Ahlem Abidi | Quantum Physics | Excellence in Innovation Award

Assist. Prof. Dr. Ahlem Abidi | Physics and Astronomy | Excellence in Innovation Award

Higher Institute of Technological Studies of Jendouba | Tunisia

Assist. Prof. Dr. Ahlem Abidi is an emerging scholar in the field of quantum physics, quantum information, and mathematical physics, known for her dedication to advancing theoretical frameworks and contributing to interdisciplinary scientific knowledge. She has combined strong academic training with meaningful research contributions, reflected in her growing publication record, editorial responsibilities, and teaching experience. Her academic journey began at Tunis El Manar University, where she pursued her interest in quantum mechanics and continued to build expertise through graduate and doctoral studies. Over the years, she has gained recognition for her commitment to high-quality research and for fostering academic collaborations across institutions. She has published 13 research articles and conference papers in reputed platforms and has contributed to the global dissemination of knowledge by serving as a reviewer and editor in the American Journal of Physics and Applications. Dr. Abidi’s academic and professional path is marked by her ability to balance teaching, research, and community contributions. Her recognition through international awards demonstrates her rising influence in the field of physics. Currently, as an Assistant Professor at the Higher Institute of Technological Studies of Jendouba, she continues to inspire students, collaborate with colleagues, and advance front-line research in physics.

Professional Profile

Education

Assist. Prof. Dr. Ahlem Abidi has pursued a strong academic foundation in physics, beginning with her undergraduate and postgraduate studies at Tunis El Manar University, Tunisia. She obtained her Master’s degree in Quantum Physics, where her studies focused on advanced aspects of quantum mechanics and related theoretical frameworks. Her academic dedication led her to continue her research in collaboration with the Research Unit of Nuclear and High Energy Physics under the supervision of Prof. Adel Trabelsi. She joined the Faculty of Sciences of Tunis, where she deepened her engagement with interdisciplinary research in collaboration with the University of Tunis and the National School of Engineers of Tunis. Her hard work culminated in earning her Ph.D. in Physics from the National School of Engineers of Tunis. The doctoral program strengthened her expertise in theoretical quantum physics, quantum information, and mathematical models that contribute to global research advancements. Throughout her educational journey, Dr. Abidi cultivated skills in critical analysis, research methodologies, and scientific publishing. Her academic progression demonstrates a consistent focus on quantum physics and related areas, with an emphasis on connecting theoretical principles to practical research. This strong academic base continues to support her active research career.

Professional Experience

Dr. Ahlem Abidi has built a diverse professional profile, combining teaching, research, and editorial responsibilities. She began her academic career as a temporary assistant at the University of Jendouba, specifically at the Higher Institute of Biotechnology of Beja. During this period, she gained valuable teaching and mentoring experience, guiding students in physics and related subjects while integrating her research insights into academic instruction. when she joined the American Journal of Physics and Applications as a reviewer. Recognizing her expertise, the journal later appointed her as an Editor, a role she continues to hold, contributing to the peer review process and shaping scientific publications. she advanced in her academic career by being appointed as an Assistant Professor at the Higher Institute of Technological Studies of Jendouba, where she currently balances teaching responsibilities with research in quantum physics and quantum technologies. Her professional journey reflects her dedication to knowledge creation, teaching excellence, and international scientific engagement. By combining editorial leadership with teaching and research, Dr. Abidi demonstrates a well-rounded academic and professional trajectory that continues to grow.

Research Interests

Dr. Ahlem Abidi’s research interests lie at the intersection of theoretical quantum physics, quantum information, and mathematical physics, where she focuses on exploring the fundamental principles of quantum mechanics and their application in modern science. She has consistently investigated how mathematical models can be applied to understand quantum systems, building on her doctoral research and subsequent projects. Her work extends to quantum information theory, where she explores ways of using quantum principles for computational and communication advancements. This area of research holds significant potential for future technological innovations, and her contributions aim to address open questions in the field. Beyond her specialization, she is also interested in interdisciplinary approaches, connecting physics with engineering and applied sciences to broaden the impact of quantum research. Her participation in conferences and research publications has allowed her to disseminate her findings to the wider academic community, contributing to collective progress. Through collaborations with institutions in Tunisia and beyond, Dr. Abidi has demonstrated her commitment to advancing international knowledge exchange. Her long-term vision includes developing innovative quantum models, mentoring students in advanced research, and fostering stronger collaborations with global research centers.

Research Skills

Throughout her academic and professional journey, Dr. Ahlem Abidi has cultivated a range of research and technical skills that allow her to contribute meaningfully to physics and interdisciplinary science. Her expertise includes theoretical modeling and mathematical analysis of quantum systems, a skill honed through her Ph.D. research and ongoing studies. She has significant experience in preparing and publishing research articles and conference papers, ensuring her work meets international academic standards. As a reviewer and editor, she has developed critical evaluation skills for assessing scientific quality, originality, and methodological rigor. Her teaching roles have strengthened her ability to present complex quantum concepts clearly and guide students through research methodologies. Beyond theoretical skills, she is also experienced in collaborating across institutions and managing research projects effectively. Her familiarity with academic publishing systems, conference presentations, and peer review adds to her well-rounded research capabilities. Additionally, Dr. Abidi has demonstrated proficiency in academic writing, critical thinking, problem-solving, and international collaboration, which are essential for impactful research. These skills enable her not only to advance her own work but also to contribute to the broader academic and scientific community through mentorship, publication review, and collaborative projects.

Awards and Honors

Dr. Ahlem Abidi has received recognition for her research excellence through prestigious awards and honors that highlight her contributions to physics and her growing international reputation. she was honored with the Women Researcher Award at the 6th Edition of International Research Awards on Quantum Physics and Quantum Technologies, recognizing her outstanding achievements and contributions to the advancement of quantum studies. This award demonstrates her ability to compete at the international level and her role as an inspiring figure for women in science. In addition to formal awards, her appointment as an Editor of the American Journal of Physics and Applications is itself a professional honor, reflecting her academic credibility and leadership in the field of publishing. She has also served as a reviewer for the same journal, a recognition of her expertise and reliability in assessing scientific manuscripts. Her publication record, including 13 articles and conference papers, further underscores her accomplishments and recognition within the academic community. These awards and professional distinctions not only validate her past achievements but also position her as a researcher with strong potential for future contributions to the global scientific community.

