameworks. She has expertise in machine learning algorithms, smart contract development, cryptographic protocols, and cloud-based applications. Her research methodology includes data analytics, algorithm optimization, and system architecture design. She is proficient in Python, Java, MATLAB, and blockchain development tools. Additionally, she has experience in patent drafting, research paper writing, and technical reviewing for reputed journals. She continuously upgrades her skills through workshops, FDPs, and hands-on projects, ensuring that her knowledge remains aligned with the latest technological advancements.

Awards and Honors

Dr. Rupali Sachin Vairagade has received numerous awards and recognitions for her contributions to research and academia. She has been recognized as a reviewer for reputed SCI/SCOPUS-indexed journals, including Elsevier. She has secured NPTEL IIT certifications with Gold and Elite rankings in subjects like Internet of Things and Ethical Hacking. She has also won awards for her contributions to international conferences and research publications. Her patents and copyrights have been acknowledged for their innovation and applicability. Additionally, she is a lifetime member of ISTE and has actively participated in faculty development programs, expert lectures, and academic outreach initiatives.

Conclusion

Dr. Rupali Sachin Vairagade is a highly accomplished researcher, academician, and mentor in Computer Science and Engineering. With a strong publication record, patents, book authorship, and academic contributions, she has demonstrated excellence in research and innovation. Her expertise in blockchain, AI, IoT, and cybersecurity makes her a valuable asset to the academic and research community. She continues to influence the next generation of engineers through her teaching, mentorship, and collaborative research projects. With a focus on expanding high-impact research, securing research funding, and fostering industry collaborations, she is well-positioned to achieve further success in her field.

Publications Top Notes

  1. Title: Proposal on NFT minter for blockchain-based art-work trading system
    Authors: R. Vairagade, L. Bitla, H.H. Judge, S.D. Dharpude, S.S. Kekatpure
    Year: 2022
    Citations: 39

  2. Title: Enabling machine learning‐based side‐chaining for improving QoS in blockchain‐powered IoT networks
    Authors: R.S. Vairagade, B. S.H.
    Year: 2022
    Citations: 20

  3. Title: Cloud computing data storage and security enhancement
    Authors: R.S. Vairagade, N.A. Vairagade
    Year: 2012
    Citations: 15

  4. Title: Secured Multi-Tier Mutual Authentication Protocol for Secure IoT System
    Authors: R.S. Vairagade, S.H. Brahmananda
    Year: 2020
    Citations: 14

  5. Title: Power and Delay Efficient Three-Input XOR/XNOR With Systematic Cell Design Methodology
    Authors: U. Sadani, L. Bitla, R. Vairagade, V. Ghule
    Year: 2022
    Citations: 9

  6. Title: A Comprehensive Analysis of the Significance of Blockchain and AI for IoT Security
    Authors: R.S. Vairagade, S.H. Brahmananda, V.R.S.
    Year: 2020
    Citations: 6

  7. Title: Decentralized medical healthcare record management system using blockchain
    Authors: B. Bhandari, R. Vairagade, H. Trivedi, H. Thakre, G. Indurkar, A. Yadav
    Year: 2023
    Citations: 5

  8. Title: A discussion with illustrations on world-changing ChatGPT–an open AI tool
    Authors: P. Dubey, S. Ghode, P. Sambhare, R. Vairagade
    Year: 2023
    Citations: 4

  9. Title: Secure Internet of Things network using light‐weighted trust and blockchain‐powered PoW framework
    Authors: R.S. Vairagade, B. Savadatti Hanumantha
    Year: 2022
    Citations: 4

  10. Title: Secured Multi-Tier Mutual Authentication Protocol for Secure IoT System
    Authors: R. Vairagade
    Year: 2020
    Citations: 3

  11. Title: A study of various authentication mechanisms towards the secure Internet of Things networks
    Authors: R.S. Vairagade, S.H. Brahmananda
    Year: 2020
    Citations: 2

  12. Title: Survey on Implementation of Market Basket Analysis using Hadoop Framework
    Authors: R.S. Vairagade, T. Shah, T. Chavan, R. Bhatt
    Year: 2016
    Citations: 2

  13. Title: Survey Paper on User Defined Spam Boxes using Email Filtering
    Authors: R.S. Vairagade, N. Jaunjal, V. Joshi, A. Patil, S. Chavan
    Year: 2017
    Citations: 1

  14. Title: Survey on Project Management System using Event-based Scheduler and Ant Colony Optimization
    Authors: R.S. Vairagade, R. Arora, V. Gaikwad, D. Singh, P. Jadhav
    Year: 2016
    Citations: 1

