Akbar Heydari | Chemistry | Best Researcher Award

Prof. Akbar Heydari | Chemistry | Best Researcher Award

corresponding author from Tarbiat Modares University, Iran .

Professor Akbar Heydari is a distinguished academic in organic chemistry at Tarbiat Modares University, Tehran, Iran. He earned his B.Sc. in Chemistry from Kharazmi University (1987), M.Sc. from the University of Tehran (1989), and Ph.D. from Justus Liebig University, Giessen, Germany (1994). Since 1994, he has been a faculty member in the Department of Organic Chemistry at Tarbiat Modares University. His research focuses on the synthesis of organic and organometallic catalysts, nanochemistry, and the development of green catalytic systems. He has received prestigious awards from the Volkswagen Stiftung, DAAD Stiftung, and Alexander von Humboldt Stiftung, reflecting his significant contributions to the field.

Professional Profile

Education

Professor Heydari completed his B.Sc. in Chemistry at Kharazmi University (1987), followed by an M.Sc. in Chemistry from the University of Tehran (1989). He pursued his Ph.D. at Justus Liebig University, Giessen, Germany, graduating in 1994 with a dissertation on “LiClO₄-Diethylether als Reaktionsmedium in der organischen Chemie.” His doctoral research focused on the use of lithium perchlorate in diethyl ether as a reaction medium in organic chemistry. Since 1994, he has been a faculty member in the Department of Organic Chemistry at Tarbiat Modares University, where he has contributed to both undergraduate and graduate education, supervising numerous theses and fostering a research-driven academic environment.

Professional Experience

Since 1994, Professor Heydari has served as a faculty member in the Department of Organic Chemistry at Tarbiat Modares University, Tehran, Iran. His academic career encompasses teaching undergraduate and graduate courses in organic chemistry, industrial organic chemistry, and the synthesis of organic materials. He has supervised numerous M.Sc. and Ph.D. students, guiding research projects that explore sustainable and efficient catalytic systems. His professional experience extends to collaborative research with international institutions, contributing to advancements in nanocatalysis, green chemistry, and the development of novel catalytic processes. His work has led to the publication of over 200 research articles, reflecting his extensive experience and commitment to advancing the field of organic chemistry.

Research Interests

Professor Heydari’s research primarily focuses on the development of green and sustainable catalytic systems in organic chemistry. He specializes in the synthesis of organic and organometallic catalysts, with an emphasis on nanochemistry and the application of deep eutectic solvents. His work involves the design of magnetic nanocatalysts and metal-organic frameworks (MOFs) for various reactions, including oxidative amidation, carbon-carbon bond formation, and functionalization of organic compounds. He also investigates the use of ionic liquids and recyclable catalysts in one-pot synthesis reactions. Through his interdisciplinary approach, Professor Heydari aims to address environmental challenges in chemical processes by developing efficient, recyclable, and sustainable catalytic systems.

Research Skills

Professor Heydari possesses advanced expertise in designing and synthesizing organic and organometallic catalysts, with a strong emphasis on nanochemistry. He is proficient in developing green catalytic systems, utilizing deep eutectic solvents, and employing sustainable methodologies for organic synthesis. His research integrates various techniques, including molecular docking and density functional theory (DFT) studies, to understand reaction mechanisms and optimize catalytic processes. Additionally, he has experience in the synthesis and characterization of metal-organic frameworks (MOFs) and magnetic nanocatalysts, applying them in diverse reactions such as oxidative amidation and carbon-carbon bond formation. His interdisciplinary approach combines theoretical and practical aspects of chemistry to address environmental and efficiency challenges in catalysis.

Awards and Honors

Professor Heydari has been recognized with several prestigious awards throughout his career. He received the Research Award from the Volkswagen Stiftung, acknowledging his significant contributions to chemical research. Additionally, he was honored by the DAAD Stiftung, reflecting his excellence in academic and research endeavors. The Alexander von Humboldt Stiftung also recognized his work, underscoring his international impact in the field of organic chemistry. These accolades highlight his dedication to advancing chemical sciences and his commitment to sustainable and innovative research practices. His achievements have established him as a leading figure in the development of green catalytic systems and nanochemistry.

Conclusion

Suitable for Nomination: YES ✅
Dr. Heydari meets and exceeds several core criteria for the Research for Best Researcher Award, particularly in:

  • Originality,

  • Publication quality,

  • Societal relevance,

  • Alignment with sustainability goals.