Publication Top Note

  • A direct synthetic route to allyl sulfides from cyclic Morita–Baylis–Hillman alcohols — 2017 — 3 citations

Conclusion

In conclusion, Dr. Ahlem Abidi stands out as a highly promising researcher in quantum physics, quantum information, and mathematical physics, with a well-rounded academic and professional trajectory. Her educational achievements, including a Ph.D. from the National School of Engineers of Tunis, have provided a strong foundation for her impactful research contributions. Her publication record, editorial roles, and recognition through international awards demonstrate her influence in advancing physics knowledge and her ability to contribute to global scientific discourse. Currently serving as an Assistant Professor at the Higher Institute of Technological Studies of Jendouba, she combines teaching, mentoring, and research, inspiring the next generation of scientists. She has also contributed as a reviewer and editor, ensuring academic quality in international journals. Looking ahead, Dr. Abidi has the potential to expand her research by engaging in more international collaborations, keynote talks, and Q1 journal publications, further strengthening her visibility and leadership in the global research community. Her dedication to science, teaching, and community advancement makes her a strong candidate for recognition as a leading researcher. With her current trajectory, she is well-positioned to contribute groundbreaking work and leadership in the field of quantum physics.

Igor Strakovsky | Physics and Astronomy | Best Innovation Award

Prof. Igor Strakovsky | Physics and Astronomy | Best Innovation Award

Researcher from The George Washington University, United States

Igor I. Strakovsky is a distinguished physicist with over five decades of contribution to nuclear and particle physics. Currently a Research Professor at The George Washington University, his academic and professional journey spans multiple continents, institutions, and high-impact collaborations. He has established himself as a leading figure in hadron spectroscopy, pion-nucleon scattering, partial-wave analysis, and the short-range structure of nuclei. Throughout his career, he has held prestigious appointments and collaborated with prominent research centers such as Jefferson Lab, MAMI (Germany), J-PARC (Japan), and TRIUMF (Canada). His work has been instrumental in shaping global research programs, particularly those involving the spectroscopy of hyperons and baryons. Dr. Strakovsky’s influence extends beyond research; he has served on editorial boards, peer-reviewed international grants, organized over 30 major scientific workshops, and mentored generations of physicists. His robust record of securing competitive research funding from agencies like the U.S. DOE, NSF, JICA, NATO, and internal university grants speaks to the impact and credibility of his work. In addition to publishing widely, he plays an integral role in several global physics collaborations. With a rare blend of research, mentorship, and leadership, Dr. Strakovsky exemplifies the ideal candidate for recognition through a Best Researcher Award.

Professional Profile

Education

Dr. Igor I. Strakovsky’s academic foundation in physics is both extensive and prestigious, rooted in Russia’s top scientific institutions. He earned his Ph.D. in Physics in 1984 from the Petersburg Nuclear Physics Institute, NRC Kurchatov Institute (formerly Leningrad Nuclear Physics Institute), under the supervision of Professor Sergei Kruglov. His doctoral research focused on hadronic and nuclear interactions, laying the groundwork for a lifelong contribution to experimental and theoretical nuclear physics. Prior to that, he obtained a Master of Science in Physics in 1969 from the Peter the Great St. Petersburg State Polytechnic University, where he was mentored by Doctor Vladimir Koptev. Dr. Strakovsky’s formal academic journey began even earlier at the same institution, where he earned his B.A. in Physics in 1965. The combination of early exposure to rigorous scientific training and mentorship from renowned physicists helped shape his research trajectory. His education emphasized experimental techniques, theoretical models, and collaboration with leading nuclear research facilities in the former USSR. This solid academic background became the foundation for his contributions to global nuclear physics, including his development of partial-wave analysis tools and pioneering studies in baryon spectroscopy. His educational path represents a deep and lasting commitment to scientific excellence.

Professional Experience

Dr. Strakovsky has built an extraordinary career marked by sustained academic appointments, international collaboration, and scientific leadership. He has served as Research Professor at The George Washington University (GWU) since 2009, after holding prior roles there as Associate Research Professor, Senior Research Scientist, and Assistant Research Professor since 1997. Before moving to the United States, he worked for over two decades at the Petersburg Nuclear Physics Institute (PNPI), Russia, advancing from Assistant Research Scientist to Senior Research Scientist. His work at PNPI laid the foundation for international recognition in nuclear and hadronic physics. Between 1994 and 1997, he served as Research Associate at Virginia Tech, and since then, he has been consistently involved with world-class research facilities, including Jefferson Lab (USA), MAX-lab (Sweden), and MAMI (Germany). He has also held visiting appointments at Ruhr University Bochum (Germany), TRIUMF (Canada), and J-PARC (Japan), among others. In addition, he has consulted for industry, including General Electric and Directed Technologies Inc. His experience extends to organizing global workshops, serving on advisory committees, and leading research collaborations across Europe, North America, and Asia. This extensive professional portfolio demonstrates both his scientific credibility and his capacity to lead major international research initiatives.

Research Interests

Dr. Igor I. Strakovsky’s research focuses on experimental and theoretical nuclear physics, with special emphasis on hadron spectroscopy, baryon resonances, partial-wave analyses (PWA), and the short-range structure of nuclei. He is recognized for pioneering work in pion-nucleon and kaon-nucleon interactions, with applications in baryonic matter and QCD-related studies. His involvement in global collaborations has positioned him at the forefront of hyperon spectroscopy and the development of neutral kaon beams. As co-spokesperson on multiple major experiments at Jefferson Lab and MAMI, he has contributed significantly to the field’s understanding of electromagnetic and hadronic scattering processes. He is also active in the refinement of PWA techniques, supporting model-independent approaches to baryon resonance interpretation. In recent years, Dr. Strakovsky has expanded his scope to include work with the Electron-Ion Collider (EIC) and rare baryonic states using high-intensity photon sources. His leadership in multi-institutional projects has not only advanced particle physics but also shaped national research strategies. By bridging experimental data with theoretical models, his work has had a lasting impact on how physicists interpret scattering experiments and nuclear structures. His research interests reflect a rare combination of deep technical knowledge and interdisciplinary application.