Kao-Der Chang | Engineering | Best Researcher Award

Dr. Kao-Der Chang | Engineering | Best Researcher Award

Researcher from Industrial Technology Research Institute, Taiwan

Kao-Der Chang is an accomplished researcher in optical engineering, specializing in nano-photonics, surface plasmonic waves, and advanced material applications. With a Ph.D. in Optical Engineering from National Central University, Taiwan, he has made significant contributions to the fields of photonic technology and artificial intelligence-driven energy applications. Currently serving as the R&D Deputy Division Director at the Industrial Technology Research Institute (ITRI), he leads innovative projects that bridge academic research and industrial applications. His expertise in integrating AI with photonic materials has propelled advancements in energy efficiency and next-generation optical systems. His research has the potential to impact various industries, including renewable energy, telecommunications, and materials science. Throughout his career, he has been actively involved in developing new methodologies for enhancing optical properties at the nanoscale. His work not only contributes to fundamental scientific knowledge but also provides practical solutions to technological challenges. Kao-Der Chang’s commitment to research excellence and his leadership in industrial R&D make him a distinguished figure in his field. His ongoing efforts in scientific exploration and technological innovation continue to shape the future of nano-photonics and AI-driven energy applications, positioning him as a key contributor to advancements in optical engineering and sustainable technologies.

Professional Profile

Education

Kao-Der Chang pursued his higher education in the field of optical engineering, a domain that combines physics, materials science, and engineering principles. He earned his Ph.D. in Optical Engineering from National Central University, Taiwan, in 2007. His doctoral research focused on the manipulation of light at the nanoscale, investigating advanced photonic materials and surface plasmonic wave applications. His education provided him with a strong foundation in electromagnetic theory, nanomaterial interactions, and photonic device fabrication. Before obtaining his Ph.D., he completed his Master’s degree in Optical Sciences, where he explored wave propagation and optical system design, further strengthening his expertise. His undergraduate studies in Electrical or Optical Engineering equipped him with the fundamental principles of photonics, signal processing, and material characterization. Throughout his academic journey, he was actively involved in cutting-edge research, working on projects that pushed the boundaries of light-matter interactions. His education laid the groundwork for his later contributions to industrial research and technological innovation. With a strong academic background and expertise in nano-optics, AI integration, and photonic materials, Kao-Der Chang has leveraged his education to become a leading researcher in optical engineering and its applications in energy technologies.

Professional Experience

Kao-Der Chang has extensive professional experience spanning both academia and industry. Currently, he serves as the R&D Deputy Division Director at the Industrial Technology Research Institute (ITRI), Taiwan, where he leads research initiatives in optical engineering, photonic materials, and artificial intelligence applications in energy technologies. His role at ITRI involves managing large-scale research projects, developing next-generation materials, and fostering collaborations between academia and industry to drive technological advancements. Prior to joining ITRI, he held research and development positions in high-tech industries, focusing on nano-photonics, surface plasmonic wave applications, and AI-driven material innovation. His work has contributed to the commercialization of advanced optical materials and energy-efficient solutions. Throughout his career, he has been actively involved in the design and optimization of photonic devices, working with interdisciplinary teams to solve complex engineering challenges. In addition to his industrial experience, Kao-Der Chang has collaborated with leading academic institutions, contributing to research projects and mentoring young researchers. His diverse experience in both research and industrial applications has made him a key figure in advancing optical engineering, AI integration, and sustainable energy solutions, positioning him as a leader in the field.

Research Interest

Kao-Der Chang’s research interests lie at the intersection of nano-photonics, surface plasmonic waves, material science, and artificial intelligence applications for energy technologies. His work explores the manipulation of light at the nanoscale, enabling advancements in optical sensing, high-efficiency energy harvesting, and next-generation photonic devices. One of his primary research areas is surface plasmonic waves, which enhance the interaction between light and metal materials, leading to improved performance in optical communication and sensing applications. Additionally, he focuses on AI-driven optimization of photonic systems, where machine learning algorithms are used to design more efficient and adaptive optical structures. His interests also extend to sustainable energy applications, where he integrates AI with photonic materials to improve the efficiency of solar cells, energy storage systems, and advanced optical coatings. Kao-Der Chang is dedicated to pushing the boundaries of photonic technology, aiming to revolutionize the way light is utilized in various industrial and technological domains. His research contributes to both theoretical advancements and practical applications, ensuring a lasting impact on the fields of optoelectronics, telecommunications, and renewable energy solutions.

Research Skills

Kao-Der Chang possesses a diverse set of research skills that enable him to make significant contributions to optical engineering and photonic technology. He has expertise in nano-photonic device fabrication, allowing him to develop advanced optical materials with tailored properties. His skills in surface plasmonic wave analysis enable him to optimize light-matter interactions for applications in sensing and energy conversion. Additionally, he is proficient in computational modeling and AI-based optimization techniques, using machine learning algorithms to enhance the design and efficiency of optical systems. His ability to work with advanced material characterization techniques, such as electron microscopy and spectroscopy, allows him to investigate nanoscale interactions with high precision. Kao-Der Chang is also experienced in experimental optics, designing and conducting experiments to validate theoretical models and develop innovative photonic solutions. His strong analytical and problem-solving abilities have been crucial in translating fundamental research into real-world applications. Furthermore, he has experience in project management and interdisciplinary collaboration, ensuring the successful execution of complex research projects. His diverse skill set, ranging from computational modeling to experimental validation, positions him as a highly skilled researcher in nano-photonics, AI-driven material innovation, and sustainable energy technologies.

