Jacob Olchowka | Materials Science | Innovative Research Award

Dr. Jacob Olchowka | Materials Science | Innovative Research Award

ICMCB (Institute of Condensed Matter Chemistry of Bordeaux), France

Dr. Jacob Olchowka is a French CNRS researcher in the field of material science with a specialization in electrochemical energy storage, particularly Na-ion/Li-ion batteries, hybrid supercapacitors, and direct recycling of lithium-ion batteries. He earned his Ph.D. in Material Science with very honorable mention through a joint program between the University of Lille, France, and the University of Siegen, Germany, following a Master’s degree in Chemistry, Energy, and Environment and a Bachelor’s degree in Physical Chemistry from the University of Lille, and more recently completed his Habilitation (HDR) at the University of Bordeaux in 2025. His professional career includes international postdoctoral experiences at the University of Geneva, Switzerland, and the University of Siegen, Germany, before securing a permanent CNRS position at ICMCB in 2017. His research interests cover synthesis and nanostructuration of electrode materials, surface modifications, operando and in-situ characterizations, crystallochemistry, and the regeneration of end-of-life electrodes. Skilled in advanced synthesis methods (solid-state, sol-gel, ionothermal, molten salt), particle morphology control, structural characterizations (XRD, Raman, IR, UV-vis, SEM, XAS), and electrochemical testing, he combines fundamental and applied expertise to address energy challenges. His contributions include 56 peer-reviewed publications, 4 patents, more than 900 citations, an h-index of 18, and leadership in major projects such as ANR NANO-INSPIRE, REGENERATE, and H-BAT, alongside supervision of Ph.D. and postdoctoral researchers, teaching commitments at the University of Bordeaux, and involvement in European programs such as Battery 2030+ and H2020 NAIMA. He has received notable honors, including the ANR Young Researcher Grant, Fondation Roi Baudouin – Solvay Grant, and recognition for his research presentations, while being an active member of RS2E, Alistore, and the French Chemical Society. With his strong international collaborations, scientific leadership, and commitment to mentoring, Dr. Olchowka has established himself as an influential researcher whose work significantly advances sustainable energy storage and positions him as a future leader in the global transition toward greener technologies.

Profile: Scopus | ORCID | LinkedIn

Featured Publications

Croguennec, L., Duttine, M., Grebenshchikova, A., Lyonnard, S., Olchowka, J., Simonin, L., & Stievano, L. (2027). Multi-scale multi-techniques investigations of Li-ion batteries: Towards a European Battery Hub [Dataset]. European Synchrotron Radiation Facility.

Grebenshchikova, A., Olchowka, J., Simonin, L., Yaroslavtsev, S., Duttine, M., Fauth, F., Stievano, L., Masquelier, C., & Croguennec, L. (2025). Na₂Fe₃(SO₄)₄: A zero‐strain sustainable positive electrode material for Na‐ion batteries. Angewandte Chemie International Edition. Advance online publication.

Grebenshchikova, A., Olchowka, J., Simonin, L., Yaroslavtsev, S., Duttine, M., Fauth, F., Stievano, L., Masquelier, C., & Croguennec, L. (2025). Na₂Fe₃(SO₄)₄: A zero‐strain sustainable positive electrode material for Na‐ion batteries. Angewandte Chemie. Advance online publication.

Grebenshchikova, A., Olchowka, J., Simonin, L., Duttine, M., Weill, F., Suard, E., Masquelier, C., & Croguennec, L. (2025). NaSICON NaFe₂PO₄(SO₄)₂ revisited: Insights into the crystal structure and electrochemical performance. ACS Applied Energy Materials. Advance online publication.

Hayagan, N., Guillou, P., Olchowka, J., Ercicek, F., Lecoutre, C., Nguyen, O., Aymonier, C., Marre, S., Erriguible, A., & Philippot, G. (2025). Understanding the role of pressurized CO₂ in the direct recycling process of Li-ion battery positive electrode. Journal of CO₂ Utilization, 103, 103080.

Zhao Wang | Materials Science | Best Researcher Award

Dr. Zhao Wang | Materials Science | Best Researcher Award

Technical Institute of Physics and Chemistry, Chinese Academy of Sciences | China

Dr. Zhao Wang is a distinguished researcher in the field of physical chemistry and advanced material science, specializing in the design and fabrication of high-performance materials inspired by biomimicry. His research focuses on impact-resistant glass, bulletproof glass, and advanced adhesion-controlled interface materials, integrating principles of bionic molecular engineering and interfacial optimization. With a strong foundation in chemistry and applied sciences, Dr. Wang has contributed significantly to internationally recognized journals such as Angewandte Chemie International Edition, Advanced Materials, Chemistry – A European Journal, and Science Bulletin. His work is at the forefront of interdisciplinary research, spanning materials chemistry, nanotechnology, biomimetic systems, and functional device applications. He completed his Ph.D. in Physical Chemistry at the Technical Institute of Physics and Chemistry, CAS, and currently serves as a Special Research Assistant at CAS under the mentorship of Academician Lei Jiang. His research projects include the National Postdoctoral Researcher Funding Program and CAS Special Research Assistant Project, aimed at biomimetic materials for healthcare and industrial applications. Recognized with prestigious scholarships and awards, including the Excellent Postdoctoral Talent of CAS, Dr. Wang has emerged as a promising young scientist with the potential to lead global collaborations in material innovation.

Professional Profile

Scopus 

Education

Dr. Zhao Wang’s academic journey reflects excellence and dedication to scientific inquiry. He obtained his Bachelor of Science in Chemistry from Northeast Normal University, where he developed his foundational skills in analytical chemistry, material synthesis, and molecular design under the mentorship of Prof. Shuxia Liu. His outstanding academic performance earned him multiple President Scholarships and National Scholarships, marking him as one of the top students in his cohort. Building upon his undergraduate success, Dr. Wang pursued a Ph.D. in Physical Chemistry at the Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences. His doctoral research, guided by Prof. Shutao Wang, focused on bionic molecular engineering and advanced adhesion chemistry, resulting in several publications in Q1 journals and the foundation of his expertise in high-performance impact-resistant glass and biomimetic materials. Dr. Wang’s formal education provided him with not only technical expertise but also exposure to interdisciplinary approaches that merge chemistry, physics, and engineering. His academic training was complemented by scholarships such as the Outstanding President Scholarship of CAS and National Scholarship. These achievements highlight his academic brilliance and set the stage for his continuing contributions as a materials chemist and research innovator.

Professional Experience

Dr. Zhao Wang has built a strong professional trajectory through positions that combine cutting-edge research, collaborative innovation, and mentorship. he has been serving as a Special Research Assistant at the Technical Institute of Physics and Chemistry (TIPC), CAS, working under the guidance of Academician Lei Jiang. In this role, he actively engages in research projects funded by national and international agencies, including the CAS Special Research Assistant Project and the National Postdoctoral Researcher Funding Program. His focus lies in biomimetic material design, adhesion chemistry, and device engineering, with applications extending to healthcare diagnostics, energy devices, and protective materials. During his doctoral years, Dr. Wang participated in several collaborative projects supported by the National Natural Science Foundation of China and CAS strategic initiatives, contributing to phase-change material design for organ preservation, bionic wet adhesion systems, and organic semiconductor devices. His involvement in both independent and team-based research demonstrates his versatility as a researcher capable of tackling fundamental science while addressing practical challenges. His professional journey is distinguished by the successful integration of experimental design, project leadership, and international collaboration, resulting in impactful scientific contributions. Through his roles, Dr. Wang has demonstrated not only research expertise but also leadership qualities essential for future academic and industrial advancements.

Research Interests

Dr. Zhao Wang’s research interests are rooted in biomimicry, material design, and interfacial engineering, with a focus on developing next-generation high-performance materials. His primary research area involves the design and fabrication of impact-resistant and bulletproof glass by leveraging bionic molecular engineering and interfacial optimization. These studies aim to enhance durability, transparency, and resistance, addressing global demands for advanced safety materials in defense, transportation, and infrastructure. Beyond glass materials, Dr. Wang explores biomimetic adhesion-controlled interfaces, inspired by marine organisms and natural adhesion systems. His research in wet adhesion interface materials seeks applications in industrial coatings, medical adhesives, and microelectronic devices. Additionally, he has expanded his interests to biomimetic sensors for early disease diagnosis, as part of the National Postdoctoral Researcher Funding Program, focusing on exhaled biomarker detection for healthcare applications. Dr. Wang’s work also bridges semiconductor interface design and energy materials, where he has contributed to strategies for enhancing the performance of organic electronics and phase-change materials for organ preservation. His interdisciplinary approach highlights the convergence of chemistry, biology, and materials engineering, positioning him as a versatile researcher whose contributions address critical challenges in science, technology, and society.

Research Skills

Dr. Zhao Wang has developed a broad range of technical and analytical skills that underpin his success as a researcher in physical chemistry and material science. His expertise in experimental design and troubleshooting allows him to construct innovative material systems while ensuring high reproducibility and precision. He is proficient in advanced data analysis tools, including OriginPro and MATLAB, enabling him to interpret experimental results and model material behavior effectively. His skills extend to scientific writing and grant proposal preparation, where he has contributed to peer-reviewed publications and secured funding for prestigious projects. Dr. Wang’s laboratory skills include nanostructured material synthesis, interfacial engineering, and polymer integration, particularly within biomimetic and semiconductor systems. His ability to merge theory with practical experimentation reflects his innovative research approach. Additionally, Dr. Wang demonstrates strong communication and presentation abilities, being fluent in English for scientific discourse, international collaboration, and conference participation. He is also well-versed in lab safety and compliance, ensuring responsible and ethical research practices. These skills collectively define him as a well-rounded scientist capable of excelling in diverse research environments while mentoring younger researchers and contributing to global knowledge advancement.