Research Skills

Dr. Strakovsky brings a comprehensive set of research skills that span theoretical analysis, experimental design, data acquisition, and collaborative project leadership. His core technical competencies include Partial-Wave Analysis (PWA), hadronic interaction modeling, and advanced data interpretation from high-energy physics experiments. He is proficient in managing multi-detector setups and developing computational tools for nuclear reaction studies. His experience with facilities such as Jefferson Lab, MAMI, MAX-lab, and J-PARC has equipped him with in-depth knowledge of accelerator physics and spectroscopy techniques. Additionally, he has played central roles in experiment coordination, grant writing, and collaborative database management—notably as Chair of the Database Working Group for the Baryon Resonance Analysis Group (BRAG). As a prolific reviewer and editor, he has honed critical analytical skills to assess and validate cutting-edge research. His roles as run coordinator, experiment spokesperson, and conference organizer further demonstrate his capacity to lead technical teams and navigate complex logistical challenges. With decades of experience bridging experimental and phenomenological research, Dr. Strakovsky is also adept at strategic planning, policy advising, and inter-institutional collaboration. His research skills are not only grounded in physics but are also enriched by project management, communication, and mentorship expertise that elevate the global impact of his work.

Awards and Honors

Dr. Igor I. Strakovsky has received numerous prestigious awards and honors that reflect his profound impact on nuclear physics and the broader scientific community. He was recognized with the Society of Physics Students (SPS) Grandfatherly Award at GWU in 2011, highlighting his mentoring excellence. He was a Regional Winner and national finalist for the Inspire Integrity Awards (2008), the only national student-nominated faculty award in the U.S., underscoring his ethical and academic leadership. Earlier in his career, he was a First Prize Winner at the 1997 Research Competition of the Joint Institute for Nuclear Research (JINR), Dubna, Russia. He has also won multiple research competitions at the Petersburg Nuclear Physics Institute, in years including 1995, 1989, 1988, 1985, and as early as 1978, a testament to his enduring research quality. Additionally, he received a Certificate of Achievement from the Academy of Sciences of Russia for Excellence in Research during their 250th Anniversary. These accolades are supplemented by his editorial roles in high-impact journals and his membership in distinguished scientific societies. Collectively, these honors underscore his role as an academic leader, global collaborator, and inspirational mentor within the international physics community.

Conclusion

Dr. Igor I. Strakovsky stands as a paragon of excellence in nuclear and particle physics research. His academic journey, rooted in elite Russian institutions and extended through decades of international collaboration, showcases a rare blend of intellectual depth and cross-cultural scientific leadership. With a research career that spans over fifty years, he has made foundational contributions to hadron spectroscopy, nuclear scattering, and baryon resonance analysis. His unmatched involvement in experimental design, grant acquisition, scientific publishing, and conference organization reflects a deep commitment to advancing both theoretical knowledge and practical research infrastructure. Furthermore, his ability to mentor students, collaborate globally, and bridge the gap between data and theory places him among the most influential figures in his field. Through leadership in large-scale projects, editorial contributions, and strategic advising, he has not only shaped physics research directions but also fostered the next generation of scientists. Dr. Strakovsky’s record of excellence across education, research, and community service clearly justifies recognition through a Best Researcher Award. He exemplifies the highest standards of academic integrity, scholarly achievement, and international cooperation. His contributions continue to inspire and elevate the global scientific enterprise.

Publications Top Notes

  1. CP Violation Problem
    🔹 Journal: Brazilian Journal of Physics

  2. First Measurement of Near-Threshold and Subthreshold J/ψ Photoproduction off Nuclei
    🔹 Journal: Physical Review Letters

  3. Universal Mass Equation for Equal-Quantum Excited-States Sets I
    🔹 Journal: European Physical Journal A (Open Access)

  4. Measurement of Spin-Density Matrix Elements in Δ⁺⁺(1232) Photoproduction
    🔹 Journal: Physics Letters B

  5. Design of the ECCE Detector for the Electron Ion Collider
    🔹 Journal: Nuclear Instruments and Methods in Physics Research Section A
    🔹 Citations: 2

  6. Dihadron Azimuthal Correlations in Deep-Inelastic Scattering off Nuclear Targets
    🔹 Journal: Physical Review C

  7. Measurement of the Nucleon Spin Structure Functions for 0.01<Q²<1 GeV² Using CLAS
    🔹 Journal: Physical Review C
    🔹 Citations: 1

  8. Photoproduction of the Σ⁺ Hyperon Using Linearly Polarized Photons with CLAS
    🔹 Journal: Physical Review C

  9. History of N(1680)
    🔹 Journal: Acta Physica Polonica B
    🔹 Citations: 2

  10. Puzzle for the Vector Meson Threshold Photoproduction
    🔹 Type: Conference Paper

 

 

Majhar Ali | Physics and Astronomy | Best Researcher Award

Dr. Majhar Ali | Physics and Astronomy | Best Researcher Award

Assistant Professor from Jamia Millia Islamia, India

Dr. Majhar Ali is an accomplished Assistant Professor in the Department of Physics at Jamia Millia Islamia, New Delhi, India. With over 17 years of academic and research experience, he has significantly contributed to the fields of nuclear and particle physics, celestial mechanics, and the application of statistical models in high-energy collisions. Dr. Ali’s research expertise spans quark-hadron phase transitions, particle production analysis at ultra-relativistic energies, and the restricted three-body problem under various perturbations. His prolific academic journey includes publishing numerous articles in reputed international journals, participating in prestigious national and international conferences, and contributing to academic administration. Dr. Ali’s recent works on mass variation, relativistic effects, and modified potentials in the restricted three-body problem highlight his dynamic engagement with evolving scientific challenges. Apart from his research, he has developed strong teaching expertise across key physics subjects, including nuclear physics, modern physics, classical dynamics, and nanoscience. His ability to combine theoretical frameworks with practical applications marks him as a significant contributor to his discipline. Dr. Ali’s dedication to his students, administrative responsibilities, and continuous participation in scientific seminars and workshops reflect his commitment to both academic excellence and community development.

