Zhenjun Song | Chemistry | Best Researcher Award

Prof. Zhenjun Song | Chemistry | Best Researcher Award

Associate Professor at Taizhou University, China

Dr. Zhenjun Song, an accomplished researcher in Inorganic Chemistry, is currently an Associate Professor at Taizhou University. Born on February 7, 1987, in Zhoukou, Henan, China, he has a strong academic foundation and extensive professional experience in material and computational chemistry. Dr. Song specializes in quantum chemical calculations and first-principle simulations for catalytic applications, gas sensing, and toxic gas removal. With over 22 high-impact publications and numerous awards recognizing his academic excellence and societal contributions, he is a prominent figure in his field. His interdisciplinary research bridges computational and experimental techniques, making significant contributions to chemistry and material sciences.

Professional Profile

Education

Dr. Song’s educational journey showcases his commitment to academic excellence. He earned his Ph.D. in Inorganic Chemistry from Nankai University (2015–2018), where he also served as a teaching assistant. Before this, he obtained a Master’s degree in Physical Chemistry from Tongji University (2010–2013) and a Bachelor’s degree in Chemical Education from Henan University (2005–2009). His rigorous training across three prestigious institutions has equipped him with a profound understanding of both theoretical and applied chemistry, laying a strong foundation for his successful research career.

Professional Experience

Dr. Song’s professional trajectory reflects his dedication to advancing science and education. As an Associate Professor at Taizhou University since 2018, he has contributed to teaching Medical Chemistry and General Chemistry. Additionally, he worked as a postdoctoral fellow at Sichuan University and Era Corporation Limited (2020–2023), focusing on material chemistry. His earlier roles as a teaching and research assistant at Nankai University and the South University of Science and Technology of China honed his expertise in condensed matter physics and inorganic chemistry. This diverse experience highlights his ability to adapt and excel in various academic and research environments.

Research Interest

Dr. Song’s research interests lie at the intersection of computational chemistry and material science. He focuses on first-principle calculations to study oxides and oxide-based composites for catalytic applications, sensors, and toxic gas removal. His work includes exploring physisorption, chemisorption, and the transformation processes of adsorbates on oxide surfaces and interfaces. Additionally, he investigates reaction kinetics and quantum chemical phenomena, providing valuable insights into solid-matrix isolated infrared spectroscopy. His interdisciplinary approach addresses critical challenges in energy, environment, and materials chemistry, positioning him as a leader in cutting-edge research.

Research Skills

Dr. Song possesses exceptional research skills in computational modeling, quantum chemical calculations, and first-principle simulations. He is adept at integrating computational methods with experimental validation, enabling a holistic understanding of complex chemical systems. His expertise spans catalytic design, gas sensing mechanisms, and reaction kinetics. Proficient in advanced software tools for modeling and simulation, he delivers impactful research outcomes. Additionally, his collaborative and problem-solving abilities enhance his productivity and effectiveness in multidisciplinary projects. These skills have been pivotal in publishing high-impact papers and advancing fundamental knowledge in material and computational chemistry.

Awards and Honors

Dr. Song has received numerous accolades for his academic and professional excellence. Notable awards include the Kwang-Hua Scholarship (2017) at Nankai University and the Hersbit Scholarship (2012) at Tongji University. He was recognized as one of the “Hundreds of Persons of Outstanding Ability” in Huangyan, Taizhou, in 2020, and as a high-level talent in the field of social undertakings in Taizhou in 2018. These honors underscore his contributions to scientific research, education, and community development, further solidifying his reputation as a distinguished scholar.

Conclusion

Dr. Zhenjun Song’s exemplary academic achievements, extensive professional experience, and impactful research contributions make him an outstanding candidate for the Best Researcher Award. His interdisciplinary expertise in inorganic and computational chemistry addresses global challenges in energy and environment, while his teaching and mentorship roles inspire future generations of scientists. With numerous awards and high-impact publications, Dr. Song’s dedication to advancing science and his community is evident. He exemplifies the qualities of a researcher committed to excellence and innovation, making him deserving of this prestigious recognition.