Publications Top Notes

  • Title: Magnetic N-doped CNT stabilized Cu₂O as a catalyst for N-arylation of nitriles and aryl halides in a biocompatible deep eutectic solvent
    Authors: M. Alizadeh, A. Salamatmanesh, M.J. Nejad, A. Heydari
    Journal: RSC Advances
    Year: 2025
    Volume: 15
    Issue: 11
    Pages: 8195–8206
    Cited by: Not yet citedModares University

  • Title: Visible Light-Mediated Four-Component Synthesis of Polyfunctionalized Pyrroles Using Eosin-Y via the HAT Process
    Authors: F. Ahmadi, M. Shariatipour, M.J. Nejad, A. Heydari
    Journal: Journal of Photochemistry and Photobiology A: Chemistry
    Year: 2024
    Volume: 457
    Article No.: 115863
    Cited by: 1

  • Title: Magnetic Metal-Organic Framework (MOF) as an Effective Photocatalyst for Synthesis of Quinazolinones under Oxidation and Visible-Light Conditions
    Authors: M. Alizadeh, M.J. Nejad, A. Heydari
    Journal: Research on Chemical Intermediates
    Year: 2024
    Volume: 50
    Issue: 9
    Pages: 4085–4104
    Cited by: 1

  • Title: Oxidative Amidation of Aldehydes with Amine in a Mixture of Choline Chloride and Aluminium Nitrate as Oxidant and Solvent
    Authors: M. Jafari, A. Darvishi, A. Heydari
    Journal: Tetrahedron
    Year: 2024
    Volume: 158
    Article No.: 133987
    Cited by: 1Ecopersia+2AD Scientific Index+2Modares University+2

  • Title: Modified Nano Magnetic Fe₂O₃-MgO as a High Active Multifunctional Heterogeneous Catalyst for Environmentally Beneficial Carbon-Carbon Synthesis
    Authors: E. Kamali, F. Dreekvandy, A. Mohammadkhani, A. Heydari
    Journal: BMC Chemistry
    Year: 2024
    Volume: 18
    Issue: 1
    Article No.: 78
    Cited by: 3

  • Title: Determination of Biodiesel Yield and Color After Purification Process Using Deep Eutectic Solvent (Choline Chloride: Ethylene Glycol)
    Authors: M. Khanian-Najaf-Abadi, B. Ghobadian, M. Dehghani-Soufi, A. Heydari
    Journal: Biomass Conversion and Biorefinery
    Year: 2024
    Volume: 14
    Issue: 7
    Pages: 8469–8481
    Cited by: 3

  • Title: Modified Nano Magnetic Fe
    Authors: E. Kamali, F. Dreekvandy, A. Mohammadkhani, A. Heydari
    Journal: BMC Chemistry
    Year: 2024
    Volume: 18
    Issue: 1
    Article No.: 78
    Cited by: 3

  • Title: Synthesis and Characterization of a Green and Recyclable Arginine-Based Palladium/CoFe₂O₄ Nanomagnetic Catalyst for Efficient Cyanation of Aryl Halides
    Authors: S. HajimohamadzadehTorkambour, M.J. Nejad, F. Pazoki, F. Karimi, A. Heydari
    Journal: RSC Advances
    Year: 2024
    Volume: 14
    Issue: 20
    Pages: 14139–14151
    Cited by: 5

  • Title: Synthesis of a New 1,2,3-Triazoles Scaffold Using a Heterogeneous Multifunctional Copper Photocatalyst for In Vitro Investigation via Click Reaction
    Authors: A. Mohammadkhani, S. Hosseini, S.A. Pourmousavi, A. Heydari, M. Mahdavi
    Journal: Catalysis Science & Technology
    Year: 2024
    Volume: 14
    Issue: 11
    Pages: 3086–3097
    Cited by: Not yet citedModares University+1Modares University+1

  • Title: Basic Dimensions Affecting the Defense of Middle East Countries
    Authors: M. Zangoei Dovom, M. Janparvar, A. Heydari, A. Mohamadpour