Awards and Honors

Dr. Zhao Wang’s academic and research career is distinguished by a series of national and institutional awards that recognize his excellence and contributions. he was honored with the Excellent Postdoctoral Talent of CAS Award, reflecting his outstanding research performance and future potential. During his doctoral studies, he received the Outstanding President Scholarship of CAS and the National Scholarship, both of which are highly competitive and prestigious recognitions within China’s academic system. Earlier in his career, Dr. Wang was awarded the Outstanding Student of University of CAS and the Excellent Poster Award from the Royal Society of Chemistry for his innovative research presentations. He consistently secured merit-based scholarships, including the Second-Class Director Scholarship, Outstanding Graduate Student Award, and multiple President Scholarships from Northeast Normal University. These recognitions underscore his academic brilliance, innovative thinking, and research impact. Collectively, they demonstrate his ability to excel in both academic and professional environments, highlighting his commitment to advancing material science and contributing to international research communities. His awards position him as a promising global researcher with a track record of sustained excellence.

Publication Top Notes

  • Superwetting-Enabled In Situ Silicification for Artificial Silicified Wood — 2025

  • Dynamic-Wetting Liquid Metal Thin Layer Induced via Surface Oxygen-Containing Functional Groups — 2025 — 3 citations

Conclusion

In conclusion, Dr. Zhao Wang represents an emerging leader in physical chemistry and material science, with contributions that bridge fundamental research and practical applications. His work on impact-resistant glass, biomimetic adhesion materials, and biomimetic sensors addresses critical global challenges in security, healthcare, and advanced technologies. Backed by a strong academic foundation, a growing list of Q1 journal publications, and prestigious recognitions such as the Excellent Postdoctoral Talent of CAS, Dr. Wang has demonstrated consistent excellence and innovation. Beyond research, his engagement in national and international collaborations and his role in mentoring early-stage researchers highlight his leadership qualities and dedication to scientific communities. His strong research skills, combined with a forward-looking vision, position him as a candidate who can drive future breakthroughs in material innovation. Dr. Zhao Wang is highly deserving of the Best Researcher Award, as his contributions not only enrich the academic world but also provide tangible benefits to society at large. With his expertise, dedication, and leadership potential, he is poised to emerge as a global authority in biomimetic material engineering and advanced functional materials, contributing significantly to science and humanity.

Aenas Laith Ali | Materials Science | Best Academic Researcher Award

Dr. Aenas Laith Ali | Materials Science | Best Academic Researcher Award

Babylon University | Iraq

Enas Laith Ali Al-Dulaimi is an accomplished researcher and materials engineer from Iraq, recognized for her expertise in alloy development, corrosion resistance, and aerospace materials. With a strong academic foundation in metallurgy and materials engineering, she has contributed significantly to advancing knowledge in the areas of alloy processing, microstructural analysis, and mechanical property improvement. Her work is deeply rooted in both academic research and practical laboratory investigations, bridging the gap between theoretical insights and industrial applications. Over the years, she has developed a strong research portfolio, including multiple publications in internationally indexed journals, book chapters, and conference proceedings. Enas has also demonstrated her leadership skills by guiding students, contributing to academic projects, and engaging in training programs to share her expertise. Her work spans various advanced techniques, including X-ray diffraction, optical microscopy, and corrosion testing methods, positioning her as a specialist in material characterization and alloy performance evaluation. In addition to her academic contributions, she has earned professional certifications and participated in interdisciplinary collaborations, reflecting her commitment to continuous learning and professional growth. Her research excellence, combined with a strong vision for innovation and societal impact, makes her a valuable contributor to the global scientific and engineering community.

Professional Profile

Scopus | Google Scholar

Education

Enas Laith Ali Al-Dulaimi holds a distinguished academic background in materials engineering, with both undergraduate and postgraduate degrees from the University of Babylon, Iraq. She earned her Bachelor’s degree in Metallurgical and Materials Engineering (Metals Division), where she graduated with high distinction, ranking fourth in her department. During her undergraduate studies, she completed a major project on improving corrosion resistance in Nitinol alloys through surface treatment techniques, which demonstrated her early research capabilities and passion for materials development. Building on this foundation, she pursued a Master’s degree in Metallurgical and Materials Engineering (Metals Division) at the University of Babylon. Her Master’s research was focused on the role of alloying techniques in enhancing the properties of Al-Li alloys used in aerospace industries, which showcased her ability to address complex engineering challenges with real-world applications. This work contributed valuable insights into the aerospace field, particularly regarding alloy strength, durability, and resistance to corrosion. Alongside her formal education, she has pursued continuous learning through professional certifications and specialized training, including programs on Python programming, artificial intelligence, electronic teaching methods, and advanced laboratory practices, ensuring her academic profile is well-rounded and internationally competitive.

Professional Experience

Enas Laith Ali Al-Dulaimi has accumulated extensive professional experience as a materials engineer, academic researcher, and laboratory specialist at the University of Babylon. In her role, she has actively contributed to teaching, guiding students in practical experiments, and assisting in advanced laboratory investigations related to metallurgy and materials characterization. Her hands-on experience covers mechanical testing, hardness, tensile and compression strength evaluations, as well as corrosion resistance studies, all of which are essential for assessing material performance under different industrial conditions. Beyond her academic role, she has served as a research associate in various collaborative projects, particularly in developing advanced alloys for aerospace and industrial applications. Enas is skilled in operating modern laboratory instruments such as optical microscopes, X-ray diffraction systems, and metallurgical testing setups, which have been instrumental in her research output. Her professional contributions also extend to writing academic reports, research papers, and technical documents that bridge scientific knowledge with industrial relevance. Additionally, she has played a role in organizing academic seminars and workshops, enabling knowledge exchange between researchers and students. By combining teaching, applied research, and laboratory training, she has developed a strong professional profile that highlights her technical expertise, leadership qualities, and dedication to advancing material sciences.

Research Interests

The research interests of Enas Laith Ali Al-Dulaimi lie primarily in the field of advanced materials engineering, alloy development, and aerospace materials applications. She is particularly focused on studying the corrosion behavior, microstructure, and mechanical properties of Al-Li alloys, Ni-Ti alloys, and high-strength steels, which are widely used in aerospace, medical, and industrial sectors. Her work emphasizes the role of alloying elements, surface treatment, and thermal processing techniques in improving the durability and performance of these materials. She has conducted detailed studies on the effect of micro-alloying with elements such as Ag, Ge, Mg, and Cu, contributing new knowledge on how these additions enhance alloy strength, toughness, and corrosion resistance. In addition to alloy development, she is interested in nanomaterials and advanced composites for engineering applications, particularly those with biomedical and aerospace potential. Enas is also engaged in interdisciplinary research that integrates statistical modeling, materials characterization, and experimental testing methods to provide comprehensive solutions to engineering challenges. With a vision to expand her work globally, she aims to further explore sustainable materials development, environmentally friendly alloys, and innovative processing techniques, ensuring that her research contributes to both industrial advancement and societal progress.

Research Skills

Enas Laith Ali Al-Dulaimi possesses a wide range of technical, analytical, and academic research skills that make her a highly competent materials engineer and researcher. She is proficient in conducting structural and microstructural analysis using X-ray diffraction (XRD), optical microscopy, and scanning techniques, which are critical for evaluating alloy composition and performance. Her expertise extends to mechanical property testing, including hardness, tensile, fracture toughness, and corrosion resistance measurements. Enas is skilled in experimental design, statistical data analysis, and technical report writing, supported by her proficiency in tools such as SPSS, Microsoft Excel, and other statistical platforms. She is also experienced in 3D design and modeling using AutoCAD and Home Design 3D, complementing her engineering expertise with design capabilities. Her software knowledge includes Microsoft Office Suite, Adobe Photoshop, and presentation design tools, enhancing her ability to present research findings effectively. Beyond technical skills, she has strong abilities in academic writing, publishing in peer-reviewed journals, and presenting at conferences. Her personal skills include critical thinking, teamwork, problem-solving, and mentoring younger researchers, making her not only an independent investigator but also a collaborative academic professional with a strong commitment to continuous learning and innovation.

Awards and Honors

Throughout her career, Enas Laith Ali Al-Dulaimi has received several academic honors, certifications, and professional recognitions that underscore her contributions to the field of materials engineering. She has published multiple papers in Scopus and IEEE-indexed journals, including IOP Conference Series: Materials Science and Engineering, Journal of Engineering and Applied Sciences, and International Journal of Mechanical Engineering and Technology (IJMET), with her works receiving citations from international researchers. In addition to journal publications, she has authored and co-authored book chapters on alloy development and microstructure analysis, demonstrating her contribution to academic literature. Enas has also earned professional certifications, including the prestigious TOT (Certified Trainer) accreditation, a University of Baghdad certification in E-learning and Zoom teaching platforms, and recognition from the American Association of Neurological Surgeons (AANS) for intensive care management training. She has further enhanced her international profile by completing Udemy certifications in Python programming, artificial intelligence, and advanced presentation design. These achievements reflect not only her academic and research excellence but also her commitment to continuous professional development. Her awards and recognitions highlight her growing influence in the academic community and her readiness to take on more impactful global research roles.

Publication Top Notes

  • The Effects of Chemical Oxidation on Corrosion Behavior of Ni-Ti Alloy — 2021 — 5 citations

  • Experimental and theoretical analysis of bismuth Co-doped erbium-based hydroxyapatites — 2025 — 1 citation

  • Microstructure and mechanical properties of Ag and Ge multi-micro alloyed Al-(3.2) Cu-(2) Li-(0.6) Mg alloys — 2019 — 1 citation

  • Influence of Alloying Element on Corrosion Behavior of (Al-Li) Alloys used in Aerospace Industries — 2019 — 1 citation

  • Comprehensive analysis of the impact of iron and terbium co-dopant levels on the structural, thermal, and spectroscopic properties of hydroxyapatite — 2025

  • Optimizing the welding performance of 2024-T351 aluminum alloy through friction stir welding technology — 2024

  • Investigation of the effect of chitosan nanoparticles on MDR Bacillus cereus isolated from pasteurized milk — 2024

Conclusion

In conclusion, Enas Laith Ali Al-Dulaimi represents a dynamic and forward-thinking researcher whose contributions to materials engineering, alloy development, and aerospace applications position her as a rising leader in her field. Her academic journey, professional experience, and diverse research portfolio demonstrate a clear commitment to advancing knowledge while ensuring practical applications that benefit industry and society. She has successfully combined strong technical expertise with academic leadership, mentorship, and professional training, making her profile well-rounded and globally relevant. Through her publications, certifications, and collaborations, she has already built a foundation for international recognition. However, her vision goes further—she aims to expand her research on sustainable and advanced alloys, participate in global collaborations, and contribute to the development of environmentally friendly materials for future generations. With her blend of academic excellence, professional achievements, and innovative mindset, Enas is highly deserving of recognition as a Best Researcher Award nominee. Her ability to bridge academic research with practical impact reflects her true potential as a scientist, educator, and global contributor to the engineering community.