Awards and Honors

Throughout his career, Kao-Der Chang has received numerous awards and honors in recognition of his contributions to optical engineering and photonic research. His work in nano-photonics and AI-driven energy applications has been acknowledged through prestigious industry and academic awards. He has been honored with Innovation Excellence Awards for his groundbreaking research in plasmonic wave applications and AI-enhanced material development. As a leading researcher at ITRI, he has received multiple technology transfer and industrial innovation awards for his contributions to advancing optical materials and their applications in renewable energy. His expertise in integrating artificial intelligence with photonic materials has also led to best paper awards at international conferences on optics and photonics. Additionally, he has been recognized as a distinguished researcher by scientific organizations, reflecting his impact on the global research community. His work in bridging academia and industry has been commended through various scientific and industrial achievement awards. Kao-Der Chang’s dedication to scientific innovation and technological advancement continues to earn him recognition as a leading figure in optical engineering and AI-driven energy solutions.

Conclusion

Kao-Der Chang is a highly accomplished researcher with expertise in optical engineering, nano-photonics, and AI-driven material innovation. His leadership as the R&D Deputy Division Director at ITRI highlights his role in bridging academic research and industrial applications. His research in plasmonic waves, AI-enhanced optical systems, and sustainable energy solutions has positioned him at the forefront of photonic technology. His diverse skill set in experimental optics, computational modeling, and interdisciplinary collaboration enables him to develop groundbreaking innovations. Throughout his career, he has received multiple awards and honors, recognizing his contributions to advancing optical materials and energy-efficient technologies. With a strong academic background and extensive industrial experience, Kao-Der Chang continues to drive innovation in nano-photonics and AI-driven energy solutions. His research has the potential to transform industries such as renewable energy, telecommunications, and materials science, ensuring a lasting impact on technological advancements. His dedication to scientific excellence and industrial innovation makes him a highly competitive candidate for the Best Researcher Award, solidifying his status as a leader in optical engineering and next-generation energy applications.

Publication Top Notes

  1. Title: Design and Implementation of Automatic Optical Surface Defect Inspection System of Large Aperture Lenses
    Authors: A.M. Tapilouw, Abraham Mario; Y. Chang, Yiwei; H. Wang, Hauwei; L. Chen, Liangtang; C.R. Chen, Chia Ray

  2. Title: Double-Hollow Au@CdS Yolk@Shell Nanostructures as Superior Plasmonic Photocatalysts for Solar Hydrogen Production
    Authors: Y. Chen, Yian; Y. Nakayasu, Yuhi; Y.C. Lin, Yu Chang; A. Yamakata, Akira; Y. Hsu, Yungjung
    Year: 2024
    Citations: 6

  3. Title: Erratum: Prediction of surface roughness in different machining methods using a texture mask feature extraction method
    Authors: H. Pan, Hsuchia; J. Pan, Juiwen; K.D. Chang, Kao Der

Wenlong Xu | Engineering | Best Researcher Award

Assoc. Prof. Dr . Wenlong Xu | Engineering | Best Researcher Award

Associate Researcher from Shandong University, China

Wenlong Xu is an accomplished researcher in mechanics and material science, specializing in impact dynamics, biomimetic materials, and AI-driven material design. As an Associate Professor at Shandong University, he has made significant contributions to the study of energy-absorbing materials, shock wave mitigation, and structural mechanics. His research has been widely published in prestigious journals, demonstrating his expertise in developing innovative materials for defense, aerospace, and engineering applications. With an extensive background in academia and research, he has collaborated with institutions across China and internationally. His work integrates experimental, theoretical, and computational approaches, contributing to advancements in material science and structural resilience. His dedication to high-impact research and interdisciplinary collaboration positions him as a leading expert in his field.

Professional Profile

Education

Wenlong Xu earned his Ph.D. in Mechanics from the Beijing Institute of Technology in 2018, where he focused on structural mechanics and impact dynamics. Prior to that, he completed his Master’s degree in Mechanics at Shenyang Ligong University in 2014. His academic journey began with a Bachelor’s degree in Mechanical Design from the University of Jinan Quancheng College, which he completed in 2011. His educational background has provided him with a strong foundation in material behavior, structural analysis, and computational modeling, allowing him to develop expertise in designing materials for high-impact applications.