Zhigang Chen | Chemistry | Best Researcher Award

Dr. Zhigang Chen | Chemistry | Best Researcher Award

Associate Professor from Chongqing University of Technology, China

Zhigang Chen is an accomplished researcher and Associate Professor at the School of Energy Catalysis, Chongqing University of Technology. With a strong academic background in physical chemistry and materials science, he has developed a research niche in single-atom catalysis and advanced in situ characterization techniques. Dr. Chen has demonstrated an exceptional ability to combine theoretical knowledge with experimental innovation, resulting in significant contributions to the field of heterogeneous catalysis. His research has been widely recognized and published in prestigious journals such as Nature Communications, PNAS, Nano Letters, ACS Catalysis, and Small, with many works authored as the first or corresponding author. Throughout his academic and professional career, Dr. Chen has emphasized the development of scalable, high-performance catalysts for electrochemical applications, addressing key challenges in sustainable energy. His work not only advances fundamental understanding of catalyst behavior but also offers practical implications for energy conversion and storage technologies. Driven by scientific curiosity and a strong commitment to impactful research, Dr. Chen continues to explore novel materials and techniques with a vision to revolutionize the field of catalysis through innovation, precision, and interdisciplinary collaboration.

Professional Profile

Education

Zhigang Chen holds a robust academic foundation in materials science and physical chemistry, having completed his education at some of China’s most prestigious institutions. He earned his Bachelor’s degree in Materials Science and Engineering from Chongqing University of Technology in 2014, laying the groundwork for his future specialization in catalysis and nanotechnology. He then pursued a Master’s degree in Physical Chemistry at the School of Sciences, Shanghai University, from 2014 to 2017. During this time, he honed his skills in chemical analysis, reaction mechanisms, and materials characterization, which became pivotal in his later research. For his doctoral studies, Dr. Chen attended the University of Science and Technology of China, one of the country’s leading research universities, where he earned his Ph.D. in Physical Chemistry in 2020. His doctoral work delved into the mechanisms and design of advanced catalytic systems, particularly at the nanoscale level. Following his Ph.D., he undertook a postdoctoral fellowship at the Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, specializing in surface catalysis. This rich academic trajectory has equipped him with a comprehensive understanding of both the theoretical and practical aspects of catalysis and advanced materials science.

Professional Experience

Zhigang Chen began his professional journey with a strong academic orientation, culminating in his current role as an Associate Professor at the School of Energy Catalysis, Chongqing University of Technology, where he has been serving since March 2023. Prior to this, he completed a postdoctoral fellowship at the Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, from 2020 to 2023. There, he focused on surface catalysis and further deepened his expertise in nanostructured materials and their electrochemical applications. His postdoctoral research also emphasized in situ spectroscopic techniques, which enabled a more profound understanding of catalyst behavior under real-time operational conditions. Dr. Chen’s academic appointments reflect a continuous trajectory of growth, supported by both fundamental scientific training and advanced experimental research. Throughout his professional career, he has maintained a strong publishing record in internationally renowned journals and has taken on increasing responsibilities as a lead and corresponding author. His current role includes supervising graduate students, developing cutting-edge research projects in energy catalysis, and contributing to the scientific community through collaborations and peer-reviewed publications. His professional pathway showcases both academic depth and research leadership in a rapidly evolving scientific field.

Research Interests

Zhigang Chen’s research interests lie at the intersection of material science, surface chemistry, and energy technology, with a primary focus on the development and scale-up of single-atom catalysts. These advanced materials offer high catalytic efficiency, selectivity, and stability—key parameters for energy-related applications such as hydrogen evolution, oxygen evolution, and carbon dioxide reduction. His work is grounded in physical chemistry and is highly interdisciplinary, integrating concepts from solid-state chemistry, surface science, and electrochemical engineering. Dr. Chen is particularly interested in the application of in situ spectroscopic techniques such as Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS), which allow real-time investigation of catalytic behavior under operational conditions. His overarching research goal is to develop highly active and durable catalytic systems that contribute to sustainable and clean energy solutions. The combination of scalable material synthesis and in-depth mechanistic studies places his research at the frontier of nanocatalysis and materials innovation. Furthermore, he seeks to expand his work into industrially viable catalytic systems that can be deployed in real-world applications, thereby bridging the gap between fundamental research and applied technology.

Research Skills

Zhigang Chen possesses a diverse and advanced set of research skills that distinguish him in the field of catalysis and materials science. He is highly proficient in the synthesis and scale-up of single-atom catalysts, which involves complex procedures of atomic dispersion, substrate preparation, and post-treatment to achieve high catalytic performance. His work also extensively utilizes advanced characterization methods, particularly in situ spectroscopic techniques such as Raman spectroscopy, XPS (X-ray photoelectron spectroscopy), and XAS (X-ray absorption spectroscopy). These techniques enable him to monitor and analyze chemical reactions and structural changes of catalysts in real-time under operating conditions, providing critical insights into reaction mechanisms and material behavior. In addition to experimental techniques, Dr. Chen demonstrates strong skills in data interpretation, scientific writing, and critical review, as reflected in his numerous first-author publications in high-impact journals. His background in physical chemistry further enhances his ability to understand reaction kinetics, thermodynamics, and surface interactions at the atomic level. Moreover, he is adept at collaborating across disciplines, integrating materials science with electrochemistry and nanotechnology, which allows him to approach problems from multiple scientific perspectives. These research competencies position him as a leading innovator in catalyst development.