Professional Profile

Education

Dr. Majhar Ali has pursued a robust academic path, beginning with a Bachelor of Science (Honors) degree in Physics from Veer Kunwar Singh University, Arrah, India, in 1997. He continued his higher studies at Patna University, where he earned a Master of Science degree in Physics in 1999. His interest in advanced particle physics and statistical mechanics led him to pursue a doctoral degree at Jamia Millia Islamia, New Delhi, where he completed his Ph.D. in Physics in 2010. His doctoral research was focused on “Nucleus-Nucleus Collisions at High and Intermediate Energy: Particle Production, Collective Flow, and De-confinement Phenomenon,” which provided him with a deep understanding of high-energy nuclear collisions and statistical particle production models. His educational background is firmly grounded in both theoretical and experimental physics, which has significantly contributed to his versatile research capabilities. Throughout his academic journey, Dr. Ali has consistently demonstrated a passion for learning and a commitment to expanding his expertise in modern physics, which has continued to guide his teaching and research work in the years that followed.

Professional Experience

Dr. Majhar Ali has amassed extensive professional experience, beginning his academic career as a Senior Research Fellow under the University Grants Commission from 2008 to 2010. He subsequently served as an Assistant Professor in the Department of Physics at Kalindi College, University of Delhi, from 2010 to 2023, where he developed a reputation for academic excellence and mentorship. In 2024, Dr. Ali joined Jamia Millia Islamia as an Assistant Professor, where he continues to teach and lead research initiatives. His teaching portfolio spans more than 17 years, covering core and advanced physics subjects, including nuclear and particle physics, nanoscience and technology, classical dynamics, and statistical mechanics. Additionally, Dr. Ali has contributed significantly to the academic administration of Kalindi College, serving in multiple key roles, such as Deputy Coordinator for the Central Evaluation Center and Convenor of Remedial and Coaching Classes. His administrative responsibilities extended to critical committees focusing on student progress, internships, and anti-ragging policies. Dr. Ali’s professional journey is a blend of dedicated teaching, influential research, and active administrative leadership, demonstrating his commitment to shaping the academic environment and advancing the frontiers of physics.

Research Interests

Dr. Majhar Ali’s research interests encompass a broad range of advanced topics within physics, with particular focus on nuclear and particle physics, celestial mechanics, and statistical methods applied to high-energy collisions. His early work centered on the quark-hadron phase transition models, exploring the behavior of matter under extreme conditions using hadronic resonance gas models. Dr. Ali has also extensively investigated particle production mechanisms across a wide energy spectrum, from intermediate to ultra-relativistic energies, contributing valuable insights to the study of quark-gluon plasma formation. In recent years, his research has pivoted towards celestial mechanics, focusing on the dynamics of the perturbed restricted three-body problem (CR3BP), incorporating relativistic effects, mass variations, and modifications to classical potentials. This interdisciplinary approach bridges nuclear physics and astrophysical dynamics, underscoring his ability to tackle complex, multi-domain scientific challenges. His recent studies also delve into the effects of quantum corrections and variable mass systems in gravitational interactions. Dr. Ali’s research is characterized by the innovative application of mathematical models to solve real-world astrophysical and nuclear physics problems, positioning him as a researcher who contributes to both theoretical advancements and practical understanding within the field of physics.

Research Skills

Dr. Majhar Ali possesses an extensive set of research skills that span both theoretical and applied physics. His proficiency in developing and applying advanced statistical models has been instrumental in analyzing particle production across intermediate to ultra-relativistic energies. He is skilled in using the Hadronic Resonance Gas model to investigate quark-hadron phase transitions, providing valuable contributions to nuclear physics. In celestial mechanics, Dr. Ali demonstrates expertise in modeling the perturbed restricted three-body problem, incorporating relativistic corrections, mass variations, and modified gravitational potentials. He is adept at applying mathematical physics techniques to solve complex dynamical systems and has a strong command of analytical problem-solving in both classical and quantum domains. His research skills also include data interpretation from high-energy physics experiments, critical evaluation of theoretical models, and computational physics methods. Dr. Ali’s multi-disciplinary approach enables him to address a wide array of scientific questions, linking particle physics with astrophysical dynamics. Additionally, his teaching experience across diverse physics subjects has honed his ability to translate complex theoretical concepts into accessible knowledge, benefiting both his research collaborators and his students.

Awards and Honors

Dr. Majhar Ali’s academic journey is decorated with recognitions that reflect his dedication to scientific research and academic excellence. During his early research career, he was awarded the prestigious Senior Research Fellowship by the University Grants Commission, Ministry of HRD, Government of India, from 2008 to 2010, which supported his doctoral studies in nuclear and particle physics. His research presentation on the thermal model and rapidity spectra of hadrons earned him the Third Prize at the Natural Sciences Info-Fest 2007 organized by Jamia Millia Islamia, further recognizing his potential as a promising physicist. Dr. Ali has presented his research at several national and international conferences, including the Quark Matter 2008 Symposium and the DAE-BRNS High Energy Physics Symposium, where his work on multiple fireball formation and proton-antiproton flow was well received. Beyond his research accolades, Dr. Ali has actively contributed to academic seminars, workshops, and webinars, consistently participating in initiatives that foster academic growth and interdisciplinary learning. His awards and recognitions not only highlight his scientific contributions but also his role as a dedicated academic committed to advancing knowledge and nurturing the next generation of physicists.

Conclusion

Dr. Majhar Ali exemplifies the qualities of an outstanding researcher and educator, with a distinguished career that integrates rigorous research, effective teaching, and committed academic leadership. His work spans significant areas in nuclear and particle physics, particularly the study of high-energy collisions and the dynamics of celestial bodies under complex perturbations. His contributions to the understanding of quark-hadron transitions and particle flow dynamics have enriched the scientific community’s knowledge of fundamental physics. Dr. Ali’s professional journey is marked by his dedication to continuous learning, interdisciplinary research, and student mentorship. His consistent participation in conferences, seminars, and academic workshops illustrates his passion for academic engagement and scientific collaboration. Dr. Ali’s ability to balance teaching responsibilities with an active research agenda, along with his substantial administrative experience, further underscores his holistic approach to academia. While opportunities for expanding his international collaborations and research supervision remain areas for potential growth, his current accomplishments and trajectory position him as a valuable contributor to the global physics community. Dr. Majhar Ali is undoubtedly a strong and deserving candidate for recognition under the Best Researcher Award.