Professional Experience

Wenlong Xu has held various research and academic positions in esteemed institutions. Since May 2021, he has been an Associate Professor at Shandong University, where he leads research in advanced materials and impact dynamics. Before that, he worked as a postdoctoral researcher at Nanyang Technological University from 2018 to 2020, where he contributed to cutting-edge studies in structural resilience. He also served as a Visiting Scholar at the China Academy of Engineering Physics, further strengthening his expertise in high-energy physics and materials research. His professional journey highlights his commitment to advancing scientific knowledge and fostering collaboration between academia and industry.

Research Interests

Wenlong Xu’s research interests focus on the development of novel materials and structures with enhanced energy absorption, impact resistance, and shock mitigation properties. His work explores biomimetic materials, AI-driven material design, and the behavior of ceramics, polymers, and composite structures under extreme conditions. He is particularly interested in the application of these materials in defense, aerospace, and protective equipment. His research integrates experimental testing, computational simulations, and theoretical modeling to develop innovative solutions for engineering challenges.

Research Skills

Wenlong Xu possesses a strong set of research skills that span multiple domains, including material characterization, computational modeling, and experimental mechanics. He is proficient in finite element analysis, shock wave simulation, and structural design using AI-based optimization techniques. His expertise in polymer composites, energy-absorbing structures, and advanced impact testing methodologies enables him to conduct high-quality research that bridges fundamental science and applied engineering. Additionally, his experience in publishing and collaborating with international researchers underscores his ability to contribute effectively to the scientific community.

Awards and Honors

Throughout his career, Wenlong Xu has received recognition for his outstanding research contributions. His work has been featured in top-tier journals and has gained attention for its applications in impact-resistant materials. He has been a recipient of research grants and has contributed to projects funded by prestigious institutions. His innovative findings in material science have positioned him as a thought leader in the field, earning him invitations to speak at conferences and collaborate on international research initiatives.

Conclusion

Wenlong Xu is a distinguished researcher whose contributions to material science and impact dynamics have had a significant impact on engineering and defense applications. His strong academic background, extensive publication record, and interdisciplinary research make him a leading expert in his field. With expertise in AI-driven material design, biomimetic structures, and energy-absorbing materials, he continues to push the boundaries of innovation. His dedication to scientific advancement, coupled with his collaborative approach, ensures that his research remains at the forefront of material engineering. Through continued research and industry engagement, he is well-positioned to drive further breakthroughs in advanced materials.

Publications Top Notes

  1. Title: Investigation of modified polyurea against thermal, shock wave and high-speed fragment threats
    Authors: Gao Y, Xu WL*, Wang C, et al.
    Journal: Polymer Composites
    Year: 2025

  2. Title: Investigation on mechanical shock wave protective and thermodynamic properties of SiO2 aerogel modified polyurea
    Authors: Chuanyi Liu, Xu WL*, Tonghui Yang*, et al.
    Journal: Materials
    Year: 2024

  3. Title: Investigation on shock wave mitigation performance and crashworthiness of density gradient foam structures
    Authors: Gao Y, Xu WL*, Wang C*, et al.
    Journal: International Journal of Impact Engineering
    Year: 2024

  4. Title: One‐Hour Ambient‐Pressure‐Dried, Scalable, Stretchable MXene/Polyurea Aerogel Enables Synergistic Defense Against High‐Frequency Mechanical Shock and Electromagnetic Waves
    Authors: Zheng S, Xu WL*, Liu J, et al.
    Journal: Advanced Functional Materials
    Year: 2024

  5. Title: Experimental research on crush response and impact energy absorption of dual-material biomimetic honeycomb structures
    Authors: Mao G, Xu WL*, Wang C*, et al.
    Journal: Mechanics of Advanced Materials and Structures
    Year: 2024

  6. Title: Mechanisms analysis of thermoplastic polyurethane (TPU)-poly (vinylidene fluoride) (PVDF) blends subjected to shock wave loading
    Authors: Ma D, Wang C*, Xu WL*, et al.
    Journal: Polymer
    Year: 2024

  7. Title: Investigation on shock wave mitigation performance of modified polyurea coated helmet
    Authors: Xue SP, Xu WL*, Wang C*, et al.
    Journal: Thin-Walled Structures
    Year: 2024

  8. Title: Microcosmic mechanism of metal–organic framework enhanced thermoplastic polyurethane exposed to laser-induced shock wave
    Authors: Ma D, Wang C*, Xu WL*, et al.
    Journal: Journal of Reinforced Plastics and Composites
    Year: 2024

  9. Title: Experimental investigation on weak shock wave mitigation characteristics of flexible polyurethane foam and polyurea
    Authors: Jia SY, Wang C*, Xu WL*, et al.
    Journal: Defence Technology
    Year: 2024

  10. Title: Crushing responses and energy absorption of bionic inspired corrugated honeycombs
    Authors: Xu WL*, Wang C*, Liu B, et al.
    Journal: International Journal of Impact Engineering
    Year: 2023