Publication Top Notes

  1. Title: Fabrication of S-scheme FeIn2S4/Fe2O3 heterostructures with improved photo-Fenton catalytic activity for removing pharmacologically active compounds
    Authors: Ye, Y.-Y., Yang, H.-Q., Chen, Z.-Y., … Song, Z., Huang, G.-B.
    Year: 2025
  2. Title: Confined growth of Cu2O quantum dots on oxygen vacancies mediated Bi24O31Br10 nanosheets for efficient tetracycline hydrochloride photodegradation driving by S-scheme mechanism
    Authors: Lin, S.-Z., Yang, Y.-J., Jia, S.-Y., … Yin, H., Huang, G.-B.
    Year: 2025
  3. Title: Near-infrared-II photothermal conversion and magnetic dynamic regulation in [Ln3Rad2] aggregation by rigidity modification of nitronyl nitroxide
    Authors: Li, H., Jin, C., Han, J., … Han, X., Song, Z.
    Year: 2024
  4. Title: Identifying iodide-ion regulation of early-stage zinc nucleation and growth for high-rate anode-free zinc metal batteries
    Authors: Shi, W., Song, Z., Zhang, W., … An, Q., Li, Q.
    Year: 2024
    Citations: 3
  5. Title: Catalytic Dechlorination of Three Organochlorides by Recyclable Nano-Palladium-Engineered Natural Sponge with Formic Acid
    Authors: Liu, M., Chen, G., Song, Z., … Zhong, A., Cui, M.
    Year: 2024
    Citations: 7
  6. Title: Extending Cycling Life Beyond 300 000 Cycles in Aqueous Zinc Ion Capacitors Through Additive Interface Engineering
    Authors: Shi, W., Song, Z., Sun, W., … Li, Q., An, Q.
    Year: 2024
    Citations: 2
  7. Title: Recent Advances in Nanoscale Zero-Valent Iron (nZVI)-Based Advanced Oxidation Processes (AOPs): Applications, Mechanisms, and Future Prospects
    Authors: Liu, M., Ye, Y., Xu, L., … Zhong, A., Song, Z.
    Year: 2023
    Citations: 12
  8. Title: Recent Advances of Magnetite (Fe3O4)-Based Magnetic Materials in Catalytic Applications
    Authors: Liu, M., Ye, Y., Ye, J., … Chen, G., Song, Z.
    Year: 2023
    Citations: 50
  9. Title: Structures and Stabilities of Carbon Chain Clusters Influenced by Atomic Antimony
    Authors: Song, Z., Shao, X., Wu, W., … Liu, M., Wang, H.
    Year: 2023
    Citations: 18
  10. Title: Interface contact and modulated electronic properties by in-plain strains in a graphene-MoS2 heterostructure
    Authors: Wang, Q., Song, Z., Tao, J., … Liu, X., Zhang, L.
    Year: 2023
    Citations: 3

 

 

Weidong Fan | Chemistry | Best Researcher Award

Prof. Weidong Fan | Chemistry | Best Researcher Award

Taishan Scholar at China University of Petroleum (East China), China

Dr. Weidong Fan is an accomplished Associate Professor in the Department of New Energy Materials at China University of Petroleum (East China). With a Ph.D. in Chemistry and extensive research expertise, Dr. Fan has significantly contributed to the fields of energy gas storage, separation of petroleum-based compounds, and advanced crystalline microporous adsorbents. A prolific researcher, he has authored over 100 SCI academic papers, with over 4,500 citations and an impressive H-index of 36. Dr. Fan’s groundbreaking work has been recognized with prestigious awards, including the Qingdao Natural Science Award and the Global Top 2% Scientists distinction. He serves on editorial boards of multiple esteemed journals and has supervised several graduate students, demonstrating his dedication to both research and mentorship.

Professional Profile

Education

Dr. Fan completed his Bachelor’s in Applied Chemistry at Shengli College, China University of Petroleum, in 2013. He pursued a Master’s in Chemistry at the same university from 2013 to 2016. Subsequently, he earned his Ph.D. in Chemistry from China University of Petroleum (East China) in 2019. These formative academic experiences laid the groundwork for his expertise in chemistry and materials science.