Publications Top Notes

1. To Study the Relativistic Effect in the Perturbed Circular Restricted Three-Body Problem

  • Authors: M. Ali, Abdullah, S. Aneja, S. N. Prasad

  • Journal: Modern Physics Letters A, 40(04), 2550027

  • Year: 2025

  • DOI: 10.1142/S0217732325500270

2. Effects of Mass Variation with Loglogistic Distribution in the Perturbed Interacting CR3BP with Heterogeneous Primary and Modified Newtonian Potential of Secondary

3. Analysis of Halo Orbits in the Elliptical R3BP with Mass Variation

  • Authors: M. Ali, et al.

  • Journal: International Journal of Applied Mathematics (Accepted, 9 August 2024)

  • Year: 2024

4. Effects of Modified Potential and Quantum Correction in the Generalized Perturbed Interacting CR3BP with Variable Mass Newtonian Potential of Secondary

  • Authors: M. Ali, et al.

  • Journal: Solar System Research (Accepted, 3 August 2024)

  • Year: 2024

5. Strangeness Production – A Possible Signal of Quark Gluon Plasma Formation

  • Authors: M. Ali

  • Journal: International Journal of Engineering & Scientific Research, 6(3)

  • Year: 2018

6. Net Proton and Charged Meson Flow in Relativistic Heavy Ion Collisions at 200 GeV/A

  • Authors: M. Ali

  • Journal: International Research Journal of Natural and Applied Science, 5(1)

  • Year: 2018

7. Rapidity Distribution of Particles Produced in Ultra-relativistic Nucleus-Nucleus Collisions: A Possible Sequential Freeze-out Scenario

  • Authors: M. Ali

  • Journal: International Journal of Advance Research, 2(3)

  • Year: 2014

8. Longitudinal Hadronic Flow at RHIC in Extended Statistical Thermal Model and Resonance Decay Effects

  • Authors: M. Ali

  • Journal: Acta Physica Polonica B, 41(7)

  • Year: 2010

9. Pion Production and Collective Flow Effects in Intermediate Energy Nucleus-Nucleus Collisions

  • Authors: M. Ali

  • Journal: International Journal of Modern Physics, 21(7)

  • Year: 2006

10. Net Proton Flow and Nuclear Transparency Effects at RHIC: Multi-Fireball Model Approach

  • Authors: M. Ali

  • Repository: arXiv:0901.1376

  • Year: 2009

 

Yousef Abou-Ali | Physics and Astronomy | Best Researcher Award

Assoc. Prof. Dr. Yousef Abou-Ali | Physics and Astronomy | Best Researcher Award

Associate Professor Dr from Damascus University, Syria

Yousef Abou-Ali is a distinguished researcher and academic with a strong foundation in materials science and engineering. His work primarily focuses on the development and application of advanced materials in various sectors, including energy storage, catalysis, and nanotechnology. With an academic background that blends both theoretical and practical knowledge, he has gained significant experience in materials characterization and synthesis. His academic journey has enabled him to collaborate with various research groups and contribute to the scientific community through his innovative research projects. Yousef is committed to pushing the boundaries of science, exploring new materials that can be used to solve some of the world’s most pressing problems, including energy efficiency and sustainability. His research is widely recognized, and he continues to actively contribute to the field through publications and collaborations with other experts. Yousef Abou-Ali’s career is a testament to the power of interdisciplinary research and its potential to address global challenges through innovative technological solutions.

Professional Profile

Education

Yousef Abou-Ali’s educational background is rooted in a deep understanding of materials science. He completed his Bachelor’s degree in Material Engineering from a renowned institution, followed by a Master’s degree in the same field, where he focused on advanced material properties. His pursuit of knowledge led him to obtain a Ph.D. in Materials Science and Engineering, where his research revolved around nanomaterials and their applications in energy systems. During his doctoral studies, he gained extensive hands-on experience in the synthesis and characterization of materials, enabling him to contribute valuable insights to the academic community. His diverse academic journey has not only equipped him with comprehensive theoretical knowledge but also honed his research skills, allowing him to approach complex scientific challenges with a practical mindset.

Professional Experience

Yousef Abou-Ali has accumulated a wealth of professional experience in both academic and industrial settings. After completing his education, he worked as a postdoctoral researcher, where he focused on the application of nanomaterials in renewable energy storage systems. He collaborated with various research institutions and industrial partners to develop new materials with improved performance characteristics. Over the years, Yousef has contributed significantly to research projects related to sustainable energy, advancing the development of energy-efficient technologies. His work has led to several collaborations with international experts and industries, further enhancing his expertise in the field. His ability to work on large-scale projects, coupled with his leadership skills, has allowed him to transition seamlessly into teaching, where he has mentored and supervised graduate students in materials science. His professional experience reflects his dedication to advancing the field of materials engineering and his commitment to applying science for the benefit of society.

Research Interests

Yousef Abou-Ali’s research interests are focused on the development and application of advanced materials in a variety of industries. One of his primary research areas is energy storage, where he is investigating novel nanomaterials for use in batteries and supercapacitors. His work aims to improve the performance and efficiency of energy storage devices, which is crucial for the development of renewable energy systems. In addition to energy storage, Yousef has a keen interest in catalysis, particularly the use of nanomaterials to improve catalytic processes for environmental sustainability. He also explores the applications of nanotechnology in various fields, including sensors and environmental remediation. His interdisciplinary approach to research allows him to combine principles from materials science, chemistry, and physics to develop innovative solutions for global challenges. Through his work, Yousef is striving to contribute to the development of materials that can enhance the efficiency and sustainability of modern technologies.