Bünyamin Ciçek | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Bünyamin Ciçek | Materials Science | Best Researcher Award

Hitit University, Turkey

Assoc. Prof. Dr. Bünyamin Çiçek is a distinguished academic in the field of Metallurgical and Materials Engineering, currently serving at Hitit University, Turkey. With a strong foundation in manufacturing technologies, powder metallurgy, and welding technologies, he has contributed extensively to material innovation, particularly in biocompatible alloys and composite materials. Over the years, Dr. Çiçek has played key roles in national projects supported by TÜBİTAK and higher education institutions, establishing himself as a leader in applied and experimental research. He has supervised doctoral theses, published over 25 peer-reviewed international articles, and presented at numerous international conferences. His research is recognized for its industrial applicability, particularly in alloy development, corrosion resistance, and biocompatibility. In addition to his academic responsibilities, he has held administrative roles such as Vice Director of a vocational school and Head of Department. Dr. Çiçek has also received prestigious awards, including the “Young Researcher of the Year” and publication incentives from TÜBİTAK and his home institution. His dedication to advancing metal and polymer-based research has positioned him as a key contributor to the scientific and industrial communities.

Professional Profile

Education

Dr. Bünyamin Çiçek holds a Ph.D. in Metallurgical and Materials Engineering from Karabük University, which he completed in 2021. His doctoral research focused on the production and characterization of biocompatible alloys using a newly designed powder injection molding method, under the supervision of Prof. Yavuz Sun. Prior to his doctoral studies, he earned a Master’s degree with thesis from the same university in 2011, where he examined the wear and corrosion behavior of Mg2Si particle-reinforced magnesium alloys. His academic journey began with a Bachelor’s degree in Metal Teaching from Karabük University, completed in 2009. The strong technical emphasis of his undergraduate and graduate training laid the groundwork for his later contributions in advanced manufacturing technologies and materials characterization. Dr. Çiçek’s academic formation combines in-depth metallurgical knowledge with practical applications, enabling him to explore and innovate in areas such as metal injection molding, biocompatibility of alloys, corrosion mechanisms, and additive manufacturing. Throughout his educational career, he has consistently focused on developing solutions to real-world engineering problems, especially in the context of biomedical and structural materials.

Professional Experience

Dr. Bünyamin Çiçek currently serves as an Associate Professor at Hitit University in the Department of Welding Technology. He began his academic career as a lecturer at Gedik University and later joined Hitit University, where he has held several key positions, including Lecturer at Alaca Avni Çelik Vocational School and Vice Director of the same institution. Over the years, Dr. Çiçek has contributed significantly to curriculum development, student mentorship, and industry-academia collaboration. His administrative experience includes serving as Head of the Department of Machinery and Metal Technologies. His work in academic leadership has complemented his teaching, which covers subjects like Powder Metallurgy, Technical Drawing, and Computer-Aided Design. Beyond academia, he has actively participated in national research projects, often taking on roles as project coordinator, consultant, and principal researcher. These experiences have enabled him to develop strong ties with industrial partners and apply academic findings to real-world challenges. His leadership in multidisciplinary projects focused on novel alloy production, corrosion resistance, and 3D printing technologies underscores his broad impact in both educational and applied research domains.

Research Interests

Dr. Çiçek’s research interests are centered around materials science and engineering, with a particular focus on powder metallurgy, biocompatible materials, composite materials, and welding technology. His academic curiosity lies in improving the mechanical, tribological, and corrosion properties of metal matrix composites and magnesium-based biodegradable alloys. A significant portion of his research explores the development and optimization of metal injection molding systems for medical and structural applications. He is also interested in investigating the effects of alloying elements such as rare earth metals on high-entropy alloys and their performance at cryogenic temperatures. In recent years, he has expanded his work to include 3D-printed polymer and metal parts, especially for use in biomedical implants and radiation shielding. His collaboration in TUBITAK-funded projects reflects his dedication to applied research that combines nanotechnology with traditional manufacturing methods. Additionally, Dr. Çiçek actively investigates environmentally friendly materials, including the use of recycled products in aluminum matrix composites. This diversity of interests not only broadens the scope of his research output but also aligns with global scientific trends in sustainable and functional material development.

Research Skills

Dr. Bünyamin Çiçek is highly skilled in experimental techniques and research methodologies that span across several domains of materials science. He has hands-on expertise in powder metallurgy, including metal injection molding processes, alloy synthesis, sintering, and characterization. He is proficient in conducting wear and corrosion tests, mechanical property assessments, and metallographic analyses. His work often incorporates advanced microscopy techniques such as SEM for microstructural investigation. In the realm of additive manufacturing, he has led studies involving stereolithography-based 3D printing and the integration of nano-structured materials to enhance mechanical performance. He also has a solid background in computer-aided design and simulation tools, which he integrates into both teaching and research. Moreover, his ability to manage and coordinate large-scale, multi-institutional research projects demonstrates his strong project management and collaboration skills. Dr. Çiçek is adept at formulating hypotheses, designing experiments, analyzing data, and drawing actionable conclusions—skills that are evidenced by his extensive publication record. His interdisciplinary approach bridges the gap between materials development, biomedical applications, and sustainable engineering solutions.

Awards and Honors

Throughout his academic career, Dr. Çiçek has been the recipient of numerous awards that highlight both his research excellence and publication productivity. In 2024, he was honored by Hitit University for having the highest number of Q1 publications indexed by Web of Science. The same year, he received an innovation award for developing commercially viable products in collaboration with the manufacturing sector, under the theme of specialization in machinery and manufacturing technologies. TÜBİTAK recognized his achievements with multiple Publication Incentive Awards in 2023, 2016, and 2012. Notably, in 2018, he was named “Young Researcher of the Year” by Al-Quds University, Palestine, marking an international acknowledgment of his early-career accomplishments. These accolades reflect his consistent contributions to high-impact research, particularly in the areas of biocompatible materials and industrial applications. His ability to translate academic work into practical solutions has also earned him leadership roles in various national R&D projects. The awards validate not only his scholarly output but also his impact on scientific innovation and industrial relevance.

Conclusion

Assoc. Prof. Dr. Bünyamin Çiçek stands out as a leading researcher whose work intersects materials innovation, biocompatible systems, and industrial manufacturing processes. With over a decade of experience, his multidisciplinary expertise in metallurgy, powder injection molding, and composite materials places him at the forefront of applied research in Turkey and beyond. He has contributed significantly to the scientific community through a prolific publication record and active participation in national research projects. His leadership roles in academia and collaboration with industry partners underline his commitment to knowledge transfer and sustainable development. The numerous awards and recognitions he has received reinforce his status as a dedicated scientist and educator. Dr. Çiçek’s ongoing projects in biocompatible materials and environmentally friendly composites demonstrate his responsiveness to current global challenges. As he continues to mentor students and lead cutting-edge research, his contributions are poised to influence the next generation of materials science innovations. He is undoubtedly a strong candidate for the Best Researcher Award, with a portfolio that exemplifies academic rigor, practical relevance, and long-term impact.

Publications Top Notes

  1. Enhancement of Tribological Characteristics for Fe-0.55C PM Steel via Addition of Mo-Ni under Different Deformation Ratios
    Journal: Journal of Materials Engineering and Performance
    Year: 2025
    Citations: 1
  2. Investigation of Tribological Characteristics of Cu-Fe-Ni-Al-Mn Heat Exchanger Alloys for Automotive Applications in Different Antifreeze Ratios
    Journal: International Journal of Automotive Science and Technology
    Year: 2025

 

 

Hanaa Abd El-Hamid | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Hanaa Abd El-Hamid | Materials Science | Best Researcher Award

Associate Professor from National Research Centre, Egypt

Hanaa Kamel Abd El-Hamid Essway is an accomplished Egyptian researcher specializing in ceramics, refractory, and building materials with extensive expertise in bioactive and sustainable materials. she currently serves as an Assistant Professor at the National Research Centre. With over 20 years of progressive experience, Dr. Essway has built a strong research portfolio focusing on the development of innovative materials for biomedical, dental, and structural applications. Her research emphasizes the use of cost-effective and eco-friendly materials, aligning her work with both scientific advancement and environmental sustainability. She has published numerous articles in highly regarded international journals such as Ceramics International, Scientific Reports, and Heliyon, covering critical areas like bio-cements, corrosion-resistant coatings, and dental restorative materials. In addition to her research, she is actively involved in training and mentoring university students and has participated in several national and international conferences. Dr. Essway possesses a strong blend of practical laboratory expertise and theoretical knowledge, and she continuously seeks to contribute to the advancement of material science. Her career reflects her dedication to scientific excellence, continuous learning, and impactful research that addresses real-world challenges.

Professional Profile

Education

Dr. Hanaa Kamel Abd El-Hamid Essway has pursued a solid academic path that firmly established her expertise in chemistry and materials science. She earned her Ph.D. in Chemistry from Ain Shams University, Egypt, in 2013. Her doctoral research, titled “Utilization of Egyptian Oil Shales in Manufacture of High-Belite Cement and Activated Pozzolanic Ash,” focused on sustainable and cost-efficient materials for construction, demonstrating her early commitment to resource-efficient technologies. Before her doctoral studies, she completed her Master’s degree in Chemistry in 2006 from Menufiya University, where she conducted in-depth studies on the use of Egyptian oil shales in cement production. Her Master’s research laid the groundwork for her doctoral investigations and subsequent career focus on eco-friendly building materials. Dr. Essway began her academic journey by earning a Bachelor’s degree in Chemistry from Menufiya University in 1999 with high distinction, graduating with an overall rating of “Very Good.” Her continuous educational progression from undergraduate studies to advanced research degrees reflects her sustained academic dedication and expertise in her field. These educational achievements have provided her with a comprehensive understanding of both theoretical chemistry and its practical applications in material development.