Professional Experience

Dr. Fan has held key academic positions, beginning as a Postdoctoral Fellow at the National University of Singapore (2019–2021), where he gained international exposure to advanced research methodologies. In 2022, he served as a Special Associate Professor at China University of Petroleum (East China) before being promoted to Associate Professor in 2023. His roles involve extensive research, teaching, and supervision of graduate students, fostering innovation in chemistry and materials science.

Research Interests

Dr. Fan’s research focuses on the controllable preparation of crystalline microporous adsorbents and separation membranes. He specializes in energy gas storage and the separation of petroleum-based compounds, including hydrogen, methane, carbon dioxide, and alkenes. His work also encompasses the purification of natural gas and the precise separation of benzene derivatives and isomers, advancing sustainable energy solutions.

Research Skills

Dr. Fan possesses advanced research skills in the design, synthesis, and functionalization of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). His expertise includes spectroscopic techniques, crystallographic analysis, gas adsorption studies, and computational simulations. He is adept at leading collaborative, interdisciplinary projects, evident in his extensive list of high-impact publications and global collaborations.

Awards and Honors

Dr. Fan has received numerous accolades, including the second prize of the Qingdao Natural Science Award (2024) and the Basic Research Achievement Award by the Chemical Industry and Engineering Society of China (2023). He was named a Young Expert under the Mount Taishan Scholars Program in 2022 and has been listed among the Global Top 2% Scientists for multiple years. These honors underscore his leadership and innovation in the field of chemistry.

Conclusion 🏆

Weidong Fan is a highly deserving candidate for the Best Researcher Award due to his groundbreaking contributions to chemistry and materials science, particularly in energy gas storage and separation technologies. His strong publication record, international recognition, and impactful mentorship position him as a leader in his field. While his academic achievements are outstanding, increased industrial engagement and societal outreach could further solidify his candidacy.

Publication Top Notes

  1. Metal-organic framework for hydrogen storage: Advances and challenges brought by the new technologies
    • Authors: Qiao, L.; Lu, C.; Fan, W.; Kang, Z.; Sun, D.
    • Year: 2024
  2. Pore surface fluorination and PDMS deposition within commercially viable metal-organic framework for efficient C2H2/CO2 separation
    • Authors: Liu, H.; Wang, X.; Gao, F.; Fan, W.; Sun, D.
    • Year: 2024
  3. Porous organic cage induced high CO2/CH4 separation efficiency of carbon molecular sieve membranes
    • Authors: Yu, L.; Hao, L.; Zhang, C.; Kang, Z.; Sun, D.
    • Year: 2024
    • Citations: 2
  4. Metal-organic frameworks for hydrogen isotopes separation
    • Authors: Gao, F.; Wang, X.; Chen, W.; Yuan, D.; Sun, D.
    • Year: 2024
  5. Asymmetrical Modification of Cyclopentadienyl Cobalt in Eu-MOF for C2H2/CO2 Separation
    • Authors: Wang, X.; Liu, H.; Sun, M.; Fan, W.; Sun, D.
    • Year: 2024
  6. Precise Pore Engineering of Zirconium Metal-Organic Cages for One-Step Ethylene Purification from Ternary Mixtures
    • Authors: Feng, X.; Wang, X.; Yan, H.; Yue, Q.; Sun, D.
    • Year: 2024
    • Citations: 7
  7. Stepwise pillar-ligand fluorination strategy within interpenetrated metal–organic frameworks for efficient C2H2/CO2 separation
    • Authors: Liu, H.; Wang, X.; Wang, Y.; Fan, W.; Sun, D.
    • Year: 2024
    • Citations: 2
  8. A Precise Microreactor for Ultralong Visible Chemiluminescence
    • Authors: Wang, Y.; Fu, M.; Sun, M.; Fan, W.; Sun, D.
    • Year: 2024
  9. Assembling ionic liquid into porous molecular filler of mixed matrix membrane to trigger high gas permeability, selectivity, and stability for CO2/CH4 separation
    • Authors: Yu, L.; Hao, L.; Feng, Y.; Kang, Z.; Sun, D.
    • Year: 2024
    • Citations: 4
  10. Tunable Nonlinear Optical Properties Based on Metal–Organic Framework Single Crystals
    • Authors: Yuan, H.; Xu, X.; Qiao, Z.; Zhang, M.; Ji, W.
    • Year: 2024
    • Citations: 2