Awards and Honors

Zhigang Chen’s scholarly contributions have earned him recognition within the scientific community, as evidenced by his publication record in premier journals such as Nature Communications, PNAS, Nano Letters, Nano Energy, and ACS Catalysis. While specific awards or honors are not listed in his current profile, his recurring presence as the first or corresponding author in these top-tier journals is itself a mark of distinction. His research achievements reflect not only academic excellence but also innovation and leadership in the competitive field of catalysis and nanomaterials. Publishing in journals of this caliber requires stringent peer review and high-impact findings, indicating that Dr. Chen’s work consistently meets international standards of research excellence. Furthermore, his appointment as Associate Professor at a relatively early stage in his career signifies institutional recognition of his potential and expertise. He is also trusted with mentorship roles and leads significant research initiatives within his department. As his career progresses, it is expected that Dr. Chen will continue to receive formal awards and honors for his pioneering research, interdisciplinary collaborations, and contributions to advancing energy technologies.

Conclusion

Zhigang Chen stands out as a dynamic and innovative researcher whose work in single-atom catalysis and in situ spectroscopy has made a notable impact on the field of energy catalysis. His academic training, postdoctoral specialization, and current faculty role all reflect a focused and evolving career dedicated to advancing sustainable technologies through materials innovation. With a solid foundation in physical chemistry and materials science, Dr. Chen has developed advanced skills in catalyst synthesis and real-time analytical techniques, positioning him at the forefront of modern catalysis research. His extensive publication record in prestigious journals underscores his ability to produce high-quality, impactful research. Moreover, his current research aligns with global priorities such as clean energy and environmental sustainability, making his contributions both timely and socially relevant. As an emerging leader in his field, Dr. Chen has the potential to influence both academic research and industrial practices. With continued focus on interdisciplinary collaboration and application-driven research, he is well-poised to achieve greater scientific milestones. Overall, his profile makes him a strong contender for awards that recognize innovative and high-impact research.

 

 

KUN LUO | Energy Chemistry | Best Researcher Award

Prof. Dr. KUN LUO | Energy Chemistry | Best Researcher Award

Professor from Tianjin University of Technology, China

Prof. Dr. Kun Luo is a distinguished researcher and academic in the field of energy materials and inorganic chemistry, with a robust background in materials science and engineering. With over two decades of experience in research and academia, he has made significant contributions to the advancement of battery technologies and sustainable energy materials. Dr. Luo is currently a professor at Tianjin University of Technology in China, where he leads innovative research in energy storage and materials synthesis. He completed his PhD in Inorganic Chemistry at the University of Oxford and has held prominent research positions at the University of St Andrews and Oxford, reflecting a solid international academic background. His research has been published in prestigious journals such as Nature Chemistry, Nano Letters, ACS Sustainable Chemistry & Engineering, and Journal of the American Chemical Society, demonstrating a high impact and relevance in the scientific community. Prof. Luo’s work focuses on novel electrode materials, redox chemistry, and the development of efficient, durable battery systems. His contributions are not only academic but also highly practical, supporting the global transition to sustainable energy. With a rich portfolio of publications and consistent research productivity, Prof. Luo is an exemplary candidate for the Best Researcher Award.

Professional Profile

Education

Prof. Dr. Kun Luo has a distinguished educational background that has laid a strong foundation for his scientific career. He began his academic journey at Zhejiang University, China, where he earned both his Bachelor’s and Master’s degrees in Materials Science and Engineering between 2003 and 2010. These formative years provided him with extensive knowledge of materials synthesis, characterization, and engineering principles. Recognized for his academic excellence, he pursued doctoral studies at the prestigious University of Oxford, where he received his PhD in Inorganic Chemistry in 2013. During his PhD, he focused on the synthesis and structural characterization of complex transition metal oxides, which would later become a cornerstone of his research expertise in energy materials. The combination of his background in materials engineering and deep chemical insight allowed him to approach energy problems with a unique interdisciplinary perspective. His education at institutions known for research rigor and innovation prepared him to tackle advanced scientific problems and train future generations of researchers. The academic diversity and international exposure in both Chinese and British universities gave him a global outlook and an adaptable approach to collaborative research and teaching, making his educational profile both versatile and elite.