Professional Experience

Dr. Hanaa Kamel Abd El-Hamid Essway has demonstrated consistent career growth through her long-standing association with the National Research Centre in Egypt. She currently holds the position of Assistant Professor in the Ceramics, Refractory, and Building Materials Department, a role she has occupied since February 2023. Her academic journey within the Centre began in 2001 as a Research Assistant, and she gradually progressed through the ranks as an Assistant Researcher, Researcher, and finally Assistant Professor. Between 2006 and 2013, she served as an Assistant Researcher, where she honed her skills in developing novel materials for biomedical and structural use. Following this, she worked as a full-time Researcher until 2023, during which she made significant research contributions, particularly in the area of bio-cement and corrosion-resistant coatings. Over her career, Dr. Essway has participated in several specialized training courses, student mentorship programs, and international scientific conferences. Her professional experience not only showcases her research capabilities but also highlights her ability to apply her scientific knowledge in real-world materials development. This long-term commitment to research and education has positioned her as a highly respected expert in her field.

Research Interest

Dr. Hanaa Kamel Abd El-Hamid Essway’s research interests are deeply rooted in the development of sustainable, cost-effective, and bioactive materials for use in various industrial and biomedical applications. She is particularly focused on ceramics, bio-cement, corrosion-resistant coatings, and dental restorative materials. One of her primary areas of investigation is the utilization of locally available, low-cost materials such as Egyptian oil shales and soda-lime-silica glass in cement and bioactive composites, aiming to reduce manufacturing costs while enhancing material performance. Her work on nano-structured coatings for corrosion protection and biocompatible composites has significant potential for medical implants and dental applications. Additionally, Dr. Essway is interested in the hydration behavior and remineralization potential of modified cements, exploring how novel composites can improve the strength and longevity of dental restorations. Her cross-disciplinary research approach integrates chemistry, materials science, and biomedical engineering, contributing to both environmental sustainability and human health. Dr. Essway’s research is geared toward solving real-world challenges by improving material properties such as biocompatibility, antibacterial resistance, and mechanical durability, making her work highly relevant for industries such as healthcare, construction, and biomaterials development.

Research Skills

Dr. Hanaa Kamel Abd El-Hamid Essway possesses a diverse and advanced set of research skills that reflect her hands-on expertise in experimental design, material synthesis, and analytical characterization. She is highly skilled in developing and modifying bioactive cements, corrosion-resistant coatings, and nano-structured materials, applying polymeric methods and microwave combustion techniques for precise material fabrication. Dr. Essway’s extensive experience includes characterizing materials using advanced techniques to study microstructures, hydration behaviors, and bioactivity. She has effectively contributed to the synthesis of tricalcium silicate bio-cements, nano-alumina coatings, and zinc oxide-based composites with antibacterial and biocompatible properties. Additionally, she is proficient in evaluating the mechanical properties and corrosion resistance of coating layers, which is essential for biomedical applications. Dr. Essway is adept at using statistical tools and research methodologies for data interpretation and scientific reporting. She also has strong computer skills, particularly in Microsoft Office applications, which she uses for scientific writing and data management. Her ability to collaborate with multidisciplinary teams, conduct literature reviews, and supervise laboratory experiments further strengthens her research portfolio. Her continuous participation in training workshops and scientific conferences has allowed her to stay updated with modern research methodologies and industry practices.

Awards and Honors

While specific award titles were not listed, Dr. Hanaa Kamel Abd El-Hamid Essway’s career achievements demonstrate significant recognition within the scientific community. Her long-standing role at the National Research Centre and her progression to Assistant Professor underscore the institutional trust and recognition of her capabilities and contributions. Throughout her career, she has been actively involved in major research projects, student mentorship, and national-level training initiatives, which reflect her respected standing as both a researcher and educator. Dr. Essway has participated in several high-profile international and national conferences, where she has presented her work alongside leading experts in material science and biomaterials. Her published articles in top-tier journals such as Ceramics International, Scientific Reports, and Heliyon are further testament to the scientific community’s acknowledgment of the value and relevance of her research. Her engagement in skill development programs and training workshops, including scientific writing and occupational safety, shows her commitment to continuous improvement. The cumulative impact of her scientific contributions, teaching, and professional development indicate that she is a well-regarded figure in her field, deserving of recognition through honors such as the Best Researcher Award.

Conclusion

In conclusion, Dr. Hanaa Kamel Abd El-Hamid Essway stands out as a dedicated and accomplished researcher whose work significantly advances the fields of ceramics, bio-cement, and sustainable building materials. Her research is characterized by innovation, interdisciplinary approaches, and practical solutions that address real-world challenges in biomedical and construction applications. With more than 20 years of progressive experience, she has contributed extensively to the scientific community through impactful publications, participation in conferences, and mentorship of university students. Dr. Essway’s focus on using cost-effective and locally sourced materials aligns her work with global sustainability goals while simultaneously pushing the frontiers of material performance and safety. Her research skills, including advanced synthesis techniques, material characterization, and data analysis, have consistently yielded valuable findings that are well-recognized by international journals. Although her work would benefit from greater international collaboration and leadership roles, her proven research productivity and technical expertise make her a strong candidate for prestigious research awards. Dr. Essway’s career exemplifies the qualities of a Best Researcher Award recipient: dedication, innovation, academic excellence, and a tangible contribution to society

Publications Top Notes

1. Alkali Activation of Blended Cements Containing Oil Shale Ash

  • Authors: M.M. Radwan, L.M. Farag, S.A. Abo-El-Enein, H.K. Abd El-Hamid

  • Journal: Construction and Building Materials 40, 367-377

  • Year: 2013

  • Citations: 29

2. Preparation and Characterization of Nano-Tetracalcium Phosphate Coating on Titanium Substrate

  • Authors: M.M.R. M. Fathi, H.K. Abd El-Hamid

  • Journal: International Journal of Electrochemical Science 11, 3164-3178

  • Year: 2016

  • Citations: 17

3. Influence of Saline Solution on Hydration Behavior of β-Dicalcium Silicate in Comparison with Biphasic Calcium Phosphate/Hydroxyapatite Bio-Ceramics

  • Authors: M.M. Radwan, H.K. Abd El-Hamid, A.F. Mohamed

  • Journal: Materials Science and Engineering: C 57, 355-362

  • Year: 2015

  • Citations: 17

4. Physico-Mechanical Characteristics of Tri-Calcium Silicate Pastes as Dentin Substitute and Interface Analysis in Class II Cavities: Effect of CaCl₂ and SBF Solutions

  • Authors: M.M. Radwan, S.M. Nagi, H.K. Abd El-Hamid

  • Journal: Heliyon 5 (6)

  • Year: 2019

  • Citations: 16

5. Influence of Nano-Silica Additions on Hydration Characteristics and Cytotoxicity of Calcium Aluminate as Biomaterial

  • Authors: H.K. Abd El-Hamid, M.M. Radwan

  • Journal: Heliyon 5 (7)

  • Year: 2019

  • Citations: 13

6. Synthesis, Properties and Hydration Characteristics of Novel Nano-Size Mineral Trioxide and Tetracalcium Phosphate for Dental Applications

  • Authors: M.M. Radwan, H.K. Abd El-Hamid, S.M. Nagi

  • Journal: Oriental Journal of Chemistry 32 (5), 2459

  • Year: 2016

  • Citations: 12

7. Characterization, Bioactivity Investigation and Cytotoxicity of Borosilicate Glass/Dicalcium Silicate Composites

  • Authors: R.L.E., H.K. Abd El-Hamid, S.M. Abo-Naf

  • Journal: Journal of Non-Crystalline Solids 512, 25-32

  • Year: 2019

  • Citations: 11

8. Evaluation of Bioactivity, Biocompatibility, and Antibacterial Properties of Tricalcium Silicate Bone Cement Modified with Wollastonite/Fluorapatite Glass and Glass-Ceramic

  • Authors: H.K. Abd El-Hamid, A.M. Fayad, R.L. Elwan

  • Journal: Ceramics International 50 (14), 25322-25332

  • Year: 2024

  • Citations: 10

9. Incorporation of Strontium Borosilicate Bioactive Glass in Calcium Aluminate Biocement: Physicomechanical, Bioactivity and Antimicrobial Properties

  • Authors: H.K. Abd El-Hamid, A.A. El-Kheshen, A.M. Abdou, R.L. Elwan

  • Journal: Journal of the Mechanical Behavior of Biomedical Materials 144, 105976

  • Year: 2023

  • Citations: 8

10. Synthesis, Characterization and Antimicrobial Activity of Nano-Crystalline Tricalcium Silicate Bio-Cement

  • Authors: H.K. Abd El-Hamid, H.H. Abo-Almaged, M.M. Radwan

  • Journal: Journal of Applied Pharmaceutical Science 7 (10), 001-008

  • Year: 2017

  • Citations: 8

 

 

Omar Anis HARZALLAH | Materials Science | Best Researcher Award

Dr. Omar Anis HARZALLAH | Materials Science | Best Researcher Award

Associate Professor from University of Haute-Alsace, France

Omar Anis Harzallah is an accomplished Associate Professor at the University of Haute-Alsace, affiliated with the École Nationale Supérieure d’Ingénieurs Sud Alsace (ENSISA) and the Laboratoire de Physique et Mécanique Textiles (LPMT – EA 4365). He has developed a distinguished career in textile engineering, focusing on sustainable materials and innovative fiber technologies. His work spans the morphological, physico-chemical, and mechanical characterization of natural fibers, with special attention to exotic plant fibers and their applications in textile and bio-based composites. Dr. Harzallah has also made significant advancements in functional polymeric fibers and nanostructured textile materials, emphasizing eco-design principles. Beyond research, he has been a committed educator and mentor for over two decades, contributing to student development, international pedagogy, and the promotion of textile engineering education. His dedication extends to scientific leadership, coordination of laboratories, and international academic collaborations. With more than 50 peer-reviewed publications, 9 book chapters, and 2 patents, his academic footprint is well-established globally. Dr. Harzallah’s contributions have earned him prestigious awards and recognition in the textile industry. His multidisciplinary approach, commitment to sustainability, and consistent research excellence make him a valuable asset to the scientific and educational community.