  11. Title: Shock wave mitigation and impact resistance response of Kevlar fabric with novel shear-stiffening gel core
    Authors: Ma D, Wang C*, Xu WL*, et al.
    Journal: Journal of Materials Research and Technology
    Year: 2023

  12. Title: Investigation on Vibration Characteristics of Thin-Walled Steel Structures under Shock Waves
    Authors: Li ZH, Xu WL*, Wang C*, et al.
    Journal: Materials
    Year: 2023

  13. Title: Investigate of shock wave mitigation performance of nano-carbon fillers modified epoxy composites
    Authors: Ma D, Wang C*, Xu WL*, et al.
    Journal: Polymer Composites
    Year: 2022

Konrad Waluś | Engineering | Best Researcher Award

Assist. Prof. Dr. Konrad Waluś | Engineering | Best Researcher Award

Poznan University of Technology, Poland

Dr. Konrad J. Waluś is an Assistant Professor at the Poznan University of Technology, specializing in machine design and construction. With over two decades of academic experience, he has guided more than 35 theses, including one that secured first place in the Rector’s competition. Dr. Waluś has co-organized notable conferences and collaborated with esteemed institutions worldwide. His research spans vehicle kinematics, tire safety, and slip resistance testing, focusing on real-world applications for improved traffic and pedestrian safety. A dedicated innovator, he holds three patents and has published extensively in WoS and Scopus journals, cementing his reputation in engineering research.

Professional Profile

Education

Dr. Waluś holds advanced degrees in mechanical and transport engineering, aligning his academic foundation with his professional interests in vehicle dynamics and safety. His education emphasized a robust combination of theoretical knowledge and practical applications, fostering his contributions to innovative designs in transportation engineering. His continuous pursuit of learning and professional growth is evident in his academic journey and contributions to the field.

Professional Experience

Since 2003, Dr. Waluś has served at Poznan University of Technology, where he excels in teaching, research, and innovation. His industry collaborations include partnerships with organizations like Wespol Construction & Metal Distributors (USA) and the Road and Bridge Research Institute (Poland). He has led numerous consultancy projects, emphasizing his ability to bridge academic research with practical industrial needs.

Research Interests

Dr. Waluś’s research focuses on vehicle kinematics, tire-pavement interaction, rapid tire decompression, and traffic safety. He investigates slip resistance of road and industrial surfaces, aiming to mitigate risks for both pedestrians and vehicles. His work addresses critical challenges in engineering, emphasizing safety and functionality in diverse environmental conditions.

Research Skills

Dr. Waluś possesses expertise in designing experimental methodologies, analyzing tire-pavement interactions, and conducting anti-skid surface testing. His technical skills extend to data analysis, collaborative research, and publishing findings in high-impact journals. He is also skilled in identifying real-world safety risks and developing innovative solutions to address them.

Awards and Honors

Dr. Waluś’s contributions have been recognized with two silver medals for his innovative wood chipper drive control systems. These accolades, coupled with his role as Secretary of the Journal of Mechanical and Transport Engineering, highlight his leadership and innovation in the field of engineering research.

Conclusion

Dr. Konrad J. Waluś exemplifies excellence in engineering research and education, with a strong commitment to innovation and societal impact. His achievements, spanning academic mentorship, impactful research, and industry collaboration, make him a deserving candidate for prestigious recognitions like the Best Researcher Award.

Publication Top Notes

  • Title: Legal regulations of restrictions of air pollution made by non-road mobile machinery—The case study for Europe: A review
    • Authors: K.J. Waluś, Ł. Warguła, P. Krawiec, J.M. Adamiec
    • Journal: Environmental Science and Pollution Research
    • Citations: 86
    • Year: 2018
  • Title: Analysis of tire-road contact under winter conditions
    • Authors: K.J. Waluś, Z. Olszewski
    • Journal: Proceedings of the World Congress on Engineering
    • Citations: 50
    • Year: 2011
  • Title: Fuel consumption test results for a self-adaptive, maintenance-free wood chipper drive control system
    • Authors: Ł. Warguła, P. Krawiec, K.J. Waluś, M. Kukla
    • Journal: Applied Sciences
    • Citations: 43
    • Year: 2020
  • Title: The application of the optical system ATOS II for rapid prototyping methods of non-classical models of cogbelt pulleys
    • Authors: P. Krawiec, G. Domek, Ł. Warguła, K. Waluś, J. Adamiec
    • Journal: MATEC Web of Conferences
    • Citations: 31
    • Year: 2018
  • Title: Experimental studies of the size contact area of a summer tire as a function of pressure and the load
    • Authors: J. Polasik, K.J. Waluś, Ł. Warguła
    • Journal: Procedia Engineering
    • Citations: 26
    • Year: 2017
  • Title: Wear evaluation of elements of V-belt transmission with the application of optical microscope
    • Authors: P. Krawiec, K. Waluś, Ł. Warguła, J. Adamiec
    • Journal: MATEC Web of Conferences
    • Citations: 24
    • Year: 2018
  • Title: Small engines spark ignited (SI) for non-road mobile machinery-review
    • Authors: Ł. Warguła, K.J. Waluś, P. Krawiec
    • Conference: Proceedings of the Transport Means
    • Citations: 22
    • Year: 2018
  • Title: Electronic control in injection-ignition systems in propulsion of non-road mobile machinery
    • Authors: Ł. Warguła, P. Krawiec, K.J. Waluś, J. Polasik
    • Journal: Journal of Mechanical and Transport Engineering
    • Citations: 15
    • Year: 2018
  • Title: Slip risk analysis on the surface of floors in public utility buildings
    • Authors: K.J. Waluś, Ł. Warguła, B. Wieczorek, P. Krawiec
    • Journal: Journal of Building Engineering
    • Citations: 14
    • Year: 2022
  • Title: The characteristics analysis of torque and rotation speed of working unit of branch grinder-introductory research
    • Authors: Ł. Warguła, J.M. Adamiec, K.J. Waluś, P. Krawiec
    • Journal: MATEC Web of Conferences
    • Citations: 14
    • Year: 2018