Research Skills

Yousef Abou-Ali possesses a diverse set of research skills that have been instrumental in his scientific career. He is highly skilled in materials characterization techniques, including electron microscopy, X-ray diffraction, and spectroscopy. His ability to synthesize and manipulate nanomaterials has led to the development of novel materials with enhanced properties. Yousef is proficient in computational modeling and simulation, which allows him to predict the behavior of materials under different conditions. His strong analytical skills enable him to interpret complex data sets and draw meaningful conclusions. Additionally, Yousef is experienced in designing and executing experiments to test material properties, ensuring the reproducibility and accuracy of results. His ability to work with interdisciplinary teams has been crucial in driving collaborative research projects, making him a valuable asset to any research group. His research skills are complemented by his proficiency in project management, enabling him to lead large-scale research initiatives effectively.

Awards and Honors

Throughout his career, Yousef Abou-Ali has received numerous awards and honors in recognition of his contributions to materials science and engineering. These accolades include prestigious research grants, fellowships, and awards from both academic and industrial institutions. His work on energy storage systems has been recognized internationally, earning him the opportunity to present his research at global conferences. Yousef’s innovative approach to materials development has also earned him a place in several collaborative projects aimed at solving global energy challenges. His dedication to research excellence has been acknowledged through multiple awards for outstanding publications, as well as for his mentorship of graduate students. These honors reflect the high regard in which he is held by the scientific community and further underscore his commitment to advancing the field of materials science.

Conclusion

Yousef Abou-Ali is a passionate and highly accomplished researcher whose work continues to shape the future of materials science. With a strong foundation in education and professional experience, he has made significant contributions to the development of new materials for energy storage, catalysis, and nanotechnology. His interdisciplinary research approach and commitment to addressing global challenges have earned him recognition and numerous awards. Yousef’s ability to combine theoretical knowledge with practical applications has positioned him as a leader in his field. He continues to inspire others through his work and remains dedicated to advancing science for the betterment of society. As he progresses in his career, Yousef’s influence in the scientific community will undoubtedly continue to grow, and his research will have lasting impacts on both industry and academia.

Publications Top Notes

  1. Title: Deuteron beam fluence emitted from dense plasma focus: Comparative investigation and simulation
    Authors: Altarabulsi, A.; Abou-Ali, Yousef; Alsheikh Salo, Sami; Akel, Mohamad; Lee, Sing
    Journal: Journal of Applied Research and Technology
    Year: 2024

Paul Scheck | Physics | Best Researcher Award

Mr. Paul Scheck | Physics | Best Researcher Award

HTBLA Hallstatt, Austria

Paul Scheck is an emerging professional in the field of interior architecture, wood technologies, and restoration techniques. With a solid educational foundation from HTBLA Hallstatt and practical experience in both technical drawing and hands-on woodworking, Paul bridges the gap between traditional craftsmanship and modern digital design. His expertise spans across architectural drafting, BIM software, CNC fabrication, and advanced material applications. Paul’s commitment to preserving historical structures is evident through his specialized trainings in historic window restoration, lime burning, and rammed earth construction. His forthcoming publication on the hygrothermal performance of box windows with insulated inner sashes marks his entry into the research community, focusing on sustainable and historically sensitive construction practices. Additionally, Paul demonstrates a strong drive for continuous learning, evident through his diverse skill set in design software, presentation techniques, and material science tools. While still early in his research journey, Paul shows potential for making significant contributions at the intersection of architectural heritage conservation, building physics, and material innovation. His professional growth is complemented by a passion for creative design, outdoor activities, and a forward-looking attitude toward integrating traditional methods with modern technology.

Professional Profile

Education

Paul Scheck completed his secondary and technical education at HTBLA Hallstatt, focusing on interior architecture, wood technologies, and restoration techniques. The program provided him with both theoretical knowledge and hands-on skills in the areas of furniture design, building conservation, and material applications. He successfully passed his Reife- und Diplomprüfung (graduation and diploma examination), affirming his proficiency in combining design thinking with technical execution. Beyond formal schooling, Paul pursued targeted advanced trainings such as rhetoric and presentation techniques, which enhanced his communication and professional presentation abilities. His specialized courses in historical window restoration at the Kaiservilla in Bad Ischl and lime burning techniques in Gößl reflect a commitment to preserving cultural heritage. Additionally, his hands-on experience with rammed earth construction for the Sternenkinder monument, designed by Anna Herringer, further enriched his education by integrating sustainable materials and traditional craftsmanship. These educational achievements provide a solid foundation for his technical work and emerging research focus, equipping him with both broad competencies and niche expertise in the architectural and construction fields.

Professional Experience

Paul Scheck has gained practical experience across both technical drafting and carpentry, contributing meaningfully to real-world projects. At Planarium GmbH in Gmunden, he worked as a technical draftsman during internships in July 2023 and July 2024, where he developed design concepts through hand sketches and digital tools, created comprehensive submission documents, and produced detailed execution plans using BIM software. His active participation in construction meetings and coordination with project stakeholders demonstrated his ability to bridge the phases of design, approval, and implementation. Prior to this, Paul completed a carpentry internship at Tischlerei Stieger in Bad Goisern, where he gained hands-on experience fabricating and assembling furniture, saunas, and structural woodwork. He demonstrated proficiency in operating machinery, using tools, and supporting on-site installations, honing his craftsmanship and technical problem-solving skills. This combination of design, drafting, and manufacturing experience allows Paul to understand projects holistically, from initial concept through to finished execution. His professional background is further strengthened by his software expertise, covering tools such as Revit, AutoCAD, Fusion360, 3ds Max, CNC programming, and various Adobe applications.

Research Interests

Paul Scheck’s research interests focus on the intersection of building physics, sustainable materials, and architectural conservation. His forthcoming publication on hygrothermal interactions in historic box windows with insulated inner sashes highlights his dedication to understanding the material and environmental performance of traditional construction elements. Paul is particularly interested in how modern interventions can be sensitively applied to heritage structures, ensuring energy efficiency and durability while preserving cultural value. Additionally, his practical exposure to lime burning, rammed earth construction, and the restoration of historic elements shapes his research focus on low-carbon, traditional building materials and their performance in contemporary applications. He is also keen on exploring the integration of digital tools like BIM and life cycle assessment software (such as openLCA) to evaluate and optimize construction methods from both an environmental and a design perspective. Through combining craft knowledge with scientific analysis, Paul aims to contribute to the advancement of sustainable architecture, adaptive reuse, and the responsible modernization of historical buildings.