Professional Profile

Education

Dr. Omar Anis Harzallah holds a Ph.D. in Engineering Sciences from the University of Haute-Alsace, which he completed in 1999. His doctoral studies laid the foundation for his extensive work in textile characterization and sustainable fiber research. Prior to his Ph.D., he earned an Engineering degree in Textile Science from the Institut Supérieur Industriel de Verviers in Belgium. His academic training provided him with a solid background in both theoretical and practical aspects of textile engineering, fiber mechanics, and materials science. Throughout his educational journey, he developed a keen interest in the eco-friendly utilization of natural fibers and the advancement of bio-based composites, which would later become central to his research focus. His academic credentials reflect a strong commitment to both scientific excellence and practical industrial applications. In addition to his formal degrees, Dr. Harzallah has continuously expanded his knowledge through international collaborations and participation in professional development initiatives. His education has equipped him with multidisciplinary expertise, blending textile engineering with sustainable design principles. This combination of high-level education and continuous skill enhancement has positioned him as a leading figure in textile innovation and eco-conscious material development in the global academic landscape.

Professional Experience

Dr. Omar Anis Harzallah has built an impressive professional career as an Associate Professor at the University of Haute-Alsace, where he is affiliated with ENSISA and LPMT – EA 4365. With over 20 years of experience, he has played a central role in textile engineering research and education. His career includes scientific leadership within the Laboratoire de Physique et Mécanique Textiles, where he has coordinated textile metrology laboratories and led several major research initiatives. He has served as an elected member of both the Research Commission and the Academic Council at the University of Haute-Alsace, contributing to institutional development and research policy. Dr. Harzallah has also been actively involved in promoting international academic partnerships and double-degree programs, especially with universities in Tunisia. In addition to his research and teaching responsibilities, he has participated in international pedagogical projects in Algeria and Mongolia, demonstrating his commitment to global knowledge exchange. His professional journey includes close collaborations with both academic and industrial partners in countries like Cameroon, Iran, the United States, and Australia. This international exposure has significantly enriched his expertise and allowed him to contribute to cutting-edge developments in sustainable textile materials and fiber engineering.

Research Interest

Dr. Omar Anis Harzallah’s primary research interests center on the morphological, physico-chemical, and mechanical characterization of natural fibers, with a particular emphasis on exotic plant fibers. His work focuses on the valorization of these fibers for applications in textiles and bio-based composite materials, aligning strongly with sustainability goals. He has also explored the development of functional polymeric fibers and innovative nanostructured textile materials. A core theme in his research is eco-design, where he seeks to create environmentally friendly and high-performance materials. Dr. Harzallah’s interdisciplinary research bridges materials science, textile engineering, and mechanical analysis, contributing to the evolution of next-generation fibers and composites. His collaborations with international research teams and industries aim to translate laboratory findings into real-world applications, particularly in sustainable product design. In addition, he has shown interest in textile metrology, advancing methodologies for precise measurement and quality control in fiber-based products. Dr. Harzallah’s research is not only theoretical but also application-driven, with significant relevance to eco-conscious manufacturing, green composites, and functional textiles. His diverse research portfolio continues to contribute to the advancement of sustainable engineering practices and offers valuable insights into the circular economy within the textile and materials industries.

Research Skills

Dr. Omar Anis Harzallah possesses a wide range of research skills essential for advanced textile and fiber engineering. He is highly proficient in the morphological, physico-chemical, and mechanical characterization of natural and synthetic fibers. His expertise includes advanced testing and analytical methods for evaluating fiber properties, durability, and performance in composite applications. Dr. Harzallah is skilled in eco-design methodologies, enabling him to develop sustainable and high-functionality textile products. He has hands-on experience in creating functional polymeric fibers and nanostructured textile materials, integrating novel processing techniques to achieve targeted material characteristics. His research skill set also encompasses textile metrology, where he contributes to the development of precise measurement techniques and laboratory standards for textile analysis. Additionally, he is adept at managing multidisciplinary research teams and coordinating complex laboratory infrastructures. Dr. Harzallah’s international collaborations have equipped him with cross-cultural research management skills and the ability to lead joint research projects. He regularly serves as a reviewer for national and international funding bodies, providing critical evaluations of research proposals. His comprehensive research abilities allow him to translate scientific concepts into practical applications, driving innovation in sustainable textiles and bio-based composites across academic and industrial domains.

Awards and Honors

Throughout his career, Dr. Omar Anis Harzallah has received several prestigious awards and honors that recognize his scientific and academic contributions. In 2012, he was awarded the Théophile Legrand International Prize for Textile Innovation, which is a significant accolade in the textile industry, celebrating groundbreaking advancements in textile materials and processes. This award highlights his role in developing innovative, eco-friendly fiber technologies. In 2021, he was honored with the “Avenir” Award by the Association of Textile Industry Chemists, further recognizing his forward-thinking approach and leadership in textile engineering. In addition to these awards, Dr. Harzallah’s influence is acknowledged through his position as an expert reviewer for funding agencies such as the French National Research Agency (ANR) and Canada’s Natural Sciences and Engineering Research Council (NSERC). His standing in the academic community is reinforced by his contributions to international conferences, numerous collaborative projects, and his supervision of doctoral candidates. These recognitions not only validate his research excellence but also underscore his role as a thought leader in sustainable textiles and fiber science. Dr. Harzallah’s award-winning innovations and sustained academic impact have significantly advanced the field of eco-conscious textile engineering.

Conclusion

Dr. Omar Anis Harzallah stands out as a highly qualified and deserving candidate for the Best Researcher Award. His contributions to textile science, particularly in the characterization and valorization of natural fibers, reflect a deep commitment to sustainability and innovation. Through his extensive research, academic leadership, and international collaborations, he has consistently driven forward the development of eco-friendly materials and functional textiles. His impressive record of publications, patents, and successful student supervision highlights his dedication to advancing knowledge and mentoring the next generation of researchers. Dr. Harzallah’s work not only advances scientific understanding but also addresses critical global challenges such as sustainable material production and circular economy practices. His ability to bridge academic theory with industrial application makes his research highly impactful and widely respected. His awards and recognitions further validate his pioneering role in textile innovation. Dr. Harzallah’s career demonstrates a balanced integration of research excellence, educational commitment, and international outreach. With his strong multidisciplinary background, proven research capabilities, and dedication to eco-design, he continues to be a valuable contributor to the advancement of textile engineering and sustainable material sciences.

Publications Top Notes

  1. Aurélie Decker, Jean-Yves Drean, Vivien Sarazin, Omar Harzallah – 2024
    Influence of Different Retting on Hemp Stem and Fiber Characteristics Under the East of France Climate Conditions

  2. Thomas Jeannin, Gilles Arnold, Alain Bourmaud, Stéphane Corn, Emmanuel De Luycker, Pierre J.J. Dumont, Manuela Ferreira, Camille François, Marie Grégoire, Omar Harzallah et al. – 2024
    A round-robin study on the tensile characterization of single fibres: A multifactorial analysis and recommendations for more reliable results

  3. Wafa Mahjoub, Sarangoo Ukhnaa, Jean-Yves Drean, Omar Harzallah – 2024
    Influence of Genetic and Non-Genetic Factors on the Physical and Mechanical Properties of Mongolian Cashmere Fiber Properties

  4. Narcisse Defo, Omar Harzallah, Rodrigue Nicodème Tagne Sikame, Ebenezer Njeugna, Sophie Bistac – 2024
    Effect of alkaline treatment on hard vegetable shells on the properties of biobased abrasive wheels

  5. Solange Mélanie Anafack, Omar Harzallah, Didymus Efeze Nkemaja, Paul William Mejouyo Huisken, Aurélie Decker, Rodrigue Nicodème Sikame Tagne, Jean-Yves Drean, K. Murugesh Babu, Ebenezer Njeugna – 2023
    Effects of extraction techniques on textile properties of William banana peduncle fibers

  6. Syrille Brice Tchinwoussi Youbi, Omar Harzallah, Nicodème Rodrigue Sikame Tagne, Paul William Mejouyo Huisken, Tido Tiwa Stanislas, Jean-Yves Drean, Sophie Bistac, Ebenezer Njeugna, Chenggao Li – 2023
    Effect of Raphia vinifera Fibre Size and Reinforcement Ratio on the Physical and Mechanical Properties of an Epoxy Matrix Composite: Micromechanical Modelling and Weibull Analysis

  7. Adel Elamri, Khmais Zdiri, Mohamed Hamdaoui, Omar Harzallah – 2023
    Chitosan: A biopolymer for textile processes and products

  8. Imen Landolsi, Narjes Rjiba, Mohamed Hamdaoui, Omar Harzallah, Anis, Chedly Boudokhane – 2022
    Homogeneous microwave-assisted carboxymethylation from totally chlorine free bleached olive tree pruning residues pulp

  9. Khmais Zdiri, Omar Harzallah, Adel Elamri, Nabyl Khenoussi, Jocelyne Brendlé, Hamdaoui Mohamed – 2018
    Rheological and thermal behavior of Tunisian clay reinforced recycled polypropylene composites

Tarek Naadia | Materials Science | Sustainable Engineering Leadership Award

Dr. Tarek Naadia | Materials Science | Sustainable Engineering Leadership Award

Lecturer researcher from Polytechnic School of Architecture and Urban Planning EPAU, Algeria

Dr. NAADIA Tarek is an accomplished Associate Professor in Civil Engineering with a specialization in the mechanics and rheology of self-compacting concrete. Holding a University Habilitation awarded in 2021 from USTHB, she is a respected teacher-researcher affiliated with the Polytechnic School of Architecture and Urbanism (EPAU) and a key member of the Civil Engineering Laboratory (LBE). Her work focuses on advancing sustainable construction materials, particularly optimizing the performance and flow properties of steel fiber reinforced self-compacting concrete using innovative experimental design techniques. Dr. Tarek’s research outputs have been published in high-impact journals, emphasizing both the mechanical and rheological characteristics of eco-friendly concrete formulations incorporating industrial by-products such as tuff and marble powders. She combines rigorous scientific methodology with practical applications that support the development of greener, more durable building materials. Throughout her academic career, Dr. Tarek has demonstrated a commitment to excellence in research, teaching, and collaborative innovation within the civil engineering community. Her expertise aligns well with global efforts to promote sustainability in infrastructure development and materials science. Dr. Tarek’s contributions position her as a valuable leader in sustainable engineering research, with a growing impact on both regional and international levels.