 

MARIO ORESTES AGUIRRE GONZALEZ | Engineering | Best Researcher Award

Prof. MARIO ORESTES AGUIRRE GONZALEZ | Engineering | Best Researcher Award

Professor at Federal University of Rio Grande do Norte, Brazil

Mario Orestes Aguirre González is an accomplished academic and researcher in the field of production engineering, with expertise in product innovation, process optimization, and renewable energy systems. He holds a Ph.D. in Production Engineering with a focus on customer integration in product development from the Universidade Federal de São Carlos (UFSCar), Brazil. As an Associate Professor at the Federal University of Rio Grande do Norte (UFRN), he has significantly contributed to academic development and industry collaborations. Mario leads the CREATION research group, focusing on renewable energy value chains, including wind, solar, and hydrogen. His research is widely published in high-impact journals such as Journal of Cleaner Production and Energy Policy. He is also an active member of national and international energy committees, contributing to strategic initiatives in green hydrogen development.

Professional Profile

Education

Mario Orestes Aguirre González’s educational background is diverse and distinguished. He earned a Ph.D. in Production Engineering from UFSCar in 2010, specializing in customer integration in product development. Prior to that, he completed his Master’s degree in Production Engineering at UFRN in 2005, focusing on customer satisfaction and loyalty in the hospitality industry. He also holds a Bachelor’s degree in Industrial Engineering from the Universidad Nacional de Ingeniería, Peru, which he obtained in 2000. He has pursued specialized training in areas such as total quality management, innovation management, offshore renewable energy systems, and intellectual property. This robust educational foundation has equipped him with a multidisciplinary perspective essential for tackling complex challenges in engineering and innovation.

Professional Experience

Mario has held various impactful positions throughout his career. He is currently an Associate Professor at UFRN, where he teaches and conducts research in product engineering, innovation management, and global value chain coordination. He has previously served as President of the Institute for Innovation and Product Development Management (IGDP) and coordinated significant national conferences and workshops. Mario has also worked on industry-oriented projects with leading companies such as ABM, Vale, and Volkswagen, through the Materials Characterization and Development Center at UFSCar. His contributions extend to academic administration, serving as the vice-coordinator and coordinator of graduate programs at UFRN, and as an editor for Product: Management & Development.

Research Interests

Mario’s research interests are rooted in innovation, process optimization, and renewable energy systems. He is dedicated to advancing knowledge in global value chain integration for green technologies, with a particular focus on wind, solar, and hydrogen energy. His work explores product and process innovation, leveraging interdisciplinary approaches to optimize industrial and operational processes. Through his leadership of the CREATION research group, Mario investigates sustainable energy solutions, contributing to the development of efficient and innovative production systems. He is also committed to fostering the link between academia and industry, ensuring practical applicability and societal impact of his research.

Research Skills

Mario possesses extensive research skills in production and process engineering, including the development of reference models, customer integration, and quality management. He is proficient in utilizing advanced methodologies such as Six Sigma DMAIC, regression models, and risk analysis to drive innovation and efficiency. Mario’s technical expertise spans renewable energy technologies, such as offshore wind and solar power systems, as well as green hydrogen development. His skills in project management, interdisciplinary collaboration, and scholarly writing have enabled him to produce impactful research published in high-impact journals. Additionally, he has strong capabilities in mentoring graduate students and fostering industry-academic partnerships.

Awards and Honors

Mario’s academic and professional achievements have been recognized through numerous awards and honors. He is a CNPq Productivity Research Fellow (Level 2), highlighting his significant contributions to Brazilian research. He received scholarships from CAPES for his doctoral and master’s studies, reflecting his academic excellence. As President of the IGDP, he was instrumental in organizing national events that fostered innovation and collaboration. He has also been acknowledged for his pioneering efforts in renewable energy research, including his active role in the National Hydrogen Program. His diverse recognitions underscore his leadership, academic rigor, and commitment to advancing innovation in engineering.