Research Skills

Paul Scheck possesses a well-rounded set of research skills, combining practical material expertise with digital modeling and analytical tools. He is proficient in Autodesk software (Revit, AutoCAD, Fusion360, 3ds Max) and Adobe programs (Illustrator, InDesign, Photoshop), enabling him to create precise technical drawings, renderings, and visual analyses. His familiarity with CNC programming tools (HOPS, AlphaCAM) allows him to prototype and fabricate components accurately, integrating design concepts with manufacturing capabilities. Additionally, Paul has experience using environmental assessment software such as openLCA and Topas, which are valuable for conducting life cycle analyses and material performance evaluations. His hands-on knowledge of historic restoration techniques, gained through specialized workshops and practical internships, equips him to design research projects that combine empirical investigation with field application. With English proficiency at B2 level, Paul is able to access and engage with international literature and scientific discussions. These combined research skills position him well for multidisciplinary work in architectural conservation, sustainable construction, and material innovation.

Awards and Honors

While Paul Scheck is still early in his research career, his most notable academic recognition so far is the acceptance of his co-authored publication on box window performance, which will appear in the journal Bauphysik in 2025. This publication represents an important acknowledgment of his technical insights and contribution to research on hygrothermal performance in historical window systems. Beyond formal awards, Paul’s acceptance into specialized training programs, such as the restoration workshop at the Kaiservilla Bad Ischl and the rammed earth project led by renowned architect Anna Herringer, reflects peer recognition of his technical abilities and commitment to heritage conservation. Although he has not yet accumulated a significant record of research awards or competitive honors, his achievements in combining practical experience with emerging research contributions suggest strong future potential. As his career develops, pursuing grant opportunities, research fellowships, or competitive project funding would allow him to build a more substantial honors portfolio aligned with top researcher profiles.

Conclusion

In conclusion, Paul Scheck is a promising young professional whose strengths lie in the fusion of technical craftsmanship, digital design, and emerging research in sustainable and heritage-sensitive construction. His educational and professional experiences have provided him with a rare blend of theoretical knowledge, practical skill, and a research-oriented mindset, particularly focused on improving the performance of historical building elements. While his research profile is still developing, with only one publication currently accepted, he shows clear dedication to advancing his expertise and contributing to the field. To fully position himself as a leading researcher eligible for major research awards, Paul would benefit from expanding his research output, leading independent projects, seeking research funding, and deepening his engagement with academic and professional communities. Overall, Paul’s profile reflects a strong foundation and considerable growth potential, suggesting that with time and strategic career development, he can become a significant contributor to architectural conservation research and sustainable building innovations.

Qing-Feng Sun | Physics and Astronomy | Best Researcher Award

Prof. Qing-Feng Sun | Physics and Astronomy | Best Researcher Award

Professor from School of Physics, Peking University, China

Prof. Qing-Feng Sun is an internationally renowned physicist specializing in quantum transport phenomena. Currently a professor at the International Center for Quantum Materials (ICQM), Peking University, China, his research spans quantum dots, topological insulators, superconductors, graphene systems, and spin-orbit interactions. He is widely respected for his contributions to understanding fundamental quantum processes and has produced a substantial body of highly cited work in top-tier journals. Prof. Sun has significantly advanced the theoretical understanding of spin currents, quantum Hall effects, and mesoscopic transport systems. His career, marked by early academic excellence and international postdoctoral experience, has positioned him at the forefront of condensed matter research. Over the years, Prof. Sun has actively mentored PhD students and postdoctoral researchers, helping build a strong research community around quantum transport topics. His work not only addresses fundamental physics but also provides theoretical frameworks that may guide future technological innovations in quantum computing, spintronics, and advanced materials. Recognized by several prestigious national awards, Prof. Sun’s standing in the scientific community reflects both the depth and impact of his research. His continued output and leadership make him an exemplary candidate for top research honors, including the Best Researcher Award.

Professional Profile

Education

Prof. Qing-Feng Sun completed all his higher education at Peking University, one of China’s top academic institutions. He earned his Bachelor of Science degree in Physics between 1991 and 1995, developing a solid foundation in fundamental physical theories and experimental methods. Building on this, he pursued his doctoral studies at the same university from 1995 to 2000, obtaining a Ph.D. in Physics. During his doctoral work, Prof. Sun focused on condensed matter physics, particularly quantum transport, which would become the central theme of his later career. His Ph.D. research was so distinguished that it earned him the Excellent National Doctoral Dissertation award in 2002, signaling early recognition of his research talents by the Chinese scientific community. This rigorous educational background gave Prof. Sun both the theoretical grounding and research discipline needed to excel in complex and abstract areas of quantum physics. His time at Peking University, a hub for China’s elite scientific minds, positioned him well for postdoctoral work abroad and for a lifelong academic career. His education continues to underpin his innovative contributions to the global field of quantum transport.

Professional Experience

Prof. Qing-Feng Sun’s professional experience reflects both international engagement and long-term academic leadership. After completing his Ph.D. in 2000, he pursued postdoctoral research at McGill University in Canada (2000–2003), where he expanded his expertise and built important international collaborations. Returning to China, he was appointed Professor at the Institute of Physics, Chinese Academy of Sciences (IoP, CAS) from 2003 to 2013. During this period, he further developed his research profile, producing numerous influential publications and establishing himself as a leading figure in quantum transport. In 2013, he moved to Peking University’s International Center for Quantum Materials (ICQM), where he has continued as a full professor. At ICQM, he leads research teams, mentors doctoral students and postdoctoral fellows, and contributes to China’s rising prominence in condensed matter and quantum materials research. His positions reflect a balance of hands-on research, supervision, and international scientific collaboration. Prof. Sun’s ability to sustain a dynamic and productive research career over more than two decades, across both national and international settings, highlights his resilience, adaptability, and strong academic leadership.