Professional Profile

Education

Dr. NAADIA Tarek completed her highest academic qualification with a University Habilitation in Civil Engineering, awarded on January 21, 2021, at the University of Science and Technology Houari Boumediene (USTHB). This qualification represents a significant academic milestone, signifying her capability to conduct independent research, supervise doctoral students, and contribute original knowledge to her field. Her educational journey has been deeply rooted in civil engineering, with a particular focus on materials science and mechanics. Although specific earlier degrees are not listed, the habilitation level indicates advanced expertise beyond the doctoral level, underscoring her extensive research experience and academic maturity. The habilitation also reflects a comprehensive understanding of both theoretical foundations and applied techniques related to concrete rheology, material optimization, and sustainable construction technology. Her educational background equips her with the tools necessary to drive innovation in civil engineering and to influence the development of sustainable materials that address modern construction challenges. The advanced training and scholarship involved in attaining the habilitation have prepared her for a leading role in academia and research, enabling her to contribute effectively to the scientific community and to mentor future engineers.

Professional Experience

Dr. NAADIA Tarek currently serves as an Associate Professor (Class A) and a Teacher-Researcher at the Polytechnic School of Architecture and Urbanism (EPAU). She is also an active member of the Civil Engineering Laboratory (LBE) at USTHB, where she engages in research on the mechanics of materials, focusing particularly on self-compacting concrete. Her professional role involves a blend of teaching, laboratory research, and project management. As a lecturer, she contributes to civil engineering curricula, imparting knowledge on construction materials, experimental techniques, and sustainability concepts. Within the laboratory, she conducts experimental research that integrates mechanical testing and rheological measurement methods to optimize concrete formulations. Dr. Tarek’s work includes the development of new procedures for measuring concrete flow behavior and the application of design of experiments (DOE) methodologies to fine-tune mix designs for performance and environmental benefits. Her position requires collaboration with fellow researchers, students, and industry stakeholders to ensure practical relevance and innovation. Over time, she has established herself as a key figure in her department, contributing to research projects and academic advancements that enhance sustainable engineering practices in Algeria and beyond.

Research Interests

Dr. NAADIA Tarek’s primary research interests lie at the intersection of civil engineering materials, rheology, and sustainability. She specializes in the study and optimization of self-compacting concrete (SCC), focusing on both its rheological (flow) properties and mechanical performance. Her work emphasizes the development of sustainable concrete formulations that incorporate industrial by-products such as marble and tuff powders, which serve as partial replacements for traditional cement or aggregates. This approach not only improves the environmental footprint of concrete but also enhances its durability and functionality. A significant aspect of her research involves applying the design of experiments (DOE) methodology to systematically optimize the composition and performance of steel fiber reinforced self-compacting concrete (SFRSCC). This method allows for efficient exploration of multiple variables and their interactions, facilitating robust improvements in concrete quality. Dr. Tarek also investigates the rheological behavior of concrete mixtures, developing new measurement procedures to better understand their flow characteristics under various conditions. Her research contributes to sustainable construction practices by promoting materials that reduce resource consumption, waste, and energy use while improving structural integrity and longevity.

Research Skills

Dr. NAADIA Tarek possesses a comprehensive skill set tailored to experimental civil engineering research, particularly in concrete materials science. She is proficient in rheological testing methods for assessing the flow behavior of self-compacting concrete, including the design and implementation of novel measurement procedures. Her expertise extends to mechanical characterization techniques for fiber-reinforced composites, enabling detailed analysis of strength, durability, and deformation properties. She employs advanced statistical tools, notably the design of experiments (DOE) approach, to optimize material formulations systematically, which enhances research efficiency and reliability. This methodological rigor allows her to manage complex variables and interactions within concrete mix designs, leading to reproducible and scalable results. Additionally, Dr. Tarek is skilled in interpreting data to improve concrete sustainability by integrating alternative materials such as marble and tuff powders. Her laboratory experience is complemented by academic teaching, where she applies her research skills to train future engineers in experimental and analytical techniques. Collectively, these competencies support her ability to innovate within sustainable engineering and to drive research that meets both academic standards and practical industry needs.

Awards and Honors

While the CV provided does not specify particular awards or honors received by Dr. NAADIA Tarek, her attainment of the University Habilitation itself represents a prestigious academic recognition. The habilitation is a significant scholarly achievement that acknowledges her capability for independent research and academic leadership. This advanced qualification is often regarded as a benchmark of excellence within many academic systems, highlighting her contributions to civil engineering research and education. Furthermore, Dr. Tarek’s publications in high-impact journals reflect peer recognition of the quality and relevance of her work. Her growing portfolio of research articles and her position as an Associate Professor at a leading institution further attest to her professional esteem and influence within her field. For future career development, formal awards for sustainable engineering or leadership in research could complement her credentials and enhance her profile internationally. Participation in academic societies, editorial boards, or conference leadership roles may also lead to additional honors, reinforcing her position as a research leader.

Conclusion

Dr. NAADIA Tarek is a promising and dedicated civil engineering researcher with a clear focus on sustainable construction materials. Her expertise in the rheology and optimization of self-compacting concrete, combined with her use of innovative experimental design methods, positions her at the forefront of sustainable materials research. Her academic qualifications, including a University Habilitation, and her role as an Associate Professor underscore her capability for independent research and leadership within academia. Although further international collaboration and formal recognition through awards could strengthen her profile, her existing contributions demonstrate significant potential for advancing sustainable engineering practices. Dr. Tarek’s work is particularly relevant to the global imperative of reducing environmental impacts in construction, supporting the development of eco-friendly materials that are both durable and efficient. With continued research productivity and expanded engagement with the international engineering community, she is well positioned to become a leading figure in sustainable engineering research and innovation.

Publications Top Notes

  • Rheological and mechanical optimization of a steel fiber reinforced self-compacting concrete using the design of experiments method
    Authors: D Gueciouer, G Youcef, N Tarek
    Journal: European Journal of Environmental and Civil Engineering, Volume 26, Issue 3, Pages 1097-1117
    Year: 2022
    Citations: 28

  • Development of a measuring procedure of rheological behavior for self compacting concrete
    Authors: T Naadia, Y Ghernouti, D Gueciouer
    Journal: Journal of Advanced Concrete Technology, Volume 18, Issue 6, Pages 328-338
    Year: 2020
    Citations: 4

  • Rheology-compactness-granularity correlations of self-compacting concretes
    Author: T Naadia
    Year: 2014
    Citations: 1

  • Optimization of Steel Fiber-Reinforced Self-Compacting Concrete with Tuff Powder
    Authors: T Naadia, D Gueciouer
    Journal: Construction and Building Materials, Volume 474, Article 140759
    Year: 2025

  • Formulation and characterization of steel fiber reinforced self-compacting concrete (SFRSCC) based on marble powder
    Authors: T Naadia, D Gueciouer, Y Ghernouti
    Journal: Selected Scientific Paper – Journal of Civil Engineering
    Year: 2025

  • Effect of the aggregates size on the rheological behaviour of the self compacting concrete
    Authors: T Naadia, F Kharchi
    Journal: International Review of Civil Engineering (IRECE), Volume 4, Issue 2, Pages 92-97
    Year: 2013


Mehdi Rafizadeh | Nanocomposite | Best Researcher Award

Prof. Mehdi Rafizadeh | Nanocomposite | Best Researcher Award

Academic Staff at Amirkabir University of Technology, Iran.

Professor Mehdi Rafizadeh is a distinguished academic in the field of Chemical Engineering, specializing in Polymer Engineering. Since 1997, he has served as a professor at Amirkabir University of Technology (AUT), Tehran, Iran. He completed his Ph.D. in Chemical Engineering (Polymer) at McGill University, Montreal, Canada, in 1997. His academic journey is marked by a commitment to advancing polymer science and engineering through both theoretical research and practical applications. Professor Rafizadeh has significantly contributed to the development of biodegradable polymers and nanocomposites, addressing environmental challenges. His work bridges the gap between academia and industry, fostering innovation and sustainable practices in polymer engineering. With over two decades of teaching and research experience, he continues to inspire and mentor the next generation of engineers and researchers.

Professional Profile

Education

Professor Mehdi Rafizadeh’s educational background reflects a strong foundation in Chemical Engineering, with a focus on polymers. He earned his Ph.D. in Chemical Engineering (Polymer) from McGill University, Montreal, Canada, in 1997. Prior to that, he completed both his M.Sc. and B.Sc. in Chemical Engineering at Amirkabir University of Technology (AUT), Tehran, Iran, in 1991 and 1989, respectively. His doctoral research at McGill University, under the guidance of leading experts, equipped him with advanced knowledge and skills in polymer science. This academic journey provided him with a comprehensive understanding of chemical engineering principles, which he has applied throughout his career to innovate and educate in the field of polymer engineering. His educational experiences have also fostered international collaborations, enriching his research and teaching methodologies.