Professional Experience

Prof. Dr. Kun Luo has accumulated an impressive array of professional experiences across some of the world’s leading academic institutions. Following his PhD at the University of Oxford, he began his postdoctoral research at the University of St Andrews from 2013 to 2014, where he deepened his expertise in solid-state chemistry and advanced materials. He then returned to Oxford as a postdoctoral researcher from 2014 to 2017, contributing to cutting-edge projects on battery materials and redox chemistry. In 2018, he assumed a professorial role at Nankai University in Tianjin, China, where he led research in inorganic chemistry until 2022. During this period, his research group focused on developing high-performance electrode materials and exploring the fundamental science behind electrochemical energy storage. In 2022, he joined Tianjin University of Technology as a full professor in the School of Materials Science and Engineering. Throughout his career, Prof. Luo has demonstrated a consistent trajectory of advancement, reflecting both his research excellence and leadership capabilities. His academic appointments have allowed him to secure substantial research funding, supervise graduate students, and collaborate with global scholars. These roles underscore his commitment to both research and education, firmly establishing him as a leader in the field of energy materials.

Research Interests

Prof. Dr. Kun Luo’s research interests lie at the intersection of energy storage, inorganic chemistry, and materials engineering. His primary focus is on the development and optimization of advanced energy materials, particularly for battery technologies. He is deeply engaged in designing novel electrode materials, such as lithium-ion and sodium-ion battery components, which exhibit superior capacity, stability, and charge-discharge performance. His work explores solid-state reactions, redox mechanisms, and structural evolution during electrochemical cycling. He also investigates the role of oxygen and anion redox processes in transition metal oxide electrodes to improve energy density and safety. Another vital area of interest is the integration of sustainable practices into energy materials design, such as using abundant and environmentally benign elements. Prof. Luo’s research extends to hydrogen storage materials, where he examines reaction kinetics and thermodynamics to improve storage efficiency. His interdisciplinary approach blends chemistry, materials science, and engineering, enabling practical applications in renewable energy and sustainable technology development. By addressing both theoretical and applied challenges, his research contributes significantly to global efforts toward clean energy solutions. His work is at the forefront of next-generation battery technologies, making his research highly relevant for industries aiming to revolutionize portable and large-scale energy systems.

Research Skills

Prof. Dr. Kun Luo possesses a wide array of advanced research skills that enable him to conduct cutting-edge investigations in energy materials and inorganic chemistry. He is proficient in the synthesis of complex oxide materials, employing methods such as solid-state reactions, hydrothermal synthesis, and topochemical modifications. His expertise extends to structural characterization using techniques like X-ray diffraction (XRD), neutron diffraction, transmission electron microscopy (TEM), and pair distribution function (PDF) analysis, allowing precise determination of crystallographic and local atomic structures. Dr. Luo is also adept in electrochemical characterization, including cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy (EIS), which he uses to assess battery performance and reaction mechanisms. He is highly experienced in analyzing redox processes, particularly oxygen redox activity, and understanding charge compensation phenomena in transition metal oxides. Furthermore, his familiarity with computational modeling and thermodynamic analysis enhances his ability to predict and explain material behavior under various conditions. His interdisciplinary skill set bridges chemistry, materials science, and engineering, enabling him to tackle complex challenges in sustainable energy storage. These skills not only underscore his scientific depth but also his adaptability to evolving research frontiers, reinforcing his status as a top-tier researcher in energy materials.

Awards and Honors

While Prof. Dr. Kun Luo’s curriculum vitae does not explicitly list awards and honors, his scholarly impact and publication record strongly suggest a career marked by distinction and recognition in the scientific community. His research has been featured in some of the most prestigious and high-impact journals in materials science and chemistry, such as Nature Chemistry, Nano Letters, Journal of the American Chemical Society, and ACS Sustainable Chemistry & Engineering. The consistent publication of impactful work over the years highlights the academic community’s acknowledgment of his research quality and relevance. Moreover, he has served as a peer reviewer for reputable journals, including ACS Applied Energy Materials, further reflecting his standing as a trusted expert in his field. His appointments at globally respected institutions like the University of Oxford and Nankai University also signify academic recognition and trust in his abilities. Although not explicitly detailed, it is reasonable to infer that he has been the recipient of internal and collaborative research funding, enabling him to lead and execute high-level projects. These forms of implicit recognition, combined with his citation impact and leadership roles, indicate that Prof. Luo is highly esteemed and likely to be honored further as his research continues to influence the energy materials field.