Research Interests

Prof. Qing-Feng Sun’s research interests are centered on quantum transport phenomena, a core topic in condensed matter physics. His work spans quantum dots, topological insulators, superconductors, graphene, spin-orbit coupled systems, and even biomolecular systems like DNA. A common theme across his research is the investigation of how electrons behave under quantum mechanical rules when moving through nanoscale systems or complex materials. He explores the interplay of spin, charge, and quantum coherence, advancing understanding of phenomena like the quantum spin Hall effect, Andreev reflections, persistent spin currents, and spin-selective electron transport. Prof. Sun’s research also connects to key emerging areas, including quantum information processing and spintronics, providing theoretical frameworks that support experimental progress. His interdisciplinary curiosity has led him to explore bio-inspired systems, such as electron transport in DNA helices, reflecting an openness to cross-disciplinary questions. With deep theoretical insights and a focus on explaining experimental observations, Prof. Sun’s research interests place him at the intersection of fundamental physics and future technological innovation. His work continues to shape how the scientific community understands and applies quantum transport phenomena in various cutting-edge fields.

Research Skills

Prof. Qing-Feng Sun possesses advanced research skills in theoretical and computational condensed matter physics. His expertise includes analytical modeling of quantum transport systems, developing and solving complex quantum mechanical equations, and applying advanced mathematical frameworks to explain experimental findings. He is highly skilled in working with quantum dots, graphene, topological insulators, and superconducting systems, understanding the role of spin-orbit coupling, quantum coherence, and dephasing effects. Prof. Sun’s ability to connect theoretical models with experimental realities allows him to propose innovative hypotheses and guide empirical investigations. Beyond technical modeling, he has strong skills in academic writing and scientific communication, producing clear, rigorous, and widely cited publications in leading physics journals. His mentoring experience reflects additional skills in guiding research projects, supervising experimental collaborations, and training young researchers in advanced topics. He also demonstrates strong collaborative abilities, having worked across international research groups and maintained productive partnerships. Altogether, Prof. Sun’s research skills position him as a leading figure capable of driving forward both theoretical breakthroughs and meaningful contributions to the broader scientific community.

Awards and Honors

Prof. Qing-Feng Sun has received several prestigious honors that underscore his excellence and impact in the field of physics. In 2002, he was awarded the Excellent National Doctoral Dissertation, marking national recognition for the exceptional quality of his Ph.D. work. This early achievement set the tone for a career marked by consistent excellence. In 2005, he was named an NSFC Distinguished Young Scholar by the National Natural Science Foundation of China, an honor given to young researchers demonstrating outstanding creativity and potential for long-term impact. Later, in 2013, he was appointed a Cheung Kong Scholar, one of the most prestigious academic titles in China, reflecting his leadership and influential contributions to the country’s scientific landscape. These awards highlight not only Prof. Sun’s individual research achievements but also his broader role in advancing China’s standing in global scientific research. Together, they serve as testament to his sustained innovation, productivity, and reputation in the scientific community. His record of honors reinforces his position as a top-tier candidate for further recognition through international awards like the Best Researcher Award.

Conclusion

In conclusion, Prof. Qing-Feng Sun stands out as an exceptional researcher whose career combines deep theoretical insights, a strong publication record, international collaborations, and national recognition. His work on quantum transport has had a significant impact on the global scientific community, offering key advances in understanding quantum coherence, spin transport, and the behavior of complex materials. With a background rooted in rigorous training at Peking University, international postdoctoral experience, and two decades of academic leadership, Prof. Sun has demonstrated resilience, adaptability, and innovation. While there is room for even greater interdisciplinary outreach and engagement with applied or technological research, his achievements already firmly establish him as a leader in his field. His numerous awards, high-profile publications, and contributions to mentoring the next generation of physicists reflect a career of sustained excellence. Prof. Sun is unquestionably a deserving candidate for the Best Researcher Award, representing not just personal scientific achievement but also the advancement of physics at both national and international levels.

Publications Top Notes

  1. Title: Nanoscale Polymorph Engineering of Metal-Correlated Insulator Junctions in Monolayer NbSe₂
    Authors: Chen, Yaoyao; Dai, Yixin; Zhang, Yu; Sun, Qingfeng; Wang, Yeliang
    Journal: ACS Nano
    Year: 2025

  2. Title: Superconducting lens and Josephson effect in AA-stacked bilayer graphene
    Authors: Lu, Weitao; Fang, Tiefeng; Sun, Qingfeng
    Journal: Physical Review B
    Year: 2025

  3. Title: Orbital hybridization in graphene-based artificial atoms
    Authors: Mao, Yue; Ren, Huiying; Zhou, Xiaofeng; He, Lin; Sun, Qingfeng
    Journal: Nature
    Year: 2025

  4. Title: Frustration-enhanced persistent currents in correlated trimer nanorings
    Authors: Fang, Tiefeng; Lu, Weitao; Guo, Aimin; Sun, Qingfeng
    Journal: Physical Review B
    Year: 2025

  5. Title: Design of a Josephson diode based on double magnetic impurities
    Authors: Sun, Yufei; Mao, Yue; Sun, Qingfeng
    Journal: Physical Review B
    Year: 2025

  6. Title: Edge supercurrent in Josephson junctions based on topological materials (Review)
    Authors: Qi, Junjie; Chen, Chuizhen; Song, Juntao; Sun, Qingfeng; Xie, Xincheng
    Year: 2025
    Citations: 2

  7. Title: Spin splitting Nernst effect in altermagnets
    Authors: Yi, Xing Jian; Mao, Yue; Lu, Xiancong; Sun, Qingfeng
    Journal: Physical Review B
    Year: 2025

  8. Title: Altermagnetism-induced parity anomaly in weak topological insulators
    Authors: Wan, Yuhao; Sun, Qingfeng
    Journal: Physical Review B
    Year: 2025
    Citations: 1

  9. Title: Tunable Quantum Confinement in Individual Nanoscale Quantum Dots via Interfacial Engineering
    Authors: Ren, Huiying; Mao, Yue; Ren, Yaning; Sun, Qingfeng; He, Lin
    Journal: ACS Nano
    Year: 2025
    Citations: 1

  10. Title: Phase transitions in quantum dot-Majorana zero mode coupling systems (Open access)
    Authors: Mao, Yue; Sun, Qingfeng
    Journal: SciPost Physics Core
    Year: 2025