Professional Experience

Professor Mehdi Rafizadeh has an extensive academic and research career spanning over two decades. Since 1997, he has been a faculty member at Amirkabir University of Technology (AUT), Tehran, Iran, where he currently holds the position of Professor in the Department of Polymer Engineering and Color Technology. His professional journey is characterized by a deep commitment to both teaching and research. He has supervised numerous M.Sc. theses, guiding students through complex research projects in polymer science. His research interests encompass the synthesis and characterization of biodegradable polymers, nanocomposites, and the development of sustainable materials. Professor Rafizadeh has also led various industrial research projects, collaborating with industry partners to translate academic research into practical applications. His work has contributed to advancements in material science, particularly in the development of environmentally friendly polymeric materials.

Research Interests

Professor Mehdi Rafizadeh’s research focuses on the development and characterization of biodegradable polymers and polymer nanocomposites. He is particularly interested in synthesizing polyesters such as poly(butylene succinate) and poly(butylene adipate), aiming to enhance their properties for various applications. His work involves incorporating nanofillers like hydroxyapatite and boehmite to improve the mechanical, thermal, and degradability characteristics of these polymers. Additionally, Professor Rafizadeh explores the use of electrospinning techniques to create nanofibers with tailored properties for specific applications. He also investigates the impact of processing conditions on the crystallization behavior and thermal properties of polyesters. His interdisciplinary approach combines aspects of chemical engineering, materials science, and environmental sustainability, aiming to develop advanced materials that are both high-performing and environmentally friendly. Through his research, he contributes to the advancement of sustainable materials in the polymer industry.

Conclusion

Professor Mehdi Rafizadeh stands out as a strong contender for the Best Researcher Award. His contributions to polymer engineering, supported by a robust publication record and impactful industrial research, demonstrate his commitment to advancing science and technology. Addressing areas for improvement, such as expanding global collaborations and patent development, could further elevate his already remarkable career. Overall, his expertise and accomplishments make him a deserving candidate for this prestigious recognition.

Publications Top Notes

  • Title: Characterization, Properties and Degradation of Poly(Butylene Succinate)/Sepiolite Nanocomposites Prepared via In Situ Polycondensation
    Year: 2025
    Source: Polymers for Advanced Technologies

  • Title: Synergistic effect of citric acid on hydroxyapatite nucleation on poly(butylene succinate-co-ethylene terephthalate)/nano-hydroxyapatite nanofiber for bone scaffold
    Year: 2025
    Source: Macromolecular Research

  • Title: Long-chain branched copolyesters based on butylene succinate and ethylene terephthalate: synthesis, characterization, thermal and rheological properties
    Year: 2024
    Source: Iranian Polymer Journal

  • Title: Microstructure development and mechanical performance of MWCNTs/GNPs filled SEBS with different block content
    Year: 2023
    Source: Polymer Composites

  • Title: Preparation of poly(ethylene terephthalate) copolyester with phosphorus-containing comonomer: characterization, thermal behavior, and non-isothermal crystallization kinetics
    Year: 2023
    Source: Polymer Bulletin

  • Title: Investigating the influence of long chain branching and compositional changes of aliphatic-aromatic copolyesters on their rheological properties under shear and elongational flows
    Year: 2023
    Source: Journal of Polymer Research

  • Title: Non-isothermal crystallization kinetics of polyethylene terephthalate: a study based on Tobin, Hay and Nakamura models
    Year: 2023
    Source: Iranian Polymer Journal

Hadi Hijazi | Materials Science | Best Researcher Award

Dr. Hadi Hijazi | Materials Science | Best Researcher Award

R&D engineer from CEA LETI, France

Dr. Hadi Hijazi is a postdoctoral researcher specializing in microelectronics and semiconductor nanostructures, with extensive experience in epitaxial growth and device fabrication. Based in Grenoble, France, he has developed a strong academic and research background through work at top-tier institutions such as CEA-LETI, CNRS/LTM, and Saint Petersburg State University. His research encompasses the design, modeling, and experimental development of III-V materials and nanostructures for high-performance optoelectronic devices, including visible and near-infrared LEDs. His doctoral studies focused on the epitaxial growth of GaAs nanowires via HVPE and the investigation of spin and charge transport. Dr. Hijazi possesses deep technical expertise in MOCVD, HVPE, and cleanroom operations, supported by his proficiency in a wide range of characterization tools such as XRD, SEM, AFM, PL, and Raman spectroscopy. In addition to his laboratory capabilities, he is skilled in modeling and simulation using tools like Matlab, Nextnano, and Mathematica. Multilingual and collaborative, Dr. Hijazi has a history of successful international projects, combining both theoretical insight and experimental innovation. His contributions to the field are reflected in quality publications in peer-reviewed journals, and he maintains active connections with research leaders and institutions in France and abroad. He is currently an R&D engineer at CEA LETI, contributing to hybrid bonding technologies.

Professional Profile

Education

Dr. Hadi Hijazi holds a Ph.D. in Physics of Materials from Institut Pascal at Université Clermont Auvergne, France, where he worked on the development of GaAs nanowires grown on Si substrates using hydride vapor phase epitaxy (HVPE). His research addressed charge and spin diffusion in nanowires, integrating fundamental physics with advanced material synthesis techniques. Prior to his doctoral studies, Dr. Hijazi completed a Master’s degree (M2) in Nanoelectronics and Nanotechnology from Université Grenoble Alpes, where he received training in nanoscale materials, semiconductor physics, and cleanroom-based device fabrication. He also holds a Master 1 in Fundamental Physics and Nanoscience from Université Joseph Fourier in Grenoble, which laid the foundation for his later specialization in materials and device engineering. His academic training has been interdisciplinary, with strong emphasis on physics, nanotechnology, materials science, and applied electronics. His formal education has equipped him with theoretical depth and practical skill sets, enabling his contributions to multidisciplinary research involving physical modeling, simulation, and experimental validation of micro- and nanoscale structures. These qualifications have prepared him well for complex problem-solving in research-intensive environments, particularly within the highly competitive field of semiconductor materials and microelectronics.

Professional Experience

Dr. Hadi Hijazi has accumulated a robust portfolio of research and development experience across premier academic and industrial research institutions. Since July 2023, he has been serving as an R&D Engineer at CEA LETI in Grenoble, where he works on hybrid bonding technologies, a critical area for 3D integration in microelectronics. From October 2021 to June 2023, he served as a postdoctoral researcher jointly at CEA-LETI and CNRS/LTM, contributing to the IRT Nanoelec project. During this tenure, he focused on the design and simulation of novel heterostructures using III-(As,P) materials for high-performance visible and NIR LEDs. His work included epitaxial process development (MOCVD) on 300 mm substrates and comprehensive characterization of material and device properties. Prior to this, he was a postdoctoral researcher at ITMO University and Saint Petersburg State University in Russia, focusing on growth modeling of III-V and IV-IV micro/nanostructures. Dr. Hijazi also undertook an industrial internship at CEA LETI in 2016, studying the bonding of refractory metal thin films for 3D technologies. Throughout his career, he has demonstrated the ability to integrate theory, simulation, and fabrication in practical research, aligning well with multidisciplinary goals in microelectronics and optoelectronics innovation.

Research Interests

Dr. Hadi Hijazi’s research interests center around advanced semiconductor materials and their integration into high-performance optoelectronic and microelectronic devices. He is particularly focused on the design, epitaxial growth, and characterization of III-V compound semiconductors on silicon substrates, with the goal of enabling new generations of energy-efficient light sources and integrated photonics. His doctoral work involved HVPE growth of GaAs nanowires on Si(111) substrates, aiming to understand charge and spin transport mechanisms at the nanoscale. His postdoctoral research extended to MOCVD-based fabrication of InGaAs and InP heterostructures for LED applications and included structural and electro-optical characterization. He is also interested in hybrid bonding technologies and 3D integration techniques critical to the future of chip stacking and packaging. Dr. Hijazi combines experimental efforts with simulation and modeling, employing tools like Matlab and Nextnano to optimize nanostructure design and predict growth behavior. He is deeply engaged in the physical understanding of epitaxy, surface/interface interactions, and defect formation. These interests place him at the intersection of materials physics, nanotechnology, and applied engineering, with relevance to optoelectronics, spintronics, and next-generation semiconductor device platforms.

Research Skills

Dr. Hadi Hijazi possesses a comprehensive set of research skills that span theoretical modeling, experimental techniques, and process development in nanotechnology and materials science. His expertise in vapor phase epitaxy, including both MOCVD and HVPE methods, allows him to develop high-quality III-V semiconductor nanostructures on various substrates. He has extensive cleanroom experience and is adept in device fabrication processes, material growth protocols, and post-growth characterization. He is proficient in a range of analytical tools such as XRD, AFM, SEM, Raman spectroscopy, photoluminescence (PL), and electrochemical and C-V measurements. Dr. Hijazi is also skilled in simulation and modeling, using software like Matlab, Mathematica, Nextnano, Python, and C++ to analyze material behaviors and guide experimental design. His strong command of semiconductor physics and nanostructure dynamics supports both fundamental research and practical application development. He is an effective communicator in French, English, and Arabic, and his collaborative approach to research is evident in his successful engagements with multidisciplinary teams across France and Russia. Additionally, his organizational and documentation skills are well-developed, contributing to his ability to manage complex research tasks and publish high-quality scientific articles.

Awards and Honors

While specific named awards are not listed in the available information, Dr. Hadi Hijazi’s inclusion in competitive research programs and positions at prestigious institutions such as CEA-LETI, CNRS, and ITMO University itself serves as recognition of his capabilities and achievements. His acceptance into highly selective doctoral and postdoctoral programs in France and Russia, coupled with his contributions to projects such as IRT Nanoelec, suggests a high degree of merit and recognition by the scientific community. His publications in internationally recognized journals such as Nanotechnology and Journal of Physical Chemistry C also indicate the quality and impact of his research. Furthermore, his involvement in international collaborations and multidisciplinary research teams demonstrates the professional trust placed in his expertise and reliability. His continuing employment at CEA LETI in a research and development role is itself a form of institutional endorsement, affirming his value in the innovation ecosystem of advanced microelectronics. With further dissemination of his work and engagement in academic presentations or grant-funded leadership, it is likely he will accrue formal honors and awards in the near future.