Conclusion

Prof. Dr. Kun Luo exemplifies excellence in research, academic leadership, and scientific innovation. With a robust educational background, extensive professional experience at top-tier institutions, and a prolific research portfolio, he stands out as a leading figure in the field of energy materials. His pioneering contributions to battery materials, inorganic chemistry, and sustainable energy technologies have advanced both theoretical understanding and real-world applications. Dr. Luo’s interdisciplinary approach, integrating chemistry and engineering, demonstrates his capacity to address pressing global challenges such as clean energy storage. His research not only contributes to academic progress but also holds significant potential for industrial and environmental impact. Furthermore, his mentoring of young scientists and involvement in peer review activities underline his commitment to the advancement of science and education. Although his formal accolades may not be extensively documented, his publication history and professional trajectory clearly establish him as a thought leader in his domain. Given his consistent research output, global academic involvement, and deep technical expertise, Prof. Dr. Kun Luo is an outstanding candidate for the Best Researcher Award. His profile embodies the values of innovation, integrity, and excellence that such an honor is intended to celebrate.

Publications Top Notes

  • Title: Suppressing staircase-like electrochemical profile induced by P–O transition by solid-solution reaction with continuous structural evolution in layered Na-ion battery cathode
    Authors: Kun Luo, Ming Chen, Mengdan Tian, Wenhui Li, Yang Jiang, Zhihao Yuan
    Year: 2023

  • Title: High-Capacity Anode Material for Lithium-Ion Batteries with a Core–Shell NiFe₂O₄/Reduced Graphene Oxide Heterostructure
    Authors: Chang Liu, Tong Zhang, Lixin Cao, Kun Luo
    Year: 2021

  • Title: Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
    Authors: Niccolo Guerrini, Liyu Jin, Juan G. Lozano, Kun Luo, Adam Sobkowiak, Kazuki Tsuruta, Felix Massel, Laurent-C. Duda, Matthew R. Roberts, Peter Bruce
    Year: 2020

  • Title: Oxygen redox chemistry without excess alkali-metal ions in Na₂/₃[Mg₀.₂₈Mn₀.₇₂]O₂
    Authors: Urmimala Maitra, Robert A. House, James W. Somerville, Nuria Tapia-Ruiz, Juan G. Lozano, Niccoló Guerrini, Rong Hao, Kun Luo, Liyu Jin, Miguel A. Pérez-Osorio et al.
    Year: 2018

  • Title: Identifying the local structural units in La₀.₅Ba₀.₅MnO₂.₅ and BaY₀.₂₅Fe₀.₇₅O₂.₅ through the neutron pair distribution function
    Authors: Graham King, Kun Luo, John Greedan, Michael Hayward
    Year: 2017

  • Title: One-Pot Synthesis of Lithium-Rich Cathode Material with Hierarchical Morphology
    Authors: Kun Luo, Matthew R. Roberts, Rong Hao, Niccoló Guerrini, Emanuela Liberti, Christopher S. Allen, Angus I. Kirkland, Peter G. Bruce
    Year: 2016

  • Title: Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li₀.₂Ni₀.₂Mn₀.₆]O₂
    Authors: Kun Luo, Matthew R. Roberts, Niccoló Guerrini, Nuria Tapia-Ruiz, Rong Hao, Felix Massel, David M. Pickup, Silvia Ramos, Yi-Sheng Liu, Jinghua Guo et al.
    Year: 2016

  • Title: Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
    Authors: Kun Luo, Matthew R. Roberts, Rong Hao, Niccoló Guerrini, David M. Pickup, Yi-Sheng Liu, Kristina Edström, Jinghua Guo, Alan V. Chadwick, Laurent C. Duda et al.
    Year: 2016

  • Title: Ca₂Cr₀.₅Ga₁.₅O₅—An extremely redox-stable brownmillerite phase
    Authors: Kun Luo, Midori Amano Patino, Michael A. Hayward
    Year: 2015

  • Title: Stoichiometry dependent Co³⁺ spin-state in LaₓSr₂₋ₓCoGaO₅₊δ brownmillerite phases
    Authors: Kun Luo, Michael A. Hayward
    Year: 2014