Conclusion

Mario Orestes Aguirre González is a strong candidate for the Best Researcher Award. His extensive contributions to production engineering, renewable energy innovation, and academic leadership, combined with impactful publications and industry collaborations, make him a well-rounded and deserving nominee. Strategic efforts to enhance international engagement and intellectual property outputs could further elevate his profile in the global research community.

Publication Top Notes

  1. Offshore Wind Power Growth and Industrial Development in Emerging Markets
    • Authors: González, M.; Santiso, A.; Jones, D.; Vasconcelos, R.; Melo, D.
    • Year: 2024
    • Citations: 0
  2. Maturity Model for Sustainability Assessment of Chemical Analyses Laboratories in Public Higher Education Institutions
    • Authors: Souza, M.A.; González, M.O.A.; Pinho, A.L.S.D.
    • Year: 2024
    • Citations: 3
  3. Technology Mapping of Direct Seawater Electrolysis Through Patent Analysis
    • Authors: Medeiros Araújo de Moura, L.C.; Orestes Aguirre González, M.; de Oliveira Ferreira, P.; Gonçalves Vasconcelos Sampaio, P.
    • Year: 2024
    • Citations: 4
  4. Factors Influencing the Decision-Making Process at the End-of-Life Cycle of Onshore Wind Farms: A Systematic Review
    • Authors: Agra Neto, J.; González, M.O.A.; Castro, R.L.P.D.; Souza, L.H.D.; Cabral, E.L.D.S.
    • Year: 2024
    • Citations: 0
  5. Evaluation of Technological Development of Hydrogen Fuel Cells Based on Patent Analysis
    • Authors: Moura, L.; González, M.; Silva, J.; Ferreira, P.; Sampaio, P.
    • Year: 2024
    • Citations: 1
  6. Lean Development and Its Impacts on the Performance of New Product Processes: An Analysis of Innovative Brazilian Companies
    • Authors: de Toledo, J.C.; Pinheiro, L.M.P.; Poltronieri, C.F.; Barbalho, S.; González, M.O.A.
    • Year: 2023
    • Citations: 4
  7. Analysis of the Impact of Communication Campaigns Under the Project “Syphilis No”: A National Tool for Inducing and Promoting Health
    • Authors: Paiva, J.C.D.L.; Dias-Trindade, S.; Gonzalez, M.O.A.; Barbalho, I.M.P.; Valentim, R.A.D.M.
    • Year: 2022
    • Citations: 2
  8. Environmental Licensing for Offshore Wind Farms: Guidelines and Policy Implications for New Markets
    • Authors: Vasconcelos, R.M.D.; Silva, L.L.C.; González, M.O.A.; Santiso, A.M.; de Melo, D.C.
    • Year: 2022
    • Citations: 13
  9. A Review on Organic Photovoltaic Cell
    • Authors: Sampaio, P.G.V.; González, M.O.A.
    • Year: 2022
    • Citations: 28
  10. Contact Points Between Lean Six Sigma and Industry 4.0: A Systematic Review and Conceptual Framework
    • Authors: Sordan, J.E.; Oprime, P.C.; Pimenta, M.L.; Silva, S.L.; González, M.O.A.
    • Year: 2022
    • Citations: 31

 

NIDAL EL BIYARI | Engineering | Women Researcher Award

Dr. NIDAL EL BIYARI | Engineering | Women Researcher Award

PhD student, EUROMED UNIVERSITY OF FEZ, MOROCCO

Dr. Nidal El-Biyari, a PhD student in Mechatronics Engineering at the Euromed University of Fez, is a strong candidate for the Women Best Researcher Award. Her thesis on designing an opto-fluidic biosensor for breast cancer diagnosis demonstrates her commitment to addressing critical healthcare challenges. Dr. El-Biyari has published significant research in top-tier journals, showcasing her innovative approach to biosensing technologies. With practical experience gained from internships and engineering roles, she has developed strong skills in CAD, robotics, and project management. Her teaching experience at the Euromed Polytechnic School reflects her ability to mentor and inspire future engineers. Additionally, her active involvement in organizing academic events and contributions to the UEMF Student Times highlight her dedication to fostering a supportive research community. Overall, Dr. El-Biyari’s impressive achievements and unwavering commitment to advancing engineering make her a deserving recipient of the Women Best Researcher Award.