Conclusion

Dr. Hadi Hijazi is an accomplished early-career researcher with strong potential for further growth in the field of semiconductor nanotechnology and microelectronics. His academic training and international research experience have equipped him with both depth and versatility, enabling contributions to next-generation devices through innovations in epitaxial growth, material design, and device integration. His ability to bridge theoretical modeling with experimental realization is a key asset, particularly in collaborative research environments. While his current achievements position him as a valuable team member and emerging expert, more visible research leadership, independent project development, and broader dissemination of research outputs could further strengthen his candidacy for major research awards. At present, Dr. Hijazi would be an ideal candidate for recognitions aimed at emerging scientists or rising researchers, and with continued productivity and impact, he is well-poised to become a leading figure in semiconductor device research. His technical expertise, commitment to quality, and collaborative ethos make him a noteworthy contributor to academic and industrial R&D. As he continues his career at CEA LETI and beyond, further contributions in both applied technologies and fundamental science can be expected.

Publications Top Notes

  1. Fine Pitch Superconducting Interconnects Obtained with Nb–Nb Direct Bonding
  • Authors: Candice M. Thomas, Pablo Renaud, Meriem Guergour, Edouard Deschaseaux, Christophe Dubarry, Jennifer Guillaume, Elisa Vermande, Alain Campo, Frank Fournel, Hadi Hijazi, Anne-Marie Papon, Catherine Pellissier, Jean Charbonnier

  • Publication Year: 2025

2. Is NaOH Beneficial to Low Temperature Hybrid Bonding Integration?

  • Authors: Hadi Hijazi¹, Paul Noël¹, Samuel Tardif², Karine Abadie¹, Christophe Morales¹, Frank Fournel¹

  • Publication Date: October 30, 2024

 

Zhiyong Dai | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Zhiyong Dai | Materials Science | Best Researcher Award

Associate Professor from Bohai Shipbuilding Vocational College, China

Zhiyong Dai is currently serving as an Associate Professor at Bohai Shipbuilding Vocational College, where he has made significant contributions in the field of materials science and engineering, particularly in welding and high-temperature resistant alloys. With a solid academic background culminating in a Doctorate in Materials Processing Engineering from Shenyang University of Technology (2024), he has combined theoretical knowledge with practical teaching and research experience. Over his academic and professional journey, Dr. Dai has been dedicated to both educational excellence and scientific inquiry. His teaching spans core courses in metallurgy, welding technology, and material properties. His research has produced impactful findings on the mechanical behavior and strengthening mechanisms of Inconel 625 and other advanced nickel-based alloys under extreme conditions. He has published in several high-impact journals, including Materials Science and Engineering A and Journal of Materials Research and Technology. His commitment to academic mentorship is evident from his active involvement in curriculum development and participation in student innovation projects. With a combination of applied industrial focus and strong academic contributions, Dr. Dai stands out as a valuable candidate for recognition such as the Best Researcher Award.

Professional Profile

Education

Zhiyong Dai has built a comprehensive and specialized educational foundation in the field of materials science and engineering. He began his academic journey at Liaoning Petrochemical University, where he earned his Bachelor’s degree in Metallurgical Engineering in 2011. He continued at the same institution to pursue a Master’s degree in Materials Science, which he completed in 2014. His growing interest in the advanced mechanical and physical properties of materials led him to enroll in a Ph.D. program in Materials Processing Engineering at Shenyang University of Technology, where he completed his doctorate in 2024. His doctoral research focused on the hot deformation behavior, strengthening mechanisms, and creep deformation of nickel-based alloys—particularly Inconel 625—under high-temperature conditions. This advanced academic training has equipped him with a deep understanding of metallurgical principles, material failure analysis, and solidification theory. The progression from undergraduate to doctoral studies shows a clear and consistent focus on developing both the theoretical and applied aspects of materials engineering, particularly in welding and high-temperature applications. Throughout his educational journey, Dr. Dai has also completed various professional development programs in higher education and has earned a certification as a university-level teacher from the Liaoning Provincial Department of Education.

Professional Experience

Dr. Zhiyong Dai has accumulated nearly a decade of teaching and research experience at Bohai Shipbuilding Vocational College, where he began his academic career in January 2015. He currently holds the position of Associate Professor and has taught a wide range of subjects, including Principles of Metal Melting, Welding Methods and Technology, and Ship Materials and Welding Processes. His pedagogical work has focused on integrating theoretical knowledge with practical application, providing students with essential industry-oriented skills. Beyond classroom instruction, he has played a pivotal role in guiding students through national and regional academic competitions, often earning accolades for both students and himself as a supervising instructor. His professional growth is marked by steady career progression, moving from Assistant Lecturer in 2015 to Lecturer in 2017, and being promoted to Associate Professor in 2024. Additionally, Dr. Dai has actively participated in academic research and curriculum development, contributing to several internal institutional projects focused on vocational training, modern apprenticeship models, and school-enterprise collaboration. This professional trajectory reflects a dedication to both teaching excellence and applied research, reinforcing his impact on vocational education and positioning him as a candidate deserving of national academic recognition.

Research Interests

Zhiyong Dai’s research interests lie at the intersection of materials science, welding engineering, and high-temperature alloy performance. He is particularly focused on the development and performance evaluation of nickel-based and nitrogen-containing alloys under extreme thermal and mechanical conditions. His recent studies have explored the creep deformation behavior, intermediate temperature brittleness, and tensile properties of Inconel 625 deposited metal and similar advanced materials. His work contributes valuable insights into the mechanisms that govern strength and failure in high-performance alloys used in aerospace, marine, and energy industries. Additionally, Dr. Dai is interested in improving welding materials and processes, especially those involving flux-cored wires and laser positioning devices. He also engages in educational research related to vocational training models and the development of innovation-driven talent in technical institutions. His combined focus on fundamental material behavior and applied welding techniques bridges the gap between theoretical research and industrial application. With a commitment to both scientific advancement and vocational education, his research is aligned with national priorities for high-end manufacturing and skilled labor development, further substantiating his suitability for prestigious research awards.

Research Skills

Dr. Zhiyong Dai possesses a diverse set of research skills that enable him to conduct comprehensive investigations into material behavior and welding technologies. He is adept in high-temperature mechanical testing, microstructural characterization, and metallurgical analysis, including creep testing and tensile strength evaluation of nickel-based alloys. His research utilizes both traditional metallographic methods and advanced analytical techniques to study deformation mechanisms, phase transformation, and grain structure evolution under various processing conditions. He also has practical experience in welding simulation, laser alignment tools, and arc welding systems, contributing to the development of innovative welding materials and methodologies. In addition to his laboratory skills, Dr. Dai is proficient in academic writing and technical reporting, with several Q1 and Q2 journal publications to his credit. He has also led or participated in funded research projects focused on modern apprenticeship systems and industry-academia collaboration. His ability to integrate experimental research with educational innovation showcases his multidisciplinary skill set. Furthermore, he is competent in the use of English for academic purposes, and has passed CET-4, demonstrating his capability to engage in international research communication.

Awards and Honors

Dr. Zhiyong Dai has received multiple recognitions throughout his professional career for both academic and instructional excellence. His awards span individual achievements, team leadership in competitions, and excellence in innovation. Notable honors include a First Prize in the Huludao City Natural Science Academic Achievement Awards in 2017, and a Third Prize for Technical Innovation in Laser Positioning Device Development in 2023. As a mentor, he earned the Instructor Award at the National Nonferrous Metal Vocational College Skills Competition (Aluminum Welding, 2017) and has guided students to success in events such as the “Challenge Cup” Liaoning Province Undergraduate Academic Science and Technology Competition. Additionally, he has received awards for educational guidance and technical paper writing, including third-place honors in faculty skills and student mental health initiatives. His consistent recognition over the years underscores his impact as an educator and researcher. His patent contributions on novel welding alloys and preparation methods also demonstrate his commitment to technological advancement. These achievements reflect his ability to balance academic rigor with applied technical expertise, making him a distinguished candidate for the Best Researcher Award.

Conclusion

In conclusion, Dr. Zhiyong Dai exemplifies the qualities of an outstanding researcher and educator in the field of materials science and engineering. His academic journey reflects a steady progression through increasingly specialized fields, culminating in high-impact research on high-temperature alloy performance and innovative welding technologies. With a strong portfolio of journal publications, patents, and successful research projects, he has demonstrated both depth and breadth in his scholarly contributions. Moreover, his extensive teaching experience and active involvement in student mentorship and academic competitions highlight his dedication to educational excellence. Dr. Dai’s work bridges the critical gap between theoretical material behavior and real-world industrial applications, aligning well with national goals for technological advancement and skilled workforce development. His recognition at local and national levels further attests to his professional competence and academic influence. Considering his contributions to scientific research, education, and innovation, Dr. Dai stands out as a compelling nominee for the Best Researcher Award. He has not only advanced the frontiers of his field but has also inspired the next generation of technical experts, making him a worthy recipient of this honor.

Publication Top Notes

  1. Study on creep properties and deformation mechanisms of novel nickel-based deposited metal
    Authors: Zhiyong Dai, Rongchun Wan, Yunhai Su, Yingdi Wang
    Journal: Advanced Engineering Materials
    Date: 2025-04-22
    DOI: 10.1002/adem.202500182
    Type: Journal Article

  2. Study on the tensile properties and deformation mechanism of high-temperature resistant nitrogen-containing nickel-based welding material deposited metal
    Authors: Zhiyong Dai, Yunhai Su, Yingdi Wang, Taisen Yang, Xuewei Liang
    Journal: Materials Science and Engineering: A
    Date: 2024-06
    DOI: 10.1016/j.msea.2024.146671
    Type: Journal Article

  3. Study of corrosion behavior of Inconel 625 cladding metal in KCl–MgCl₂ molten salt under isothermal and thermal cycling conditions
    Authors: Taisen Yang, Guiqing Zhang, Zhiyong Dai, Xuewei Liang, Yingdi Wang, Yunhai Su
    Journal: Journal of Materials Science
    Date: 2023-08
    DOI: 10.1007/s10853-023-08823-7
    Type: Journal Article