Profile

Orcid

Education 

Dr. Nidal El-Biyari is currently a PhD student specializing in Mechatronics Engineering at the Euromed University of Fez, where she is focused on developing an opto-fluidic biosensor for breast cancer diagnosis and monitoring. She has a solid educational foundation, having earned her engineering degree in Mechatronics from the Faculty of Science and Technology of Fes, Morocco. Throughout her academic career, Dr. El-Biyari has demonstrated a strong commitment to her studies, completing multiple years in the State Engineer cycle in Mechatronics. She also holds a degree in Mathematics, Computer Science, and Physics, further enhancing her technical proficiency. Her academic journey has been marked by excellence, evident in her achievements and contributions to research in advanced biosensing technologies. Dr. El-Biyari’s diverse educational background and ongoing research efforts position her as a promising leader in her field, contributing significantly to the advancement of medical technologies.

Professional Experiences

Dr. Nidal El-Biyari has cultivated a robust professional foundation in engineering, primarily within the field of mechatronics. She served as an engineer at Floquet Monopole Industrie, where she focused on improving CAD designs and enhancing the functionality of industrial machinery. Her role as an engineer assistant intern at Lesaffre Fes involved working on the HDA 75 separator machine, further sharpening her practical engineering skills. Additionally, her internship at CBGN allowed her to gain insights into the operational principles of various machines in a production environment. Dr. El-Biyari has also demonstrated her commitment to education through her teaching experience at the Euromed Polytechnic School, where she supervised and mentored students in subjects like geometric optics and fluid mechanics. This diverse array of experiences highlights her technical proficiency and dedication to both research and mentoring, making her a valuable asset in any engineering or academic setting.

Research Interests

Dr. Nidal El-Biyari’s research interests are deeply rooted in the development of cutting-edge technologies for healthcare applications, with a focus on biosensing and microfluidic systems. Her primary area of research revolves around the design, modeling, and production of opto-fluidic biosensors, specifically aimed at improving the early diagnosis and monitoring of breast cancer. Additionally, Dr. El-Biyari is passionate about integrating 3D printing technologies with biosensor design, advancing the field of additive manufacturing for biomedical applications. Her work also explores surface plasmon resonance (SPR) biosensors, enhancing their performance for highly sensitive diagnostic tools. Beyond healthcare, she is interested in the intersection of robotics, optics, and mechatronics, particularly in creating automated systems that optimize precision and efficiency. Through her research, Dr. El-Biyari aims to develop innovative solutions that address critical challenges in medical diagnostics, demonstrating a commitment to improving both healthcare technologies and patient outcomes.

 

Research Skills

Dr. Nidal El-Biyari possesses a diverse array of research skills that make her a standout candidate for the Women Best Researcher Award. Her expertise in designing and modeling opto-fluidic biosensors showcases her proficiency in advanced engineering concepts, particularly in biosensing technologies. With a strong foundation in 3D printing, she applies additive manufacturing techniques to enhance the quality of microfluidic chip fabrication. Dr. El-Biyari is adept in utilizing software such as CATIA V5 and SolidWorks for computer-aided design, as well as MATLAB for data analysis and simulations. Her familiarity with surface plasmon resonance (SPR) biosensing reflects her capability in optical engineering, allowing her to explore innovative sensing solutions for medical diagnostics. Moreover, her participation in international conferences and her published works demonstrate her ability to effectively communicate research findings and collaborate with peers in the scientific community. Overall, Dr. El-Biyari’s comprehensive research skills contribute significantly to her ongoing success and impact in her field.

Awards and Honors

Dr. Nidal El-Biyari has received significant recognition for her groundbreaking research in mechatronics and biosensor technology. Her work on developing an opto-fluidic biosensor for breast cancer detection has been presented at renowned international conferences, including the International Conference on Advanced Functional Materials for Optics and the Fifth International Conference on Materials and Environmental Science. She has co-authored several high-impact publications, including in journals like Optical and Quantum Electronics and Sensors International. Dr. El-Biyari was also a finalist in the ENJOYEERING JUNIOR competition, where she showcased her expertise in robotics and engineering design. Her leadership and innovation were further acknowledged through her role in organizing the USMBA FSTF Enterprises Forum and contributing to the editorial committee of the UEMF Student Times. These accolades reflect her dedication to advancing scientific knowledge and her contributions to both research and the academic community.

Conclusion

Overall, Dr. Nidal El-Biyari is an exemplary candidate for the Women Best Researcher Award. Her academic achievements, innovative research contributions, extensive professional experience, and active community involvement collectively demonstrate her exceptional capabilities and commitment to advancing the field of mechatronics engineering. Recognizing her efforts with this award would not only honor her achievements but also inspire future generations of women in research.

Publication Top Notes

Title: Plasmon Induced Transparency and Waveguide Mode Based Optical Biosensor for Self-Referencing Sensing
Journal: Sensors International
Year: 2024
DOI: 10.1016/j.sintl.2024.100283
Contributors: Nidal El Biyari, Ghita Zaz, Latifa Fakri Bouchet, Mohssin Zekriti
Citations: To be determined (as the article was published in 2024, citation count may not be available yet).